Supporting information for

Enantioselective Synthesis of 4-Aminopyrrolidines-2,4-dicarboxylate Derivatives via Ag-Catalyzed Cycloaddition of Azomethine Ylides with Alkylidene Azlactones

María González-Esguevillas, Javier Adrio,* and Juan C. Carretero*

Departamento de Química Orgánica. Facultad de Ciencias. Universidad Autónoma de Madrid. Cantoblanco.28049 Madrid. Spain.

Table of Contents

1.	General Methods	S2
2.	Catalyst optimization studies	S3
3.	Comparative study between silver and copper catalyzed reactions	S4
4.	General procedures for the synthesis of α -imino esters	S5
5.	General procedure for the 1,3-dipolar cycloaddition and characterization	
	data	S5
6.	General procedure for the hydrolysis of the methylcarboxylates	S20
7.	Preparation of racemic products for HPLC analysis	S21
8.	Stereochemical assignment	S22
9.	HPLC chart	S25
10.	NMR Spectra collection	S51

1. General methods

All anaerobic and moisture-sensitive manipulations were carried out in anhydrous solvents and under nitrogen. Dichloromethane, toluene, acetonitrile and tetrahydrofuran were dried over the PureSolv MD purification system. Melting points were taken in open-end capillary tubes. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm silica gel plates (230-400 mesh). Flash column chromatographies were performed using silica gel (230-400 mesh). NMR spectra were recorded on AU-300 MHz instrument and calibrated using residual undeuterated solvent (CDCl₃, methanol-d₄ or D₂O) as internal reference. MS spectra were recorded on a VG *AutoSpec* mass spectrometer. The HPLC chromatograms of the racemic and enantiomerically enriched cycloadducts are also included.

 α -Iminoesters **1a-1** were prepared by condensation of α -aminoesters and the corresponding aldehydes.¹ Due to their lability, all the α -iminoesters precursors of the azomethine ylides, once isolated were immediately used in the 1,3-dipolar cycloaddition without further purification.

Azlactones **2a**, **2q**, **2u** and **2y** are comercially available. Azlactones **2b-p**, **2r-t** and **2v-x** were prepared according literature procedures.²

2. Catalyst optimization studies.

The table below shows other chiral catalyst systems tested in the model [3+2] cycloaddition.

$\sqrt{N^{CO_2Me}} + \sqrt{V^{O}_0}$	Metal salt (10 mol%) Ligand (10 mol%) Base (20 mol%) Solvent, rt	Ph N N N N CO ₂ Me A	B Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	$\begin{array}{c} Ph \\ O \\ O \\ P \\ P \\ P \\ P \\ C \\ C \\ P \\ P \\ P \\ P$
Metal	Ligand	Base	Solvent	A:B:C:D ^{<i>a,b</i>}
Cu(CH ₃ CN) ₄ PF ₆	\pm BINAP	Et ₃ N	THF	18:41:41:0
Cu(CH ₃ CN) ₄ PF ₆	(R)-Segphos	Et ₃ N	THF	40:37:7:16
Cu(CH ₃ CN) ₄ PF ₆	Taniaphos	Et ₃ N	THF	Complex mixture
$Cu(OAc)_2$	\pm BINAP	Et ₃ N	THF	27:48:25:0
Cu(OTf) ₂	\pm BINAP	Et ₃ N	THF	27:55:10:8
Cu(OTf) ₂	(R)-DTBM-Segphos	Et ₃ N	THF	37:50:12:0
Cu(OTf) ₂	(R)-DTBM-Segphos		THF	Complex mixture
AgOAc	\pm BINAP	Et ₃ N	THF	8:34:45:13
AgOAc	Fesulphos	Et ₃ N	THF	11:41:48:0
AgOAc	(R)-Segphos	Et ₃ N	THF	10:28:57:5
AgOAc	(R)-DM-Segphos	Et ₃ N	THF	9:20:50:21
AgOAc	Solphos	Et ₃ N	THF	14:23:49:14
AgOAc	Mandiphos	Et ₃ N	THF	34:41:16:9
AgOAc	Taniaphos	Et ₃ N	THF	38:55:7:0
AgOAc	(R)-Tol-Binap	Et ₃ N	THF	9:28:61:2
AgOAc	(R)-DTBM-Segphos	Et ₃ N	THF	55:25:20:0
AgOTf	(R)-DTBM-Segphos	Et ₃ N	THF	43:46:11:0
AgClO ₄ .H ₂ O	(R)-DTBM-Segphos	Et ₃ N	THF	51:44:5:0
AgSbF ₆	(R)-DTBM-Segphos	Et ₃ N	THF	52:42:6:0
AgOAc	(R)-DTBM-Segphos		THF	57:38:5:0
AgOAc	(R)-DTBM-Segphos	Et ₃ N	ACN	28:52:20:0
AgOAc	(R)-DTBM-Segphos	Et ₃ N	Et ₂ O	49:41:9:0
AgOAc	(R)-DTBM-Segphos	Et ₃ N	Toluene	60:32:8:0
AgOAc	(R)-DTBM-Segphos	^t BuOK	Toluene	23:46:32:0
AgOAc	(R)-DTBM-Segphos	NaOAc	Toluene	77:20:3:0
AgOAc	(R)-DTBM-Segphos		Toluene	80:14:6:0

^a By 1H NMR from the crude reaction mixtures. ^bThe spirocyclic adducts can not be purified by silica gel chromatography.

3. Comparative study between silver and copper catalyzed reactions

^aYield of the 4a+5a mixture after column chromatography. ^bDetermined by chiral HPLC

S4

4. General procedure for the synthesis of α-iminoesters. Methyl (*E*)-*N*-[(4-*tert*-butylphenyl)methylene]glycinate (1e)

A suspension of methyl glycinate hydrochloride (1.16 g, 9.3 mmol), $MgSO_4$ (0.93 g, 7.7 mmol) and Et_3N (1.3 mL, 9.3 mmol) in dry dichloromethane (8 mL) was stirred at room temperature for 1 h, and 4-*tert*-butylbenzaldehyde (1.0 g, 6.2 mmol) was added. After 12h at room

temperature the mixture was filtered off and water (4 mL) was added. The organic layer was separated and the aqueous phase was extracted with dichloromethane (10 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated under reduced pressure to afford methyl (*E*)-*N*-[(4-*tert*-butylphenyl)methylene]glycinate (**1e**) (1.26 g, 88%, yellow solid).

¹**H NMR** (300 MHz, CDCl₃): δ 8.13 (s, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 4.26 (s, 2H), 3.60 (s, 3H), 1.21 (s, 9H).

5. General procedure for the asymmetric 1,3-dipolar cycloaddition of azomethine ylides. (2R, 3S, 4S, 5R)-Dimethyl-4-benzamido-3,5-diphenylpyrrolidine-2,4-dicarboxylate (4a)

To a solution of (*R*)-DTBM-Segphos (39.0 mg, 33.00 10^{-3} mmol), AgOAc (5.0 mg, 30.10 10^{-3} mmol) and (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (150.0 mg, 0.60 mmol) in toluene (3.0 mL), under nitrogen atmosphere, at - 10 °C, a solution of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (213.0 mg, 1.20 mmol) in toluene (3.0 mL) was added. The mixture was stirred at -10 °C for 16 h. HCl 3M in methanol (4.0 mL) was added at -10 °C and the mixture was diluted with dichloromethane and washed with a saturated aqueous of sodium

hydrogen carbonate until basic pH. The aqueous phase was then extracted three times with dichloromethane. The combined organic phases were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (hexane-EtOAc 9:1-8:2) to afford a mixture (98:2) of the cycloadduct **4a** and **5a** (181.5 mg, 66%, colorless solid).

M.p.: 90-93°C.

 $[\alpha]_{D}^{20}$:+81.7 (c=0.2, CHCl₃), >99% *ee*.

HPLC: Daicel Chiralpak IA, isopropanol-hexane 15-85, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 37.3 min (2*R*, 3*S*, 4*S*, 5*R*)-4a and 43.6 min (2*S*, 3*R*, 4*R*, 5*S*)-4a.

