Supporting Information

Asymmetric Transformation by Dynamic Crystallization of Achiral Succinimides

Shoko Hachiya,[†] Yoshio Kasashima,[‡] Fumitoshi Yagishita,^{†,§} Takashi Mino,[†] Hyuma Masu,[§]

Masami Sakamoto[†]*

[†]Department of Applied Chemistry and Biotechnology, Graduate School Engineering, Chiba University, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522 Japan

[‡]Education Center, Faculty of Engineering, Chiba Institute of Technology, Shibazono 2-2-1, Narashino-shi, Chiba 275-0023, Japan

[§]Chiba Analysis Center, Chiba University, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522 Japan

Table of Contents

General experimental:	S 3
Preparation of 3,4-diphenylmaleimides 1a-1k	S 3
Preparation of <i>cis</i> -3,4-diphenysuccinimides 2d and 2e	S 3
Preparation of <i>trans</i> -3,4-diphenysuccinimides 3a-k	S4
X-Ray single crystal data of 3a , 3e , 3g , 3h , and 3j	S5
Kinetic studies for racemization of 2d, 2e, and 2i	S 8
Method for crystallization involving stereoisomerization	S9
References	S 10
NMR Chart for 2d, 2e and 3a-k	S 11
HPLC analysis of 3d , 3e and 3i	S38

General experimental:

General. NMR spectra were recorded on CDCl₃ solutions on a BRUKER 300 operating 300 MHz, respectively, for ¹Hand ¹³C-NMR spectroscopy. Chemical shifts are reported in parts per million (ppm) relatives to TMS as internal standards. IR spectra were recorded on a JASCO FT/IR-230 spectrometer as KBr disks. Specific rotation was measured by a DIP 370 polarimeter (JASCO).

Preparation of 3,4-diphenylmaleimides 1a-k

3,4-Diphenylmaleimides 1a-k were synthesized from 3,4-diphenylmaleic anhydride and the corresponding amines according to the literature^[S1].

Preparation of cis-3,4-diphenylsuccinimides 2d and2e

An ethyl acetate solution of 3,4-diphenylmaleimide was stirred under hydrogen atmosphere in the presence of catalytic amount of PtO_2 until the yellowish green color disappeared. PtO_2 was filtered off through celite column, and the filtrate was evaporated. Chromatography (eluent: a mixture of ethyl acetate and hexane) or by crystallization from with a minimum of $CHCl_3$ and an excess of hexane gave the desired cis-3,4-diphenylmaleimide product almost quantitative yield.

cis-N-propyl-3,4-diphenylsuccinimde 2d was obtained as colorless crystals: m.p. 81-83 °C; IR (KBr) 1775, 1697 cm⁻¹; ¹H NMR (CDCl₃) δ 1.03 (t, *J* = 7.4 Hz, 3H), 1.73-1.86 (m, 2H), 3.71 (t, *J* = 7.4 Hz, 2H), 4.46 (s, 2H), 6.78-7.00 (m, 4H), 7.02-7.08 (m, 6H); ¹³C NMR (CDCl₃) δ 11.4, 21.3, 40.8, 52.2, 127.1, 128.1, 129.1, 133.9, 177.1; HRMS (ESI-MS) *m/z* calcd for C₁₉H₁₉O₂N + Na 316.1308, found 316.1302

cis-N-isopropyl-3,4-diphenylsuccinimide 2e was obtained as colorless crystals: 110-114 °C; IR (KBr) 1772, 1699 cm⁻¹; ¹H NMR (CDCl₃) δ 1.56 (d, *J* = 6.9 Hz, 6H), 4.41 (s, 2H), 4.64 (sep, *J* = 7.0 Hz, 1H), 6.78-6.81 (m, 4H), 7.02-7.25 (m, 6H); ¹³C NMR (CDCl₃) δ 19.4, 44.3, 52.1, 127.1, 128.1, 129.1, 134.1, 177.0; HRMS (ESI-MS) *m/z* calcd for C₁₉H₁₉O₂N + Na 316.1308, found 316.1304

