Selective Arylation at Vinylic Site of Cyclic Olefins

Xiaojin Wu and Jianrong (Steve) Zhou E-mail: jrzhou@ntu.edu.sg

Supporting Information: Experimentals and compound characterization

Table of Contents

- I. General
- II. Condition optimization for Heck reaction of aryl bromides
- III. Product isolation of Heck reaction of organic bromides and chlorides
- IV. Mechanistic studies for Heck reaction of aryl bromides
- V. Reference

I. General

¹H NMR spectra were acquired on Bruker 400 MHz or 300 MHz spectrometers and chemical shifts were recorded relative to tetramethylsilane (δ 0.00) or residual protiated solvent (CDCl₃: δ 7.26). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). The number of protons (n) for a given resonance was indicated by nH. Coupling constants were reported as a *J* value in Hz. ¹³C NMR spectra were obtained at 100 MHz on 400 MHz or 75 MHz on 300 MHz instruments and chemical shifts were recorded relative to solvent resonance (CDCl₃: δ 77.16). ³¹P{¹H} NMR spectra were obtained at 121 MHz on 300 MHz instrument or 162 MHz on 400 MHz instrument. Proof of purity of new compounds was demonstrated with copies of ¹H, ¹³C, ³¹P and ¹⁹F NMR spectra.

Glassware was dried in an oven at 120 °C for at least 2 hours before use. Dry veratrole (Alfa) and DMPU (Aldrich) were degassed by argon bubbling and stored over activated 4 Å molecular sieve beads in an argon-filled glove box before use. Dry hexane, diethyl ether and dichloromethane were collected from a solvent purification system containing a column of activated alumina (1 m x 2) under argon. Dry THF was freshly distilled from sodium/benzophenone under argon before use. All of anhydrous solvents were stored in Schlenk tubes in an argon-filled glove box.

Unless noted otherwise, commercially available chemicals were used without further purification. Dry diisopropylethylamine (DIPEA) and triethylamine were distilled from CaH₂ under argon before use. The GC standard, *n*-dodecane was degassed with argon bubbling and dried over activated 4 Å molecular sieve beads for a few days in the glove box before use.

Thin-layer chromatography (TLC) was conducted with Merck 60 F254 coated silica gel plate (0.2 mm thickness). Flash chromatography was performed using Merck silica gel 60 (0.040-0.063 mm) or SiliCycle silica gel F60 (0.040-0.063 mm). Gas chromatography (GC) analysis was performed on a Shimadzu GC-2010 instrument with Agilent J & W GC column DB-5MS-UI. GC/MS analysis was conducted on a Thermo Scientific DSQ II single quadrupole GC/MS instrument with

Agilent J & W GC column DB-5MS-UI. ESI/MS analysis was conducted on a ThermoFinnigan LCQ Fleet MS spectrometer.

II. Condition optimization

Typical Procedure: In an argon-filled glove box, a dry 4-mL reaction tube containing a magnetic stir bar was charged with Pd(hfacac), (4 mol\%, 2 mg, 0.004 mmol), PtBu₃·HBF₄ (8 mol%, 2 mg, 0.008 mmol) and 0.5 mL of dry DMPU. After stirring at room temperature for 10 minutes, *p-tert*-butylphenyl bromide (0.10 mmol, 21 mg), DIPEA (1.5 equiv, 0.15 mmol, 19 mg, distilled over CaH₂), cyclohexene (5 equiv, 0.50 mmol, 41 mg, 52 μL), and 1-dodecane (10 μL ; GC standard) were added sequentially via syringe. The tube was capped tightly and the mixture was vigorous stirred in a 120 °C oil bath (internal temperature). After 6 hours and 24 hours, aliquots were taken from the reaction mixture in the glove box and passed through a short plug of silica gel with diethyl ether washing. The filtrate was subjected to GC analysis to determine the conversion of ArBr, yield and selectivity of the Heck reaction products. The isomers of the products were identified by GCMS and the structure of the major isomer was assigned based on ¹H NMR spectroscopy of the purified sample. ¹H NMR spectroscopy was unsuitable for determination of the ratio of the desired isomer versus minor isomers due to low signal intensity and overlap of signals of the minor isomers.