¹**H NMR** (500 MHz, CDCl₃): δ 7.45 – 7.39 (m, 1H), 7.37 – 7.27 (m, 11H), 7.24-7.22 (m, 2H), 7.18 – 7.13 (m, 1H), 6.60 (s, 1H), 5.18 (s, 1H), 4.79 (d, *J* = 6.8 Hz, 1H), 4.57 (d, *J* = 6.8 Hz, 1H), 3.81 (s, 3H), 3.29 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 173.8, 172.0, 167.6, 137.6, 137.2, 134.7, 131.5, 128.9, 128.5, 128.3, 128.3, 128.2, 127.3, 126.6, 126.4, 73.5, 69.1, 64.8, 57.6, 52.6, 52.5.

MS (ESI+): 459.2 ([M+H], 100). HRMS (ESI+): Calculated for C₂₇H₂₇N₂O₅, 459.1914; found, 459.1910.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(4-trifluoromethyl)phenyl)pyrrolidine-2,4dicarboxylate (4b)

Following the general procedure, the reaction of (E)-*N*-[4-trifluoromethyl)phenyl)methylene]glycinate (**1b**) (98.4 mg, 0.40 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10^{-3} mmol) and AgOAc (1.7 mg, 10.00 10^{-3} mmol) for 5.5 h afforded, after chromatography (hexane-EtOAc 8:2-7:3), the cycloadduct **4b** (72.1 mg, 68%, colorless solid).

M.p.: 84-87°C.

 $[\alpha]_{D}^{20}$: +40.3 (c=0.8, CHCl₃), 98% *ee*.

HPLC: Daicel Chiralpak IC, isopropanol-hexane 15-85, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 28.7 min (2*R*, 3*S*, 4*S*, 5*R*)-4b and 50.4 min (2*S*, 3*R*, 4*R*, 5*S*)-4b.

¹**H** NMR (300 MHz, CDCl₃): δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.40 – 7.32 (m, 1H), 7.30 – 7.23 (m, 4H), 7.23 – 7.14 (m, 4H), 7.15 – 7.06 (m, 1H), 6.68 (s, 1H), 5.37 (s, 1H), 4.88 (d, *J* = 8.0 Hz, 1H), 4.40 (d, *J* = 8.0 Hz, 1H), 3.72 (s, 3H), 3.23 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.4, 171.9, 167.6, 142.2, 136.3, 134.6, 131.6, 130.2 (d, $J_{C-F} = 32.4$ Hz), 128.8, 128.5, 128.3, 127.5, 126.8, 126.5, 125.2 (q, $J_{C-F} = 3.6$ Hz), 124.0 (d, $J_{C-F} = 270.0$ Hz), 74.0, 67.5, 64.0, 57.9, 52.7, 52.5.

¹⁹**F NMR** (282 MHz, CDCl₃) δ = -62.6.

MS (ESI+): 527.2 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₈H₂₆N₂O₅F₃, 527.1788; found, 527.1787.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(4-bromophenyl)pyrrolidine-2,4-dicarboxylate (4c)

Following the general procedure, the reaction of (E)-*N*-[(4-bromophenyl)methylene]glycinate (**1c**) (102.7 mg, 0.40 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10⁻³ mmol) and AgOAc (1.7 mg, 10.00 10⁻³ mmol) for 16 h afforded, after chromatography (hexane-EtOAc 8:2-1:1), the cycloadduct **4c** (75.5 mg, 70%, colorless solid).

M.p.: 102-104°C.

 $[\alpha]_{D}^{20}$: +68.9 (c=1.1, CHCl₃), >99% *ee*.

HPLC: Daicel Chiralpak IC, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 30.5 min (2*R*, 3*S*, 4*S*, 5*R*)-4c and 51.6 min (2*S*, 3*R*, 4*R*, 5*S*)-4c.

¹**H NMR** (300 MHz, CDCl₃): δ 7.39 (d, *J* = 8.2 Hz, 2H), 7.27 – 7.03 (m, 12H), 6.57 (s, 1H), 5.18 (s, 1H), 4.78 (d, *J* = 7.5 Hz, 1H), 4.43 (d, *J* = 7.4 Hz, 1H), 3.71 (s, 3H), 3.28 (s, 3H), 2.98 (bs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 173.6, 171.9, 167.6, 136.8, 136.8, 134.6, 131.5, 131.5, 128.8, 128.5, 128.3, 128.1, 127.4, 126.5, 122.0, 73.6, 67.8, 64.2, 57.6, 52.7, 52.5.

MS (ESI+): 537.1 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₈H₂₆N₂O₅Br, 537.1019; found, 537.0999.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(4-methoxycarbonylphenyl)pyrrolidine-2,4dicarboxylate (4d)

Following the general procedure, the reaction of (E)-*N*-[4-methoxycarbonyl)phenyl)methylene]glycinate (**1d**) (94.4 mg, 0.40 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10^{-3} mmol) and AgOAc (1.7 mg, 10.00 10^{-3} mmol) for 14 h afforded, after chromatography (hexane-EtOAc 8:2-6:4), the cycloadduct **4d** (59.5 mg, 57%, colorless solid).

M.p.: 100-103°C.

 $[\alpha]_{D}^{20}$: +73.6 (c=0.5, CHCl₃), 95% ee.

HPLC: Daicel Chiralpak IA, isopropanol-hexane 30-70, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 16.6 min (2*S*, 3*R*, 4*R*, 5*S*)-4d and 36.0 min (2*R*, 3*S*, 4*S*, 5*R*)-4d.

¹**H NMR** (300 MHz, CDCl₃): δ 7.93 (d, *J* = 7.8 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.34 – 7.32 (m, 1H), 7.28 – 7.01 (m, 9H), 6.68 (s, 1H), 5.34 (s, 1H), 4.85 (d, *J* = 7.7 Hz, 1H), 4.40 (d, *J* = 7.7 Hz, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 3.22 (s, 3H), 3.03 (bs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 173.5, 172.0, 167.6, 166.7, 143.1, 136.6, 134.6, 131.5, 129.8, 129.6, 128.9, 128.5, 128.3, 127.4, 126.5, 126.4, 73.9, 67.8, 64.2, 58.0, 52.7, 52.5, 52.1.

MS (ESI+): 517.2 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₉H₂₉N₂O₇, 517.1969; found, 517.1972.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(4-*tert*-butylphenyl)pyrrolidine-2,4dicarboxylate (4e)

Following the general procedure, the reaction of (*E*)-*N*-[4-*tert*-butyl-phenyl)methylene]glycinate (**1e**) (93.6 mg, 0.40 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10^{-3} mmol) and AgOAc (1.7 mg, 10.00 10^{-3} mmol) for 17 h afforded, after chromatography (hexane-EtOAc 8:2-1:1), a mixture (98:2) of cycloadducts **4e** and **5e** (69.2 mg, 67%, colorless solid).

M.p.: 98-101°C.

 $[\alpha]_{D}^{20}$: +81.0 (c=0.3, CHCl₃), 98% *ee*.

HPLC: Daicel Chiralpak IA, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 18.2 min (2*R*, 3*S*, 4*S*, 5*R*)-4e and 24.6 min (2*S*, 3*R*, 4*R*, 5*S*)-4e.

¹**H** NMR (300 MHz, CDCl₃): δ ¹H NMR (300 MHz, CDCl₃) δ = 7.36 – 7.04 (m, 14H), 6.42 (s, 1H), 5.00 (s, 1H), 4.65 (d, *J* = 6.4 Hz, 1H), 4.51 (d, *J* = 6.3 Hz, 1H), 3.75 (s, 3H), 3.18 (s, 3H), 1.22 (s, 9H).

¹³C NMR (75 MHz, CDCl₃): δ 173.9, 172.0, 167.5, 151.4, 138.0, 134.7, 134.1, 131.4, 128.9, 128.4, 128.2, 127.2, 126.6, 126.0, 125.3, 73.4, 69.3, 65.1, 57.3, 52.5, 52.3, 34.6, 31.3.

MS (ESI+): 515.3 ([M+H], 100). HRMS (ESI+): Calculated for C₃₁H₃₅N₂O₅, 515.2540; found, 515.2560.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(2-methylphenyl)pyrrolidine-2,4-dicarboxylate (4f)

Following the general procedure, the reaction of (*E*)-*N*-[2-methyl-phenyl)methylene]glycinate (**1f**) (76.7 mg, 0.40 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10^{-3} mmol) and AgOAc (1.7 mg, 10.00 10^{-3} mmol) for 17 h afforded, after chromatography (hexane-EtOAc 8:2-1:1), a mixture (98:2) of cycloadducts **4f** and **5f** (75.6 mg, 89%, pale yellow solid).

M.p.: 80-83°C.

 $[\alpha]_{D}^{20}$: +33.2 (c=0.3, CHCl₃), 98% *ee*.