Preparation of trans-3,4-diphenysuccinimides 3a-k

Trans-3,4-diphenylsuccinimides **3** were synthesized from the corresponding *cis* isomers **2**. Crude *cis* isomers **2** generated by hydrogenation of the corresponding 3,4-diphenylmaleimides **1** with hydrogen in the presence of PtO_2 were directly isomerized to *trans* isomers **3** by catalytic amount of DBU. Catalytic amount of DBU (0.10 eq.) was added to a chloroform solution of *cis* isomer and the mixture was stirred for overnight at room temperature. The reaction mixture

was concentrated *in vacuo*, and the residue was chromatographed on silica gel (eluent: a mixture of ethyl acetate and hexane). Crystalline *trans* isomers **3** were purified by crystallization with a minimum of $CHCl_3$ and an excess of hexane. In all cases, *trans* isomers **3** were obtained in almost quantitative yields through hydrogenation and isomerization.

The structure of **3a**, **3e**, **3g**, **3h**, and **3j** was unequivocally established by X-ray single crystallographic analysis. Other *trans* isomers did not give available crystals for single crystal X-ray analysis.

trans-3,4-diphenylsuccinimde 3a was obtained as colorless crystals: m.p. 197-199 °C; IR (KBr) 3318, 1795, 1701 cm⁻¹; ¹H NMR (CDCl₃) δ 4.14 (s, 2H), 7.20-7.23 (m, 4H), 7.31-7.42(m, 6H), 8.62(s, 1H); ¹³C NMR (CDCl₃) δ 56.6, 127.7, 128.2, 129.3, 135.8, 176.5; HRMS (ESI-MS) *m*/*z* calcd for C₁₆H₁₃O₂N + Na 274.0838, found 274.0840.

trans-N-methyl-3,4-diphenylsuccinimde 3b was obtained as colorless crystals: m.p. 107-108 °C; IR (KBr) 1774, 1689 cm⁻¹; ¹H NMR (CDCl₃) δ 3.13 (s, 3H), 4.05 (s, 2H), 7.15-7.17 (m, 4H), 7.26-7.36 (m, 6H); ¹³C NMR (CDCl₃) δ 25.4, 55.3, 127.6, 127.9, 129.0, 136.2, 176.5; HRMS (ESI-MS) *m*/*z* calcd for C₁₇H₁₅O₂N + Na 288.0995, found 288.0993

trans-N-ethyl-3,4-diphenylsuccinimde 3c was obtained as colorless crystals: m.p. 86-87 °C; IR (KBr) 1776, 1693 cm⁻¹; ¹H NMR (CDCl₃) δ 1.29 (t, *J* = 7.2 Hz, 3H), 3.74 (q, *J* = 7.2 Hz, 2H), 4.03 (s, 2H), 7.16-7.19 (m, 4H), 7.30-7.41 (m, 6H); ¹³C NMR (CDCl₃) δ 13.2, 34.4, 55.5, 127.6, 128.0, 129.3, 136.7, 176.5; HRMS (ESI-MS) *m*/*z* calcd for C₁₈H₁₇O₂N + Na 302.1152, found 302.1149

trans-N-propyl-3,4-diphenylsuccinimde 3d was obtained as colorless crystals: m.p. 67-69 °C; IR (KBr) 1774, 1697 cm⁻¹; ¹H NMR (CDCl₃) δ 0.98 (t, *J* = 7.4 Hz, 3H), 1.67-1.79 (m, 2H), 3.65 (t, *J* = 7.3 Hz, 2H), 4.04 (s, 2H) 7.16-7.19 (m, 4H), 7.32-7.41 (m, 6H); ¹³C NMR (CDCl₃) δ 11.3, 21.1, 40.9, 55.4, 127.6, 128.0, 129.2, 136.6, 176.7; HRMS (ESI-MS) *m*/*z* calcd for C₁₉H₁₉O₂N + Na 316.1308, found 316.1306

