Supporting Information

Grafting polyelectrolytes to hydrocarbon surfaces by high-energy hydrogen induced cross-linking for making metallized polymer films

Xiaolong Wang,^{a,b} Tengyuan Zhang,^a Brad Kobe^c, Woon Ming Lau^d and Jun Yang^{*a}

^a Department of Mechanical and Materials Engineering, the University of Western Ontario, London, Ontario, N6A 5B9, Canada. E-mail: jyang@eng.uwo.ca

^b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

^c Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada ^d Chengdu Green Energy and Green Manufacturing Technology Research & Development Center, Chengdu, Sichuan, China 610207

Experimental details

Materials. All chemicals were purchased from Aldrich and used as received. PET films 100 μ m thick were purchased from Transilwrap Inc (Canada), which were cleaned using ethanol before use. Poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) was synthesized by solution polymerization of 2-(methacryloyloxy)ethyl-trimethylammonium chloride in water at 50 wt % concentration catalysed by 1 wt % potassium persulfate at 75 °C, which was collected by precipitation in acetone and dried in vacuum at 60 °C.

Fabrication of metallized PET. 5 mg/mL of PMETAC solution in ethanol was spin coated on the pre-cleaned PET film at 5000 rpm for 30 s. Subsequently, the samples were exposed to high-energy hydrogen neutrals with an extraction current of 10 mA at the pressure of 8×10^{-4} Torr to yield PMETAC grafted PET film (PMETAC-PET). Briefly, an electron-cyclotron-resonance microwave plasma (87.5 mT, 2.45 GHz) was set up to generate hydrogen plasma. The positive ions $(H^+, H_2^+, and H_3^+)$ were then extracted through an applied potential of -100 V and accelerated before going into a drift zone full of molecular hydrogen, where binary collisions happened and generated various high-energy hydrogen projectiles. After repelling residual electrons and positive ions using two stages with potential of +100 V and -50 V, molecule hydrogen projectiles with proper kinetic energy that can break C-H bonds without affecting other bonds were obtained. The high-erergy hydrogen exposure time was fixed at 120 s, which is sufficient time to cross-link an organic film (ACS Appl Mater Interfaces, 2011, 3, 1740). Next, the PMETAC grafted PET composite film was immersed in a 5 mM (NH₄)₂PdCl₄ aqueous solution for 15 min to immobilize PdCl₄²⁻ by ion exchange. Finally, samples were immersed in a freshly prepared Cu ELD plating bath for 30 min at room temperature, resulting in the Cu coated PET. The plating bath contains a 1:1 mixture of freshly prepared solutions A and B. Solution A consists of 12 g/L NaOH, 13 g/L CuSO₄·5H₂O, and 29 g/L potassium sodium tartrate. Solution B is 9.5 mL/L HCHO in water.

Measurements. Chemical composition information about the samples was obtained by X-ray photoelectron spectroscopy (XPS). The measurement was carried out using a Kratos Axis Ultra spectrometer using a monochromatic Al K α radiation source. The binding energies were referenced to the C 1s line at 284.8 eV from adventitious carbon. The morphology of Cu coated PET was investigated using a Hitachi S-4500 field emission scanning electro-microscope (FESEM) using a 5 kV accelerating voltage. Atomic force microscopy (AFM) was performed on Nanoscope V (Veeco, Inc.) in tapping mode to characterize the surface morphology of the modified PETs and thickness of PMETAC coatings and Cu films by scanning the edge of a scratch. Resistance measurements were carried out by a four-probe method using M 2400 Keithley Multimeter.

Fig.S1 XPS high resolution spectra of N 1s

Fig.S2 XPS high resolution spectra of Pd 3d for Pd-loaded PET

Fig.S3 Photos of Scotch tape test before (a) and after (b) peeling-off

Fig.S4 AFM image of PMETAC-PET obtained by HHIC exposure on 42.7 nm-thick PMETAC coating. The Z-scale is 100 nm.

Fig.S5 Thickness of Cu films obtained at 10 min of ELD on PMETAC-PET surfaces based on PMETAC coating with initiate thickness of 9.9 nm, 26.8 nm, and 42.7 nm before HHIC exposure.

Fig.S6 Patterned Cu lines on PDMS film.