HPLC: Daicel Chiralpak AD, isopropanol-hexane 10-90, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 37.7 min (2*R*, 3*S*, 4*S*, 5*R*)-4**f** and 41.1 min (2*S*, 3*R*, 4*R*, 5*S*)-4**f**.

¹H NMR (300 MHz, CDCl₃): δ 7.66 (d, J = 7.5 Hz, 1H), 7.50 – 7.02 (m, 13H), 6.74 (s, 1H), 5.68 (s, 1H), 5.07 (d, J = 8.4 Hz, 1H), 4.63 (d, J = 8.4 Hz, 1H), 3.77 (s, 3H), 3.32 (s, 3H), 3.02 (bs, 1H), 2.32 (s, 3H).
¹³C NMR (75 MHz, CDCl₃): δ 173.6, 172.0, 167.4, 136.7, 136.0, 134.8, 131.4, 130.6, 128.8, 128.5, 128.2, 127.8, 127.2, 126.8, 126.5, 125.8, 75.0, 64.5, 64.1, 57.3, 52.6, 52.4, 20.1.

MS (ESI+): 473.2 ([M+H], 100). HRMS (ESI+): Calculated for C₂₈H₂₉N₂O₅, 473.2070; found, 473.2082.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(3-methylphenyl)pyrrolidine-2,4-dicarboxylate (4g)

Following the general procedure, the reaction of (*E*)-*N*-[3-methyl-phenyl)methylene]glycinate (**1g**) (122.7 mg, 0.64 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (80.0 mg, 0.32 mmol) in the presence of (*R*)-DTBM-Segphos (20.8 mg, 18.00 10^{-3} mmol) and AgOAc (2.7 mg, 16.00 10^{-3} mmol) for 30 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), a mixture (98:2) of cycloadducts **4g** and **5g** (97.2 mg, 64%, pale

yellow solid).

M.p.: 94-97°C.

 $[\alpha]_{D}^{20}$: +87.3 (c=0.7, CHCl₃), >99% *ee*.

HPLC: Daicel Chiralpak AD, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 20.3 min (2*R*, 3*S*, 4*S*, 5*R*)-4g and 40.7 min (2*S*, 3*R*, 4*R*, 5*S*)-4g.

¹**H NMR** (300 MHz, CDCl₃): δ 7.59 – 7.05 (m, 14H), 6.56 (s, 1H), 5.12 (s, 1H), 4.78 (d, *J* = 6.5 Hz, 1H), 4.61 (d, *J* = 6.4 Hz, 1H), 3.84 (s, 3H), 3.35 (s, 3H), 2.38 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.8, 172.0, 167.6, 138.2, 137.9, 136.9, 134.7, 131.4, 129.1, 128.9, 128.4, 128.4, 128.2, 127.2, 127.0, 126.6, 123.5, 73.4, 69.2, 65.0, 57.5, 52.5, 52.4, 21.5.

MS (ESI+): 473.2 ([M+H], 100). HRMS (ESI+): Calculated for C₂₈H₂₉N₂O₅, 473.2070; found, 473.2083.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(3-fluorophenyl)pyrrolidine-2,4-dicarboxylate (4h)

Following the general procedure, the reaction of (E)-*N*-[3-fluorophenyl)methylene]glycinate (**1h**) (78.3 mg, 0.40 mmol) with (4*Z*)-4benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10⁻³ mmol) and AgOAc (1.7 mg, 10.00 10⁻³ mmol) for 40 h afforded, after chromatography (hexane-EtOAc 8:2-1:1), the cycloadduct **4h** (47.8 mg, 50%, colorless solid).

 $[\alpha]_{D}^{20}$: +45.4 (c=0.1, CHCl₃), 99% ee.

M.p.: 87-90°C.

HPLC: Daicel Chiralpak IC, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 32.8 min (2*R*, 3*S*, 4*S*, 5*R*)-4**h** and 42.4 min (2*S*, 3*R*, 4*R*, 5*S*)-4**h**.

¹**H NMR** (300 MHz, CDCl₃): δ 7.39 – 7.29 (m, 1H), 7.29 – 7.02 (m, 12H), 6.96 – 6.87 (m, 1H), 6.62 (s, 1H), 5.24 (s, 1H), 4.81 (d, *J* = 7.6 Hz, 1H), 4.42 (d, *J* = 7.6 Hz, 1H), 3.73 (s, 3H), 3.28 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.5, 172.0, 167.6, 162.8 (d, $J_{C-F} = 246.7$ Hz), 140.5 (d, $J_{C-F} = 6.9$ Hz), 136.7, 134.6, 131.5, 129.9 (d, $J_{C-F} = 8.1$ Hz), 128.8, 128.5, 128.3, 127.4, 126.5, 122.0 (d, $J_{C-F} = 2.9$ Hz), 115.0 (d, $J_{C-F} = 21.1$ Hz), 113.6 (d, $J_{C-F} = 22.4$ Hz), 73.7, 67.7, 64.2, 57.7, 52.7, 52.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -112.5.

MS (ESI+): 477.2 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{27}H_{26}N_2O_5F$, 477.1820; found, 477.1836.

(2R, 3S, 4S, 5R)-Dimethyl-4-benzamido-3-phenyl-5-(2-naphthyl)pyrrolidine-2,4-dicarboxylate (4i)

Following the general procedure, the reaction of (*E*)-*N*-[2-naphtyl-methylene]glycinate (**1i**) (91.2 mg, 0.40 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10^{-3} mmol) and AgOAc (1.7 mg, 10.00 10^{-3} mmol) for

117 h afforded, after chromatography (hexane-EtOAc 9:1-1:1), a mixture (90:10) of cycloadducts 4i and 5i (66.4 mg, 65%, pale yellow solid).
M.p.: 135-138°C.

 $[\alpha]_{D}^{20}$: +8.5 (c=1.3, CHCl₃), >99% ee.

HPLC: Daicel Chiralpak IA, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 29.4 min (2*R*, 3*S*, 4*S*, 5*R*)-4i and 52.9 min (2*S*, 3*R*, 4*R*, 5*S*)-4i.

¹**H NMR** (300 MHz, CDCl₃): δ 8.10 (d, J = 8.3 Hz, 1H), 7.97 – 7.84 (m, 3H), 7.57 (t, J = 7.5 Hz, 1H), 7.53 – 7.18 (m, 12H), 6.85 (s, 1H), 6.32 (s, 1H), 5.13 (d, J = 7.9 Hz, 1H), 4.76 (d, J = 7.8 Hz, 1H), 3.86 (s, 3H), 3.19 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.7, 171.7, 167.6, 137.0, 134.8, 133.8, 133.8, 131.7, 131.5, 129.2, 128.9, 128.6, 128.5, 128.3, 127.3, 126.6, 126.4, 125.6, 125.1, 124.6, 122.5, 74.8, 64.2, 63.0, 57.0, 52.5, 52.4.

MS (ESI+): 509.2 ([M+H], 100). HRMS (ESI+): Calculated for C₃₁H₂₉N₂O₅, 509.2070; found, 509.2061.

(2R, 3S, 4S, 5R)-Dimethyl-4-benzamido-3-phenyl-5-(2-furyl)pyrrolidine-2,4-dicarboxylate (4j)

Following the general procedure, the reaction of (*E*)-*N*-[2-furyl-methylene]glycinate (**1j**) (187.6 mg, 1.12 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (70.0 mg, 0.28 mmol) in the presence of (*R*)-DTBM-Segphos (18.2 mg, 15.00 10^{-3} mmol) and AgOAc (2.3 mg, 14.00 10^{-3} mmol) for 45 h afforded, after chromatography (hexane-EtOAc 9:1-1:1), the cycloadduct **4j** (88.9 mg, 70%, yellow-brown solid).

4j M.p.: 85-88°C.

 $[\alpha]_{D}^{20}$: +96.6 (c=0.3, CHCl₃), >99% *ee*.

HPLC: Daicel Chiralpak AD, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 16.2 min (2*R*, 3*S*, 4*S*, 5*R*)-4j and 30.3 min (2*S*, 3*R*, 4*R*, 5*S*)-4j.