trans-N-isopropyl-3,4-diphenylsuccinimde 3e was obtained as colorless crystals: m.p. 152-153 °C; IR (KBr) 1773, 1696 cm⁻¹; ¹H NMR (CDCl₃) δ 1.48 (d, *J* = 6.9 Hz, 3H), 1.50 (d, *J* = 6.9 Hz, 3H), 3.97 (s, 2H), 4.54 (sep, *J* = 6.9 Hz, 1H), 7.15-7.18 (m, 4H), 7.28-7.39 (m, 6H); ¹³C NMR (CDCl₃) δ 19.2, 19.4, 44.4, 55.2, 127.5, 127.9, 129.2, 136.9, 176.6; HRMS (ESI-MS) *m*/*z* calcd for C₁₉H₁₉O₂N + Na 316.1308, found 316.1304

trans-N-benzyl-3,4-diphenylsuccinimde 3f was obtained as colorless crystals: m.p. 86-88 °C; IR (KBr) 1783, 1708 cm⁻¹; ¹H NMR (CDCl₃) δ 4.05 (s, 2H), 4.77 and 4.86 (ABq, *J* = 14.0 Hz, 2H), 7.10-7.13 (m, 4H), 7.24-7.38 (m, 9H), 7.43-7.46 (m, 2H); ¹³C NMR (CDCl₃) δ 43.0, 55.4, 127.6, 128.0, 128.1, 128.7, 129.2, 135.7, 136.4, 176.3; HRMS (ESI-MS) *m*/*z* calcd for C₂₃H₁₉O₂N + Na 364.1308, found 364.1303

trans-N-phenethyl-3,4-diphenylsuccinimde 3g was obtained as colorless crystals: m.p. 121-123 °C; IR (KBr) 1773, 1707 cm⁻¹; ¹H NMR (CDCl₃) δ 2.99-3.15 (m, 2H), 3.88-4.08 (m, 4H), 6.97-7.00(m, 4H), 7.25-7.36 (m, 11H) ; ¹³C NMR (CDCl₃) δ 33.1, 40.1, 55.5, 126.8, 127.6, 127.9, 128.6, 129.09, 129.15, 136.5, 127.4, 176.5; HRMS (ESI-MS) *m*/*z* calcd for C₂₄H₂₁O₂N + Na 378.1465, found 378.1460

trans-N-phenyl-3,4-diphenylsuccinimde 3h was obtained as colorless crystals: m.p. 236-238 °C; IR (KBr) 1775, 1709 cm⁻¹; ¹H NMR (CDCl₃) δ 4.24 (s, 2H), 7.25-7.53 (m, 15H); ¹³C NMR (CDCl₃) δ 55.4, 126.5, 127.7, 128.2, 128.8, 129.2, 129.3, 131.9, 136.5, 175.7; HRMS (ESI-MS) *m*/*z* calcd for C₂₂H₁₇O₂N + H 328.1332, found 328.1332

trans-N-(2-methylphenyl)-3,4-diphenylsuccinimde 3i was obtained as colorless crystals: m.p. 176-177 °C; IR (KBr) 1779, 1710 cm⁻¹; ¹H NMR (CDCl₃) δ 2.25 (s, 3H), 4.24 (d, *J* = 5.4 Hz, 2H), 4.28 (d, *J* = 5.4 Hz, 2H), 7.17-7.19 (m, 1H), 7.25-7.44 (m, 13H); ¹³C NMR (CDCl₃) δ 18.0, 55.7, 55.9, 127.1, 127.6, 127.7, 128.0, 128.2, 129.4, 129.7, 131.1, 131.3, 135.6, 136.6, 175.5, 175.7; HRMS (ESI-MS) *m*/*z* calcd for C₂₃H₁₉O₂N + Na 364.1308, found 364.1304