Table S1 Effect of Ligand

ArBr
$$Pd(hfacac)_2 (4 \text{ mol}\%)$$
 ligand $(8 \text{ mol}\%)$ $Pd(hfacac)_2 (4 \text{ mol}\%)$ P

	` ' '	- , ,	
Ligand	Conversion	Yield	Salaativite
	(%)	(%)	Selectivity
PtBu ₃ ·HBF ₄	100	94	33:1
PCy_3	72	6	0:1
$P(1-Ad)_2(nBu)$	100	60	1:4
PPh_3	18	5	0:1
NMe ₂ PfBu ₂	89	53	1:52
tBu-DavePhos			
PCy ₂ PrO OPr	100	12	1:43
RuPhos			
PCy ₂	100	17	1:21
XPhos			
MeO PCy ₂ OMe	67	13	0:1
SPhos			
BINAP	8	0	
dppf	7	0	
dppp	8	0	
dppbz	4	0	
dppe	6	0	

Table S2 Effect of Base

Base	Conversion (%)	Yield (%)	Selectivity
Et ₃ N	100	81	4:1
nBu ₃ N	82	25	1:2
DIPEA	100	94	33:1
Cy ₂ NMe	100	76	4:1
N-Methyl morpholine	100	73	1:3
nBu ₂ NMe	100	80	3:1
BnNHMe	100	95	7:1
2,6-lutidine	100	17	1:50
DABCO	100	65	0:1
Urotropine	100	17	1:13
Proton sponge	100	78	1:8
Li_2CO_3	100	80	1:10
Na_2CO_3	100	58	1:19
LiOAc	100	38	1:21
NaHCO ₃	100	45	1:45
Li ₃ PO ₄	23	11	1:1

Table S3 Effect of Solvent

ArBr
$$Pd(hfacac)_2 (4 mol\%)$$
 $tBu_3P \cdot HBF_4 (8 mol\%)$

DIPEA, Solvent
 $120 \, ^{\circ}C$, 24 h

 $(Ar = p-t-butylphenyl)$

Solvent	Conversion	Yield	Selectivity
	(%)	(%)	
DMF	100	80	2:1
DMA	100	83	18:1
NMP	100	82	1:8
DMP U	100	94	33:1
DME	100	75	1:22
Dioxane	95	81	2:1
2-MeTHF	100	96	1:1
Triglyme	100	75	1:12
Veratrole	100	89	6:1
Toluene	100	91	2:1

Table S4 Effect of palladium source

ArBr
$$table Pd catalyst (4 mol%) \\ table table$$

Pd catalyst	Conversion	Yield	Selectivity
	(%)	(%)	
Pd(hfacac) ₂	100	94	33:1
$Pd(acac)_2$	100	24	1:2
$Pd(OAc)_2$	100	38	1:3
$Pd(OCOCF_3)_2$	100	4	0:1
$Pd(dba)_2$	100	62	2:1
Pd ₂ (dba) ₃	100	38	0:1

III. Isolation of Heck products

The typical procedure with 0.5 mmol of ArX was used for all the isolation, unless stated otherwise. In an argon-filled glove box, a dry 10-mL Schlenk tube containing a magnetic stir bar was charged with Pd(hfacac)₂ (10 mg, 0.02 mmol), tBu₃P·HBF₄ (12 mg, 0.04 mmol) and 2.5 mL of dry DMPU. After stirring at room temperature for 10 minutes, aryl halide (0.50 mmol), cyclic olefin (2 or 5 equiv, 1.0 or 2.5 mmol), and DIPEA (0.75 mmol, 97 mg) were added sequentially via syringe. The Schlenk tube was capped tightly and the mixture was heated with vigorous stirring in a 120 °C oil bath (external temperature). After the aryl bromide was fully consumed (monitored by GC), the reaction mixture was passed through a pad of silica gel with diethyl ether washings to remove DMPU, inorganic salts and catalyst first. Then the filtrate was concentrated on a rotary evaporator and the residue was directly subjected to silica gel flash chromatography. The ratio of the conjugated isomer versus all other isomers was determined by GC analysis of unpurified samples. ¹H NMR spectroscopy was unsuitable for determination of selectivity.