¹**H NMR** (300 MHz, CDCl₃): δ 7.55 – 7.01 (m, 11H), 6.48 (s, 1H), 6.47 – 6.43 (m, 1H), 6.40 – 6.39 (m, 1H), 4.94 (s, 1H), 4.74 (d, *J* = 4.9 Hz, 1H), 4.50 (d, *J* = 5.0 Hz, 1H), 3.85 (s, 3H), 3.49 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.6, 171.3, 167.7, 150.1, 142.6, 138.8, 134.3, 131.4, 128.9, 128.4, 128.3, 127.3, 126.7, 110.5, 107.4, 71.9, 66.0, 64.4, 56.3, 52.8, 52.6.

MS (ESI+): 449.17 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{25}H_{25}N_2O_6$, 449.1707; found, 449.1724.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-phenyl-5-(2-thiophenyl)pyrrolidine-2,4-dicarboxylate (4k)

Following the general procedure, the reaction of (*E*)-*N*-[2-thioophenyl-methylene]glycinate (**1k**) (73.5 mg, 0.40 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (50.0 mg, 0.20 mmol) in the presence of (*R*)-DTBM-Segphos (13.0 mg, 11.00 10^{-3} mmol) and AgOAc (1.7 mg, 10.00 10^{-3} mmol) for 5 h afforded, after chromatography (hexane-EtOAc 8:2-1:1), a mixture (91:9) of cycloadducts **4k** and **5k** (83.8 mg, 90%, yellow-brown solid). **M.p.**: 94-97°C.

 $[\alpha]_{D}^{20}$: +45.7 (c=0.2, CHCl₃), >99% *ee*.

HPLC: Daicel Chiralpak IB, isopropanol-hexane 10-90, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 41.9 min (2*R*, 3*S*, 4*S*, 5*R*)-4**k** and 47.8 min (2*S*, 3*R*, 4*R*, 5*S*)-4**k**.

¹**H NMR** (300 MHz, CDCl₃): δ 7.47 – 7.16 (m, 11H), 7.11 – 7.07 (m, 1H), 7.03 – 7.01 (m, 1H), 6.63 (s, 1H), 5.42 (s, 1H), 4.77 (d, *J* = 6.9 Hz, 1H), 4.61 (d, *J* = 7.0 Hz, 1H), 3.82 (s, 3H), 3.48 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.3, 171.7, 167.6, 140.3, 137.4, 134.6, 131.5, 128.9, 128.4, 128.2, 127.3, 127.0, 126.6, 124.7, 124.3, 73.5, 65.2, 64.8, 57.2, 52.8, 52.5.

MS (ESI+): 465.15 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₅H₂₅N₂O₅S, 465.1478; found, 465.1479.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(4-bromophenyl)-5-phenylpyrrolidine-2,4-dicarboxylate (4m)

4m

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (107.9 mg, 0.61 mmol) with (*Z*)-4-(4-bromobenzylidene)-2-phenyloxazol-5(4H)-one (**2m**) (100.0 mg, 0.30 mmol) in the presence of (*R*)-DTBM-Segphos (19.8 mg, 16.00 10^{-3} mmol) and AgOAc (2.5 mg, 15.00 10^{-3} mmol) for 40 h afforded, after chromatography (hexane-EtOAc 9:1-8:2), a mixture (92:8) of cycloadducts **4m** and **5m** (87.2 mg, 53%, colorless solid).

M.p.: 100-103°C.

 $[\alpha]_{D}^{20}$: +61.0 (c=0.3, CHCl₃), >99% *ee*.

HPLC: Daicel Chiralpak IB, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 16.3 min (2*R*, 3*S*, 4*S*, 5*R*)-4m and 18.9 min (2*S*, 3*R*, 4*R*, 5*S*)-4m.

¹**H NMR** (300 MHz, CDCl₃): δ 7.41 – 7.35 (m, 1H), 7.33 – 7.22 (m, 10H), 7.19 – 7.18 (m, 1H), 7.13 (d, *J* = 7.6 Hz, 2H), 6.61 (s, 1H), 5.06 (s, 1H), 4.69 (d, *J* = 7.0 Hz, 1H), 4.41 (d, *J* = 7.0 Hz, 1H), 3.74 (s, 3H), 3.22 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.5, 171.9, 167.4, 137.0, 136.5, 134.4, 131.7, 131.2, 130.7, 128.6, 128.5, 128.4, 126.5, 126.3, 121.2, 73.5, 69.0, 64.7, 57.1, 52.6, 52.6.

MS (ESI+): 537.10 ([M+H], 75). **HRMS** (ESI+): Calculated for $C_{27}H_{26}N_2O_5Br$, 537.1019; found, 537.1026.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(4-chlorophenyl)-5-phenylpyrrolidine-2,4-dicarboxylate (4n)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (1a) (62.4 mg, 0.35 mmol) with (Z)-4-(4-chlorobenzylidene)-2-phenyloxazol-5(4H)-one (2n) (50.0 mg, 0.18 mmol) in the

CI ONH MeO₂CI™ N[™]CO₂Me H

presence of (*R*)-DTBM-Segphos (11.4 mg, 9.7 10^{-3} mmol) and AgOAc (1.4 mg, 8.80 10^{-3} mmol) for 13 h afforded, after chromatography (hexane-EtOAc 9:1-8:2), a mixture (94:6) of cycloadducts **4n** and **5n** (57.7 mg, 66%, colorless solid).

M.p.: 94-97°C.

 $[\alpha]_{D}^{20}$: +66.5 (c=0.4, CHCl₃), >99% ee.

HPLC: Daicel Chiralpak IA, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 23.6 min (2*R*, 3*S*, 4*S*, 5*R*)-4n and 43.3 min (2*S*, 3*R*, 4*R*, 5*S*)-

4n.

¹**H** NMR (300 MHz, CDCl₃): δ 7.54 – 7.33 (m, 10H), 7.32 – 7.14 (m, 4H), 6.73 (s, 1H), 5.16 (s, 1H), 4.78 (d, *J* = 6.8 Hz, 1H), 4.55 (d, *J* = 6.9 Hz, 1H), 3.85 (s, 3H), 3.33 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.5, 171.9, 167.4, 137.1, 136.0, 134.4, 133.1, 131.7, 130.4, 128.6, 128.5, 128.3, 128.3, 126.5, 126.3, 73.5, 69.0, 64.8, 57.0, 52.6, 52.5.

MS (ESI+): 493.15 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{27}H_{26}N_2O_5Cl$, 493.1524; found, 493.1516.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(4-methoxyphenyl)-5-phenylpyrrolidine-2,4dicarboxylate (40)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (126.8 mg, 0.71 mmol) with (*Z*)-4-(4-methoxybenzylidene)-2-phenyloxazol-5(4H)-one (**2o**) (100.0 mg, 0.36 mmol) in the presence of (*R*)-DTBM-Segphos (23.2 mg, 19.7 10^{-3} mmol) and AgOAc (3.0 mg, 18.0 10^{-3} mmol) for 21 h afforded, after chromatography (hexane-EtOAc 9:1-8:2), the cycloadduct **4o** (159.7 mg, 91%, colorless solid). **M.p.**: 88-91°C.

 $[\alpha]_{D}^{20}$: +66.3 (c=0.6, CHCl₃), 99% ee.

HPLC: Daicel Chiralpak IA, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 32.2 min (2*R*, 3*S*, 4*S*, 5*R*)-40 and 40.4 min (2*S*, 3*R*, 4*R*, 5*S*)-40.

¹**H** NMR (300 MHz, CDCl₃): δ 7.49 – 7.31 (m, 10H), 7.27 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 8.1 Hz, 2H), 6.68 (s, 1H), 5.21 (s, 1H), 4.78 (d, *J* = 7.1 Hz, 1H), 4.54 (d, *J* = 6.9 Hz, 1H), 3.83 (s, 3H), 3.73 (s, 3H), 3.32 (s, 3H), 2.81 (bs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 173.9, 172.1, 167.6, 158.7, 137.4, 134.7, 131.5, 130.0, 129.5, 128.5, 128.2, 126.6, 126.3, 113.7, 73.7, 68.9, 65.0, 57.0, 55.2, 52.5, 52.4.

MS (ESI+): 489.20 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₈H₂₉N₂O₆, 489.2020; found, 489.2018.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(4-methoxycarbonylphenyl)-5-phenylpyrrolidine-2,4dicarboxylate (4p)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (115.2 mg, 0.65 mmol) with (*Z*)-4-(4-(methoxycarbonyl)benzylidene)-2-phenyloxazol-5(4H)-one (**2p**) (100.0 mg, 0.33 mmol) in the presence of (*R*)-DTBM-Segphos (21.1 mg, 18.0 10^{-3} mmol) and AgOAc (2.7 mg, 16.0 10^{-3} mmol) for 4 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), the cycloadduct **4p** (115.5 mg, 69%, colorless solid).