trans-N-(**3-methylphenyl**)-**3,4-diphenylsuccinimde 3j** was obtained as colorless crystals: m.p. 175-178 °C; IR (KBr) 1777, 1706 cm⁻¹; ¹H NMR (CDCl₃) δ 2.41 (s, 3H), 4.22 (s, 2H), 7.17-7.44 (m, 14H); ¹³C NMR (CDCl₃) δ 21.3, 55.4, 123.6, 127.1, 127.6, 128.1, 129.0, 129.3, 129.7, 131.7, 126.6, 139.3, 175.8; HRMS (ESI-MS) *m*/*z* calcd for C₂₃H₁₉O₂N + H 342.1489, found 342.1487

trans-N-(4-methylphenyl)-3,4-diphenylsuccinimde 3k was obtained as colorless crystals: m.p. 170-171 °C; IR (KBr) 1776, 1711 cm⁻¹; ¹H NMR (CDCl₃) δ 2.39 (s, 3H), 4.22 (s, 2H), 7.25-7.43 (m, 14H); ¹³C NMR (CDCl₃) δ 21.2, 55.4, 126.2, 127.6, 128.1, 129.2, 129.3, 129.8, 136.6, 138.9, 175.8; HRMS (ESI-MS) *m*/*z* calcd for C₂₃H₁₉O₂N + H 342.1489, found 342.1487

X-Ray single crystal analysis of trans-3,4-diphenylsuccinimide 3a

Crystal data of **3a** (recrystallized from a mixture of CHCl₃ and hexane); C₁₆H₁₃NO₂, Mr = 251.27, Orthorhombic space group *P*bcn, a = 13.1134(11) Å, b = 13.6354(11) Å, c = 7.2439(6) Å, V = 1295.26(19) Å³, Z = 4, $\rho = 1.289$ g cm⁻³, in the final least-square refinement cycles on F², the model converged to $R_I = 0.0376$, $wR_2 = 0.0911$, and GOF = 1.035 for 1154 reflections. CCDC 927187.

Figure S1. Ortep view of 3a showing the atoms and thermal ellipsoids at 50% probability.

X-Ray single crystal analysis of trans-N-isopropyl-3,4-diphenylsuccinimide 3e

Crystal data of **3e** (recrystallized from a mixture of CHCl₃ and hexane); $C_{19}H_{19}NO_2$, Mr = 293.35, Orthorhombic space group $P2_12_12$, a = 17.0588(3)Å, b = 5.30480(10) Å, c = 8.58540(10) Å, V = 776.92(2) Å³, Z = 2, $\rho = 1.254$ g cm⁻³, in the final least-square refinement cycles on F², the model converged to $R_1 = 0.0291$, $wR_2 = 0.0751$, and GOF = 1.115 for 1267 reflections. CCDC 927188.

Figure S2. Ortep view of 3e showing the atoms and thermal ellipsoids at 50% probability.

X-Ray single crystal analysis of trans-N-phenethyl-3,4-diphenylsuccinimide 3g

Crystal data of **3g** (recrystallized from a mixture of CHCl₃ and hexane); $C_{24}H_{21}NO_2$, Mr = 355.42, Orthorhombic space group *P*bca, a = 11.729(4) Å, b = 8.588(3) Å, c = 37.580(13) Å, V = 3785(2) Å³, Z = 8, $\rho = 1.247$ g cm⁻³, in the final least-square refinement cycles on F², the model converged to $R_1 = 0$. 1009, $wR_2 = 0$. 2307, and GOF = 1.107 for 3613 reflections. CCDC 927189.

Figure S3. Ortep view of 3g showing the atoms and thermal ellipsoids at 50% probability.