M.p.: 101-104°C.

 $[\alpha]_{D}^{20}$: +64.6 (c=0.6, CHCl₃), >99% ee.

HPLC: Daicel Chiralpak IB, etanol-hexane 10-90, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 21.3 min (2*R*, 3*S*, 4*S*, 5*R*)-4**p** and 29.6 min (2*S*, 3*R*, 4*R*, 5*S*)-4**p**.

¹**H** NMR (300 MHz, CDCl₃): 7.88 (d, *J* = 8.1 Hz, 2H), 7.54 – 7.21 (m, 12H), 6.84 (s, 1H), 5.15 (s, 1H), 4.78 (d, *J* = 6.5 Hz, 1H), 4.66 (d, *J* = 6.3 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 3.31 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.5, 171.7, 167.4, 166.8, 143.2, 137.0, 134.2, 131.6, 129.3, 129.1, 128.9, 128.5, 128.5, 128.5, 128.4, 126.6, 126.4, 73.4, 69.3, 64.9, 57.1, 52.5, 52.0.

MS (ESI+): 517.20 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{29}H_{29}N_2O_7$, 517.1969; found, 517.1980.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(3-methoxyphenyl)-5-phenylpyrrolidine-2,4dicarboxylate (4q)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (63.4 mg, 0.36 mmol) with (*Z*)-4-(3-methoxybenzylidene)-2-phenyloxazol-5(4H)-one (**2q**) (50.0 mg, 0.18 mmol) in the presence of (*R*)-DTBM-Segphos (11.6 mg, 9.9 10^{-3} mmol) and AgOAc (1.5 mg, 8.9 10^{-3} mmol) for 22 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), the cycloadduct **4q** (62.7 mg, 72%, colorless solid). **M.p.**: 102-105°C.

 $[\alpha]_{D}^{20}$: +71.2 (c=0.2, CHCl₃), >99% ee.

HPLC: Daicel Chiralpak AS-H, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 15.9 min (2*S*, 3*R*, 4*R*, 5*S*)-4**q** and 21.4 min (2*R*, 3*S*, 4*S*, 5*R*)-4**q**.

¹**H** NMR (300 MHz, CDCl₃): δ 7.39 – 7.15 (m, 10H), 7.08 (t, *J* = 7.8 Hz, 1H), 6.90 – 6.78 (m, 2H), 6.70 – 6.55 (m, 1H), 6.45 (s, 1H), 5.05 (s, 1H), 4.65 (d, *J* = 6.2 Hz, 1H), 4.50 (d, *J* = 6.2 Hz, 1H), 3.75 (s, 3H), 3.61 (s, 3H), 3.20 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.9, 171.8, 167.6, 159.4, 139.5, 137.3, 134.6, 131.5, 129.3, 128.5, 128.4, 128.3, 126.6, 126.4, 121.1, 114.8, 113.0, 73.4, 69.2, 64.9, 57.3, 55.2, 52.5, 52.4.

MS (ESI+): 489.2018 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₈H₂₉N₂O₆, 489.2020; found, 489.2018.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(3-nitrophenyl)-5-phenylpyrrolidine-2,4-dicarboxylate (4r)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (96.2 mg, 0.54 mmol) with (*Z*)-4-(3-nitrobenzylidene)-2-phenyloxazol-5(4H)-one (**2r**) (80.0 mg, 0.27 mmol) in the presence of (*R*)-DTBM-Segphos (17.6 mg, 15.0 10^{-3} mmol) and AgOAc (2.3 mg, 14.0 10^{-3} mmol) for 24 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), a mixture (95:5) of cycloadducts **4r** and **5r** (71.7 mg, 52%, pale yellow solid).

M.p.: 165-167°C.

 $[\alpha]_{D}^{20}$: +85.6 (c=0.4, CHCl₃), >99% *ee*.

HPLC: Daicel Chiralpak IB, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 230$ nm), t_R: 21.4 min (2*R*, 3*S*, 4*S*, 5*R*)-4**r** and 30.1 min (2*S*, 3*R*, 4*R*, 5*S*)-4**r**.

¹**H NMR** (300 MHz, CDCl₃): δ 8.21 (s, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.23 (m, 11H), 6.79 (s, 1H), 5.11 (s, 1H), 4.79 (d, *J* = 7.3 Hz, 1H), 4.69 (d, *J* = 7.3 Hz, 1H), 3.83 (s, 3H), 3.32 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.0, 171.4, 167.2, 147.9, 139.8, 136.7, 135.74, 133.7, 131.9, 128.9, 128.6, 128.6, 126.5, 126.4, 123.8, 122.3, 73.4, 69.6, 64.9, 56.5, 52.7, 52.6.

MS (ESI+): 504.18 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₇H₂₆N₃O₇, 504.1765; found, 504.1767.

(2R, 3S, 4S, 5R)-Dimethyl-4-benzamido-3-(2-naphtyl)-5-phenylpyrrolidine-2,4-dicarboxylate (4s)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (118.3 mg, 0.67 mmol) with (*Z*)-4-(naphthalene-2-ylmethylene)-2-phenyloxazol-5(4H)-one (**2s**) (100.0 mg, 0.33 mmol) in the presence of (*R*)-DTBM-Segphos (21.7 mg, 18.0 10^{-3} mmol) and AgOAc (2.8 mg, 17.0 10^{-3} mmol) for 13 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), a mixture (87:13) of the cycloadduct **4s** and **5s** (133.5 mg, 79%, pale yellow solid).

M.p.: 75-78°C.

 $[\alpha]_{D}^{20}$: +94.5 (c=0.3, CHCl₃), >99% ee.

HPLC: Daicel Chiralpak AD, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 31.2 min (2*R*, 3*S*, 4*S*, 5*R*)-4s and 54.5 min (2*S*, 3*R*, 4*R*, 5*S*)-4s.

¹**H NMR** (300 MHz, CDCl₃): δ 7.88 (s, 1H), 7.85 – 7.72 (m, 3H), 7.54 – 7.35 (m, 9H), 7.32 – 7.15 (m, 4H), 6.67 (s, 1H), 5.28 (s, 1H), 4.94 (d, *J* = 6.4 Hz, 1H), 4.81 (d, *J* = 6.5 Hz, 1H), 3.83 (s, 3H), 3.36 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.9, 171.9, 167.7, 137.3, 135.3, 134.5, 133.2, 132.6, 131.4, 128.7, 128.6, 128.3, 128.0, 127.9, 127.8, 127.5, 127.0, 126.5, 126.4, 126.0, 125.9, 73.7, 69.2, 65.1, 57.6, 52.5, 52.5.

MS (ESI+): 509.21 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{31}H_{29}N_2O_5$, 509.2070; found, 509.2089.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(1,3-benzodioxol-5-yl)-5-phenylpyrrolidine-2,4dicarboxylate (4t)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (60.3 mg, 0.34 mmol) with (*Z*)-2-phenyl-4-piperonylidene2-oxazoline-5(4H)-one (**2t**) (50.0 mg, 0.17 mmol) in the presence of (*R*)-DTBM-Segphos (11.1 mg, 9.4 10^{-3} mmol), and AgOAc (1.4 mg, 8.50 10^{-3} mmol) for 17 h afforded, after chromatography (hexane-EtOAc 9:1-1:1), a mixture (97:3) of cycloadducts **4t** and **5t** (54.9 mg, 64%, colorless solid).

M.p.: 96-99°C.

 $[\alpha]_{D}^{20}$: +69.7 (c=0.9, CHCl₃), 93% ee.

HPLC: Daicel Chiralpak IA, etanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 20.4 min (2*R*, 3*S*, 4*S*, 5*R*)-4t and 31.6 min (2*S*, 3*R*, 4*R*, 5*S*)-4t.

¹**H** NMR (300 MHz, CDCl₃): δ 7.41 – 7.32 (m, 3H), 7.30 – 7.20 (m, 7H), 6.76 (s, 1H), 6.74 – 6.68 (m, 1H), 6.61 – 6.56 (m, 1H), 6.54 (s, 1H), 5.77 – 5.74 (m, 2H), 5.06 (s, 1H), 4.61 (d, *J* = 6.8 Hz, 1H), 4.40 (d, *J* = 6.7 Hz, 1H), 3.74 (s, 3H), 3.19 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃): 173.8, 171.9, 167.6, 147.5, 146.6, 137.3, 134.7, 131.5, 131.3, 128.5, 128.5, 128.2, 126.7, 126.4, 122.4, 109.4, 108.0, 100.9, 73.6, 69.0, 65.1, 57.3, 52.5, 52.4.