X-Ray single crystal analysis of trans-N-phenyl-3,4-diphenylsuccinimide 3h

Crystal data of **3h** (recrystallized from a mixture of CHCl₃ and hexane); $C_{22}H_{17}NO_2$, Mr = 327.37, Orthorhombic space group *P*bcn, a = 17.1516(3) Å, b = 11.5890(2) Å, c = 8.4053(2) Å, V = 1670.72(6) Å³, Z = 4, $\rho = 1.301$ g cm⁻³, in the final least-square refinement cycles on F², the model converged to $R_I = 0.0357$, $wR_2 = 0.1003$, and GOF = 1.023 for 1498 reflections. CCDC 927190.

Figure. S4. Ortep view of 3h showing the atoms and thermal ellipsoids at 50% probability.

X-Ray single crystal analysis of trans-N-(3-methylphenyl)-3,4-diphenylsuccinimide 3j

Crystal data of **3j** (recrystallized from a mixture of CHCl₃ and hexane); $C_{23}H_{19}NO_2$, Mr = 341.39, Monoclinic, space group $P2_1/c$, a = 8.8218(6) Å, b = 17.4333(12) Å, c = 11.8783(9) Å, $\beta = 100.3140(10)$ °, V = 1797.3(2) Å³, Z = 4, $\rho = 1.262$ g cm⁻³, in the final least-square refinement cycles on F², the model converged to $R_1 = 0.0447$, $wR_2 = 0.1096$, and GOF = 1.037 for 3190 reflections. Data CCDC 927191.

Figure S5. Ortep view of 3j showing the atoms and thermal ellipsoids at 50% probability.

Kinetic studies for racemization of 3d, 3e, and 3i

Each optically active *trans*-3,4-diphenylsuccinimide **3** was dissolved into a CHCl₃ solution (5.0 x 10^{-2} mol L⁻¹) containing catalytic amount of DBU and the change of optical rotation was monitored by an DIP 370 polarimeter (JASCO) at 20 °C. The activation parameters were obtained from the Eyring equation. The first-order kinetic plots of the decay profile angle of rotation was shown as a plot of ln(*ee*) versus time (eq. 1), and the rate of racemization (k_{rac}) was calculated from the slope of the line. The free energy barrier (ΔG^{\dagger}) for racemization is calculated according to the Eyring equation (eq. 2), and then half-life were calculated according to equation (eq. 3).

$\ln(ee) = k_{rac}t$	(eq. 1)
$k_{\rm rac} = (\boldsymbol{k}T/\boldsymbol{h}) \exp(-\Delta G^{\ddagger}/\boldsymbol{R}T)$	(eq. 2)
$t_{1/2} = \ln 2/2k_{\rm rac}$	(eq. 3)

 k_{rac} : rate of racemization, h: Planck constant, k: Boltzmann constant, R: gas constant, T: temperature

Table S1. Kinetic	parameters for ra	cemization of tr	ans-3,4-diphen	ylsuccinimides 3d	, 3e , 3i ^a
-------------------	-------------------	------------------	----------------	-------------------	--------------------------------------

trans-3	DBU (eq)	$t_{1/2}$ (sec)	ΔG^{\ddagger} (kcal mol ⁻¹)
3d	0.10	120	20.6
3e	0.10	186	20.8
3i	0.05	99	20.4

^{*a*}Measurement conditions: $5.0 \times 10^{-2} \text{ mol } \text{L}^{-1}$ of each succinimide in CHCl₃ at 20 °C.

Method for crystallization

Crystallization of achiral cis-2 or racemic trans-3 by evaporating solvent (method A): [S2]

A mixed solution of chloroform (2 ml) and hexane (1 ml) containing 30 mg of *cis*-2d, *cis*-2e, or racemic *trans*-3i and 0.05 - 0.10 mol % of DBU was stirred in a test tube or a vial at room temperature until all solvent evaporated. After the solidified substrate was dissolved in chloroform and DBU was removed through short silica gel column, the enantiomer excess (ee) of *trans*-3 was analysed by HPLC using chiral column (Daicel Ind. CHIRALPAK AD-H for 3d; CHIRALPAK IA-3 for 3e; CHIRALPAK IA for 3i).