MS (ESI+): 503.18 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₈H₂₇N₂O7, 503.1812; found, 503.1811.

(2*R*, 3*R*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(3,4-dichlorophenyl)-5-phenylpyrrolidine-2,4dicarboxylate (4u) NH

4u

CO₂Me

MeO₂C^w

S16

Following the general procedure, the reaction of methyl (E)-N-benzylideneglycinate (1a) (55.6 mg, 0.31 mmol) with (E)-4-(3,4-dichlorobenzylidene)-2-phenyloxazol-5(4H)-one (2u) (50.0 mg, 0.16 mmol) in the

> presence of (R)-DTBM-Segphos (10.2 mg, 8.6 10^{-3} mmol) and AgOAc (1.3 mg, 7.9 10^{-3} mmol) for 72 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), a mixture (95:5) of the cycloadduct 4u and 5u (37.0 mg, 45%, colorless-pink solid).

M.p.: 163-166°C.

 $[\alpha]_{D}^{20}$: +41.8 (c=0.1, CHCl₃), >99% ee.

HPLC: Daicel Chiralpak IB, etanol-hexane 5-95, flow rate 0.7 mL/min (λ = 210 nm), t_R: 21.9 min (2R, 3R, 4S, 5R)-4u and 34.9 min (2S, 3S, 4R, 5S)-4u.

¹**H NMR** (300 MHz, CDCl₃): δ 7.47 – 7.06 (m, 13H), 6.63 (s, 1H), 5.01 (s, 1H), 4.64 (d, *J* = 7.1 Hz, 1H), 4.42 (d, J = 7.0 Hz, 1H), 3.75 (s, 3H), 3.22 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.2, 171.6, 167.5, 137.9, 136.9, 134.1, 132.1, 131.8, 131.3, 130.9, 130.0, 128.7, 128.6, 128.5, 128.5, 126.6, 126.3, 73.4, 69.2, 64.7, 56.5, 52.6, 52.6,

MS (ESI+): 527.1125 ([M+H], 100). HRMS (ESI+): Calculated for C₂₇H₂₅N₂O₅Cl₂, 527.1135; found, 527.1125.

(2R, 3S, 4S, 5R)-Dimethyl-4-benzamido-3-(2-furyl)-5-phenylpyrrolidine-2,4-dicarboxylate (4v)

Following the general procedure, the reaction of methyl (E)-Nbenzylideneglycinate (1a) (148.0 mg, 0.84 mmol) with (Z)-4-(furan-2vlmethylene)-2-phenyloxazol-5(4H)-one (2r) (100.0 mg, 0.42 mmol) in the presence of (R)-DTBM-Segphos (27.1 mg, 23.0 10^{-3} mmol), and AgOAc (3.5 mg, $21.0 \ 10^{-3}$ mmol) for 6.5 h afforded, after chromatography (hexane-EtOAc 9:1-8:2), the cycloadduct 4v (75.5 mg, 40%, pale yellow solid).

 $[\alpha]_{D}^{20}$: +118.0 (c=0.2, CHCl₃), >99% ee.

M.p.: 73-76°C.

HPLC: Daicel Chiralpak IB, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 19.8 min (2S, 3R, 4R, 5S)-4v and 43.3 min (2R, 3S, 4S, 5R)-4v.

¹H NMR (300 MHz, CDCl₃): δ 7.54 – 7.45 (m, 3H), 7.43 – 7.27 (m, 8H), 6.58 (s, 1H), 6.31 (s, 1H), 6.24 (s, 1H), 5.13 (s, 1H), 4.75 (d, J = 6.3 Hz, 1H), 4.66 (d, J = 6.3 Hz, 1H), 3.87 (s, 3H), 3.35 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.2, 171.0, 167.7, 151.8, 142.1, 136.5, 134.3, 131.6, 128.6, 128.5, 126.8, 126.4, 110.5, 109.6, 72.6, 69.3, 63.4, 52.5, 52.4, 50.8.

MS (ESI+): 449.17 ([M+H], 100). HRMS (ESI+): Calculated for C₂₅H₂₆N₂O₆, 449.1707; found, 449.1701.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(2-thiophenyl)-5-phenylpyrrolidine-2,4-dicarboxylate (4w)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (138.7 mg, 0.78 mmol) with (*Z*)-4-(thiophen-2-ylmethylene)-2-phenyloxazol-5(4H)-one (**2w**) (100.0 mg, 0.39 mmol) in the presence of (*R*)-DTBM-Segphos (25.4 mg, 21.0 10^{-3} mmol) and AgOAc (3.3 mg, 20.0 10^{-3} mmol) for 16 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), the cycloadduct **4w** (111.9 mg, 62%, colorless solid).

М.р.: 87-90°С.

 $[\alpha]_{D}^{20}$: +80.4 (c=1.6, CHCl₃), >99% ee.

HPLC: Daicel Chiralpak IB, isopropanol-hexane 15-85, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 22.2 min (2*R*, 3*S*, 4*S*, 5*R*)-4w and 25.4 min (2*S*, 3*R*, 4*R*, 5*S*)-4w.

¹**H** NMR (300 MHz, CDCl₃): δ 7.43 – 7.32 (m, 3H), 7.31 – 7.16 (m, 7H), 7.06 (d, *J* = 5.1 Hz, 1H), 6.94 (d, *J* = 3.6 Hz, 1H), 6.76 (t, *J* = 4.0 Hz, 1H), 6.56 (s, 1H), 5.10 (s, 1H), 4.79 (d, *J* = 6.7 Hz, 1H), 4.60 (d, *J* = 6.4 Hz, 1H), 3.73 (s, 3H), 3.21 (s, 3H), 2.80 (bs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 173.2, 171.2, 167.8, 140.1, 137.1, 134.5, 131.6, 128.5, 128.4, 127.7, 126.8, 126.7, 126.5, 124.8, 73.3, 68.8, 66.5, 52.6, 52.5, 52.4.

MS (ESI+): 465.15 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{25}H_{25}N_2O_5S$, 465.1478; found, 465.1485.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-(2-methoxyphenyl)-5-phenylpyrrolidine-2,4dicarboxylate (4x)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (126.8 mg, 0.72 mmol) with (*Z*)-4-(2-methoxybenzylidene)-2-phenyloxazol-5(4H)-one (**2x**) (100.0 mg, 0.36 mmol) in the presence of (*R*)-DTBM-Segphos (23.2 mg, 19.7 10^{-3} mmol) and AgOAc (3.0 mg, 17.9 10^{-3} mmol) for 51 h afforded, after chromatography (hexane-EtOAc 9:1), the cycloadduct **4x** (44.3 mg, 25%, colorless solid).

4x M.p.: 178-181°C.

 $[\alpha]_{D}^{20}$: -56.7 (c=0.4, CHCl₃), 74% *ee*.

HPLC: Daicel Chiralpak IB, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 14.4 min (2*S*, 3*R*, 4*R*, 5*S*)-4**x** and 27.4 min (2*R*, 3*S*, 4*S*, 5*R*)-4**x**.

¹**H** NMR (300 MHz, CDCl₃): δ 7.46 (d, J = 7.3 Hz, 1H), 7.38 – 7.12 (m, 11H), 7.02 (t, J = 7.8 Hz, 1H), 6.78 (t, J = 7.5 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 5.63 (s, 1H), 5.20 (d, J = 10.6 Hz, 1H), 4.24 (d, J = 10.6 Hz, 1H), 3.68 (s, 3H), 3.55 (s, 3H), 3.30 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.3, 173.2, 166.8, 156.8, 137.2, 135.3, 131.1, 129.9, 128.4, 128.1, 127.9, 127.4, 126.3, 125.9, 123.9, 120.1, 109.0, 73.9, 65.6, 62.2, 55.0, 54.7, 52.4, 52.3.

MS (ESI+): 489.20 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{28}H_{29}N_2O_6$, 489.2020; found, 489.2036.

(2*R*, 3*S*, 4*S*, 5*R*)-Dimethyl-4-benzamido-3-((*E*)-1-methylcinnamyl)-5-phenylpyrrolidine-2,4dicarboxylate (4y)

Following the general procedure, the reaction of methyl (*E*)-*N*-benzylideneglycinate (**1a**) (61.2 mg, 0.35 mmol) with (*Z*)-4-(β -methylcinnamylidene)-2-phenyloxazol-5(4H)-one (**2y**) (50.0 mg, 0.17 mmol) in the presence of (*R*)-DTBM-Segphos (11.2 mg, 9.5 10⁻³ mmol) and AgOAc (1.4 mg, 8.6 10⁻³ mmol) for 17 h afforded, after chromatography (hexane-EtOAc 9:1-7:3), a mixture (90:10) of cycloadducts **4y** and **5y** (46.1 mg, 54%, pale yellow solid).

M.p.: 82-85°C.

 $[\alpha]_{D}^{20}$: +21.5 (c=0.7, CHCl₃), 97% ee.

HPLC: Daicel Chiralpak IA, isopropanol-hexane 30-70, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 15.4 min (2*R*, 3*S*, 4*S*, 5*R*)-4y and 29.2 min (2*S*, 3*R*, 4*R*, 5*S*)-4y.

¹**H** NMR (300 MHz, CDCl₃): δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.48 – 7.39 (m, 1H), 7.38 – 7.30 (m, 2H), 7.26 – 7.25 (m, 4H), 7.23 – 7.16 (m, 2H), 7.16 – 7.09 (m, 2H), 7.09 – 7.01 (m, 1H), 6.96 (d, *J* = 7.6 Hz, 2H), 6.53 (s, 1H), 5.35 (s, 1H), 4.80 (d, *J* = 8.9 Hz, 1H), 3.78 (s, 3H), 3.77– 3.75 (m, 1H), 3.20 (s, 3H), 1.72 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.7, 172.9, 167.0, 137.7, 137.6, 134.8, 132.2, 131.7, 130.1, 128.9, 128.7, 128.3, 127.9, 126.9, 126.3, 126.1, 73.6, 68.1, 63.1, 61.9, 52.6, 52.4, 18.3.

MS (ESI+): 499.22 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{30}H_{31}N_2O_5$, 499.2227; found, 499.2237.

(2S*, 3R*, 4R*, 5S*)-Dimethyl-4-benzamido-3-phenyl-5-phenylpyrrolidine-2,4-dicarboxylate (6a)

To a solution of (*R*)-Tol-Binap (6.0 mg, 9.0 10^{-3} mmol), AgOAc (1.4 mg, 8.0 10^{-3} mmol) and (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (**2a**) (20.0 mg, 0.08 mmol), in tetrahydrofuran (0.5 mL), under nitrogen atmosphere, at room temperature, a solution of (*E*)-*N*-[phenylmethylene]glycinate (**1a**) (22.7 mg, 0.13 mmol) in tetrahydrofuran (0.5 mL) was added. The mixture was stirred for 12 h. The reaction was quenched with HCl 3M in methanol (0.7 mL) at room temperature afforded, after work-up and purification by silica gel flash

chromatography (hexane-EtOAc 9:1-8:2), the cycloadduct 6a (20.0 mg, 55%, colorless solid).

M.p.: 143-146 °C.

HPLC: Daicel Chiralpak IC, isopropanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 210$ nm), t_R: 33.8 min (2*S**, 3*R**, 4*R**, 5*S**)-**6a** and 52.3 min (2*R**, 3*S**, 4*S**, 5*R**)-**6a**.

¹**H NMR** (300 MHz, CDCl₃): δ 7.53 – 7.40 (m, 4H), 7.40 – 7.20 (m, 4H), 7.18 – 7.01 (m, 5H), 6.86 (d, *J* = 7.2 Hz, 2H), 5.91 (s, 1H), 4.91 (s, 1H), 4.78 (d, *J* = 3.5 Hz, 1H), 4.25 (d, *J* = 3.5 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.09 (bs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 174.8, 172.6, 166.0, 139.1, 137.1, 134.1, 131.1, 129.4, 128.7, 128.6, 128.2, 128.0, 127.1, 126.3, 69.9, 68.5, 65.0, 55.3, 52.8, 52.5.

MS (ESI+): 459.1915 ([M+H], 90). **HRMS** (ESI+): Calculated for $C_{27}H_{27}N_2O_5$, 459.1914; found, 459.1915.

(2*S**, 3*R**, 4*R**, 5*S**)-Dimethyl-4-benzamido-3-phenyl-5-(4-bromophenyl)pyrrolidine-2,4dicarboxylate (6c)

Following the general procedure above, the reaction of (E)-*N*-[(4-bromophenyl)methylene]glycinate (1c) (205.5 mg, 0.80 mmol) with (4*Z*)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one (2a) (100.0 mg, 0.40 mmol) using (*R*)-Tol-Binap (30.0 mg, 44.00 10^{-3} mmol) and AgOAc (6.7 mg, 40.00 10^{-3} mmol) for 12 h afforded, after chromatography (hexane-EtOAc 9:1-8:2) the cycloadduct **6c** (84.4 mg, 39%, colorless solid). **M.p.**: 225-227°C.

HPLC: Daicel Chiralpak AD, etanol-hexane 20-80, flow rate 0.7 mL/min ($\lambda = 254$ nm), t_R: 5.3 min (2*S**, 3*R**, 4*R**, 5*R**)-6c and 6.8 min (2*R**, 3*S**, 4*S**, 5*S**)-6c.

¹**H NMR** (300 MHz, CDCl₃): δ 7.46 – 7.38 (m, 4H), 7.37 – 7.32 (m, 2H), 7.30 – 7.21 (m, 1H), 7.19 (s, 1H), 7.18 – 7.13 (m, 2H), 7.11 (d, *J* = 7.6 Hz, 2H), 6.89 (d, *J* = 7.0 Hz, 2H), 5.88 (s, 1H), 4.92 (s, 1H), 4.67 (d, *J* = 3.9 Hz, 1H), 4.25 (d, *J* = 3.8 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 3.09 (bs, 1H).

¹³C NMR (75 MHz, CDCl₃): δ 174.6, 172.2, 166.1, 138.4, 136.2, 133.9, 131.6, 131.3, 129.9, 129.2, 128.3, 128.3, 127.4, 126.3, 122.4, 69.9, 67.8, 64.5, 55.5, 52.9, 52.6.

MS (ESI+): 537.1 ([M+H], 90). **HRMS** (ESI+): Calculated for $C_{27}H_{26}N_2O_5Br$, 537.1019; found, 537.1018.

6. General procedure for hydrolysis of the methylcarboxylates.

(2R, 3S, 4S, 5R)- 4-Benzamido-3,5-diphenylpyrrolidine-2,4-dicarboxylic acid (7a)³

Cycloadduct **4a** (20.0 mg, 43.6 10^{-3} mmol) was diluted in ethanol (0.3 mL) and a solution of NaOH (10%, 0.3 mL) was added. The solution was stirred at room temperature for 24 h. After solvent evaporation, the residue was taken up with an aqueous solution of HCl (10%, 0.3 mL) and the mixture was extracted for three times with ethyl acetate. The organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to afford compound **7a** (15.9 mg, 85%, colorless solid).

М.р.: 240-243°С.

 $[\alpha]_{D}^{20}$: +10.9 (c=0.1, H₂O-Acetone 1:1)

¹**H NMR** (500 MHz, D₂O) δ 7.55 – 7.20 (m, 15H), 5.96 (s, 1H), 5.05 (d, *J* = 9.3 Hz, 1H), 4.59 (d, *J* = 9.3 Hz, 1H).

¹³C NMR (125 MHz, D₂O): δ 173.8, 172.4, 170.2, 136.0, 133.6, 132.1, 130.8, 129.5, 129.4, 129.0, 128.5, 128.2, 127.8, 126.6, 126.4, 71.9, 64.3, 63.2, 55.2.

MS (ESI+): 431.16 ([M+H], 100). **HRMS** (ESI+): Calculated for $C_{25}H_{23}N_2O_5$, 431.1601; found, 431.1599.

(2R, 3S, 4S, 5R)-4-Benzamido-3-phenyl-5-(4-bromophenyl)pyrrolidine-2,4-dicarboxylic acid (7c)

7c ¹H NMR (300 MHz, , methanol-d4) δ 7.66 – 7.59 (m, 2H), 7.57 – 7.48 (m, 2H), 7.48 – 7.15 (m, 10H), 5.79 (s, 1H), 5.21 (d, *J* = 9.3 Hz, 1H), 4.82 (d, *J* = 9.3 Hz, 1H).