References

- [S1] 3,4-Dipnenylmaleimides were synthesized from 3,4-diphenylmaleic anhydride and corresponding amines. (a) Zehavi, U. J. Org. Chem. 1976, 2821-2825. (b) Aoyama, H; Sakamoto, M.; Omote, Y. J. Am. Chem. Soc. 1980, 102, 6902-6903.
- [S2] Yagishita, F.; Ishikawa, H.; Onuki, T.; Hachiya, S.; Mino, T.; Sakamoto, M. Angew. Chem. Int. Ed. 2012, 51, 13023 –13025.

Figure S7. ¹H NMR of *cis-N*-propyl-3,4-diphenylsuccinimide 2d

Figure S8. ¹³C NMR of *cis-N*-propyl-3,4-diphenylsuccinimide 2d

Figure S9. ¹H NMR spectrum for *cis-N*-isopropyl-3,4-diphenylsuccinimide 2e

Figure S10. ¹³C NMR spectrum for *cis-N*-isopropyl-3,4-diphenylsuccinimide 2e

Figure S11. ¹H NMR spectrum for *trans*-3,4-diphenylsuccinimide 3a

Figure S12. ¹³C NMR spectrum for *trans*-3,4-diphenylsuccinimide 3a

Figure S14. ¹³C NMR spectrum for *trans-N*-methyl-3,4-diphenylsuccinimide 3b

Figure S15. ¹H NMR spectrum for *trans-N*-ethyl-3,4-diphenylsuccinimide 3c

Figure S16. ¹³C NMR spectrum for *trans-N*-ethyl-3,4-diphenylsuccinimide 3c

Figure S17. ¹H NMR spectrum for *trans-N*-propyl-3,4-diphenylsuccinimide 3d

Figure S18. ¹³C NMR spectrum for *trans-N*-propyl-3,4-diphenylsuccinimide 3d

Figure S19. ¹H NMR spectrum for *trans-N*-isopropyl-3,4-diphenylsuccinimide 3e

Figure S20. ¹³C NMR spectrum for *trans-N*-isopropyl-3,4-diphenylsuccinimide 3e

Figure S21. ¹H NMR spectrum for *trans-N*-benzyl-3,4-diphenylsuccinimide 3f

Figure S23. ¹H NMR spectrum for *trans-N*-phenethyl-3,4-diphenylsuccinimide 3g

Figure S24. ¹³C NMR spectrum for *trans-N*-phenyl-3,4-diphenylsuccinimide 3g

Figure S26. ¹³C NMR spectrum for *trans-N*-phenyl-3,4-diphenylsuccinimide 3h

Figure S28. ¹³C NMR spectrum for *trans-N-*(2-methylphenyl)-3,4-diphenylsuccinimide 3i

Figure S29. ¹H NMR spectrum for *trans-N-*(3-methylphenyl)-3,4-diphenylsuccinimide 3j

Figure S31. ¹H NMR spectrum for *trans-N*-(4-methylphenyl)-3,4-diphenylsuccinimide 3k

Figure S33. HPLC analysis of **3d**, (a) racemic, (b) 90% ee. Ee value was determined using a chiral column (Daicel Ind. CHIRALPAK AD-H), flow rate 0.7 mL/min, solvent, Hexane : EtOH = 95 : 5.

Figure S34. HPLC analysis of **3e**, (a) racemic, (b) 97% ee. Ee value was determined using a chiral column (Daicel Ind. CHIRALPAK IA-3), flow rate 0.5 mL/min, solvent, Hexane : EtOH = 98 : 2.

Figure S35. HPLC analysis of **3i**, (a) racemic, (b) 98% ee. Ee value was determined using a chiral column (Daicel Ind. CHIRALPAK IA), flow rate 0.7 mL/min, solvent, Hexane : EtOH = 90 : 10.