¹³**C NMR** (75 MHz, methanol-d4) δ 172.6, 170.6, 170.4, 137.0, 135.3, 133.1, 132.9, 132.3, 130.6, 130.3, 129.4, 129.3, 128.9, 128.0, 124.7, 73.1, 66.2, 65.0, 55.8.

MS (ESI+): 509.07 ([M+H], 100). **HRMS** (ESI+): Calculated for C₂₅H₂₂N₂O₅Br, 509.0706; found, 509.0719.

7. Preparation of racemic products for HPLC analysis

The racemic pyrrolidines were prepared according to the general procedure, but using (\pm) -DTBM-Segphos or (\pm) -Tol-Binap as ligand.

The samples for HPLC analysis were dissolved in isopropyl alcohol and used as quickly as possible to minimize the formation of decomposition products

8. Stereochemical assignment

X Ray Structure of 4c

The absolute and relative configuration of (+)-4c were unequivocally established by X-ray crystal structure analysis.

X Ray Structure of 6c

The relative configuration of compound $(\pm)-6c$ was established by X-ray crystal structure analysis.

¹H NMR comparative study between compound 4a (2,5–*cis*) and compound 6a (2,5–*trans*) The analysis of the ¹H NMR spectra (in CDCl₃) of 4a (H2/H5 in *cis* arrangement) and 6a (H2/H5 in *trans* arrangement) revealed two significant characteristic signal patterns (Figure 1):

- a) The chemical shift of amide proton (H1) in the isomer **4a** ($\delta = 6.60$ ppm) is always higher than in the isomer **6a** ($\delta = 5.91$ ppm).
- b) The coupling constant between H2 and H3 is much lower in the case of isomer **6a** ($J_{2,3}$ = 3.5 Hz) that in the isomer **4a** ($J_{2,3}$ = 6.8 Hz)

Figure 1

The NOE spectrum of adduct 4a (2,5-*cis* arrangement) shows an important correlation (2.08%) between H5 and H2. As expected, the NOE observed between H5 and H2 in pyrrolicine 6a (2,5-*trans* arrangement) is significantly lower (0.33%) (Figure 2). In addition, an important correlation between H1 and H5 (4.07%) was detected in 4a but was not observed in compound 6a. On the other hand, a correlation between the proton H5 and the protons of esters groups (0.34% and 0.14%) was observed in adduct 6a. (Figure 2).

Figure 2

On the basis of these results, the relative configuration of compound **5a** was stablished by NMR experiments. As shown in Figure 3, in the NOE spectrum of compound **5a** a strong cross-peak between H5/H2 (1.98%) was observed. This value indicates a *cis* arrangement of H5 and H2 protons. Furthemore, a NOE correlation (0.23%) between H5 and the ester group at C4 was

detected. Finally, the δ_{H1} and $J_{2,3}$ parameters observed in compound **5a** fit perfectly well with those found on the adduct **4a**. (compare Figures 1 and 3)

Figure 3

The NOE spectrum of compound 7c shows a NOE correlation (1.5%) between H5/H2 which matches with the configuration *cis* of these protons. This result indicates that no epimerization occurs at C2 in the hydrolysis of the methyl esters under basic conditions.

References

1.a) S. Cabrera, R. Gómez Arrayás, J. C. Carretero J. Am. Chem. Soc. 2005, 127, 16394. b) C.
Nájera, M. de Garcia Retamosa, J. M. Sansano Org. Lett., 2007, 9, 4025.

2. a) B. M. Trost, P. J. Morris, S. J. Sprague J. Am. Chem. Soc. 2012, 134, 17823. b) M. B. M. Reddy, M. A. Pasha Synthetic Communications 2010, 40, 1895. c) P. A. Conway, K. Devine, F. Paradisi Tetrahedron 2009, 65, 2935. d) B. S. Jursic, S. Sagiraju, D. K. Ancalade, T. Clark, E. D. Stevens Synthetic Communications 2007, 37, 1709 e) S. Paul, P. Nanda, R. Gupta, A. Loupy Tetrahedron Letters 2004, 45, 425. f) H. N. C. Wong, Z. L. Xu, H. M. Chang, C. M. Lee Synthesis, 1992, 793.

3. F. Clerici, M. L. Gelmi, A. Gambini, D. Nava Tetrahedron 2001, 57, 6429.

S24

9. HPLC charts.

Racemic 4a

Table 1, entry 6. (+)-4a; \geq 99% *ee*

Racemic 4b

Table 2, entry 1. (+)-4b; 98% *ee*

NH

0⁄

MeO₂C

Br

Racemic 4c

Table 2, entry 2. (+)-4c; \geq 99% *ee*

Racemic 4d

Table 2, entry 3. (+)-4d; 95% *ee*

Racemic 4e

Table 2, entry 4. (+)-4e; 98% *ee*

NH

′CO₂Me

O[′]

MeO₂C

4f

Racemic 4f

Table 2, entry 5. (+)-4f; 98% *ee*

mAU 100 - 80 - 60 - 40 - 20 -			(+)-4f	858	and the state of the	
ן ס	10	20	30	40	50	min
#	Time	Area	Height	Width	Area%	Symmetry
1	38.22	9510.4	115.1	1.1903	99.054	0.571
2	42.828	90.9	1.3	1.1825	0.946	0.62

4g

N

NH

"CO₂Me

0

MeO₂C^{III}

Table 2, entry 6. (+)-4g; $\geq 99\% \ ee$

NΗ

CO₂Me

0

MeO₂C

4h

Table 2, entry 7. (+)-4h; 99% *ee*

NH

'N' H

4i

CO₂Me

0⁄⁄

MeO₂C

Table 2, entry 8. (+)-4i; \geq 99% *ee*

ΝH

N H

4j

′CO₂Me

Ő

MeO₂C¹

Racemic 4j

Table 2, entry 9. (+)-4j; \geq 99% *ee*

NH

N H

4k

″CO₂Me

Ő

MeO₂C[…]

mAU 50 40 30 10 10	MAU 50 40 30 20 10			NATURA DE LA CARACTERIA	,	
0	10	20	30	40	50	min
#	Time	Area	Height	Width	Area%	Symmetry
1	41.855	11162.4	62.4	2.9798	47.451	0
2	47.796	12361.9	57.2	3.6039	52.549	0.328

Table 2, entry 10. (+)-4k; \geq 99% *ee*

Racemic 4m

Table 3, entry 1. (+)-4m; \geq 99% *ee*

Racemic 4n

Table 3, entry 2. (+)-4n; $\geq 99\% \ ee$

Racemic 40

Table 3, entry 3. (+)-40; 99% *ee*

Racemic 4p

Table 3, entry 4. (+)-4p; $\ge 99\% ee$

Racemic 4q

Table 3, entry 5. (+)-4q; $\geq 99\% \ ee$

NO₂

Racemic 4r

Table 3, entry 6. (+)-4r; \geq 99% *ee*

Racemic 4s

Table 3, entry 7. (+)-4s; \geq 99% *ee*

Racemic 4t

Table 3, entry 8. (+)-4t; 93% *ee*

Racemic 4u

Table 3, entry 9. (+)-4u; ≥99% *ee*

NH

NH

4v

′CO₂Me

0

MeO₂C[…]

Table 3, entry 10. (+)-4v; $\geq 99\% \ ee$

NH

NH

4w

′CO₂Me

0

MeO₂C

Table 3, entry 11. (+)-4w; $\geq 99\% \ ee$

Racemic 4x

Table 3, entry 12. (-)-4x; 74% *ee*

mAU 25- 20- 15- 10- 5-		² ² ² ² ² ² ² ² ² ²	4x			
0	10	20	30	40	50	min
#	Time	Area	Height	Width	Area%	Symmetry
1	14.773	453.7	10.2	0.7431	13.214	0.624
2	28.139	2979.7	31.8	1.564	86.786	0.323

Racemic 4y

Table 3, entry 13. (+)-4y; 97% ee

NH

N

6a

CO₂Me

0

MeO₂C•

(*R*)–Tol–Binap as ligand(±)-6a; 0% *ee*

Racemic 6c

(R)-Tol-Binap as ligand

(**±**)-6**c**; 0% *ee*

10. NMR Spectra collection

S62

(+ minor amount of 5m)

200 . 190 180 . 170 . 160 150 . 140 130 120 . 110 100 f1 (ppm) 90 . 80 70 60 . 50 40 30 20 10 ò

S73