The experiments can also be set up using Schlenk line that gave similar results. In air, to a dry 10-mL Schlenk tube containing a magnetic stir bar was charged with Pd(hfacac)₂ (10 mg, 0.02 mmol) and $tBu_3P \cdot HBF_4$ (12 mg, 0.04 mmol). The atmosphere was switched from air to argon after three cycles of evacuation and refilling of argon. Dry DMPU (2.5 mL) was added via a syringe and the mixture was stirred at RT for 10 minutes. Against argon flow, aryl bromide (0.50 mmol), cyclic olefin (2 or 5 equiv, 1.0 or 2.5 mmol), and DIPEA (0.75 mmol, 97 mg) were added sequentially. The Schlenk tube was capped tightly and the mixture was heated with vigorous stirring in 120 °C oil bath until aryl halide was fully consumed (monitored by GC). Routine workup and flash chromatography was used to isolate the products.

$$\rightarrow$$

1-(*p-t*-**Butylphenyl**)**cyclohexene** [60652-09-7]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 29 hours. The product was purified by flash chromatography (hexane) as colorless oil (103 mg, 94%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 33:1 by GC. When 2 equiv of cyclohexene was used, the reaction gave 58% yield and 20:1 selectivity.

¹H NMR (400 MHz, CDCl₃): δ 7.33 (pseudosinglet, 4H), 6.12-6.09 (m, 1H), 2.43-2.39 (m, 2H), 2.23-2.18 (m, 2H), 1.81-1.75 (m, 2H), 1.69-1.63 (m, 2H). 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 149.4, 139.7, 136.2, 125.1, 124.5, 124.0, 34.4, 31.4, 27.3, 25.9, 23.1, 22.2.

GCMS (EI): Calcd for C₁₆H₂₂: 214.3. Found: 214.0

1-(*p*-Anisyl)cyclohexene [20758-60-5]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 29 hours. The product

was purified by flash chromatography (1:10 EA/hexane) as colorless oil (86 mg, 91%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 33:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.33-7.30 (m, 2H), 6.86-6.83 (m, 2H), 6.04-6.01 (m, 1H), 3.80 (s, 3H), 2.40-2.35 (m, 2H), 2.21-2.16 (m, 2H), 1.80-1.74 (m, 2H), 1.67-1.62 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 158.4, 135.9, 135.4, 125.9, 123.2, 113.6, 55.3, 27.5, 25.9, 23.2, 22.3.

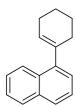
GCMS (EI): Calcd for C₁₃H₁₆O: 188.1. Found: 188.1

1-(p-Methoxycarbonylphenyl)cyclohexene [406232-72-2]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 36 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (101 mg, 93%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 31:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 6.27-6.24 (m, 1H), 3.90 (s, 3H), 2.44-2.39 (m, 2H), 2.26-2.21 (m, 2H), 1.82-1.76 (m, 2H), 1.70-1.64 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 167.1, 147.1, 135.9, 129.6, 128.0, 127.2, 124.7, 52.0, 27.2, 26.0, 22.9, 22.0.

GCMS (EI): Calcd for C₁₄H₁₆O₂: 216.1. Found: 216.1


1-(2-Naphthyl)cyclohexene [**54607-03-3**]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 29 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (100 mg, 96%). The ratio of the desired isomer versus all other isomers in the crude product

was determined to be 28:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.84-7.78 (m, 4H), 7.64-7.61 (m, 1H), 7.49-7.42 (m, 2H), 6.34-6.31 (m, 1H), 2.59-2.55 (m, 2H), 2.33-2.28 (m, 2H), 1.90-1.84 (m, 2H), 1.77-1.71 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 139.8, 136.3, 133.5, 132.4, 128.0, 127.6, 127.5, 125.9, 125.5, 125.3, 123.8, 123.1, 27.4, 26.0, 23.1, 22.2.

GCMS (EI): Calcd for C₁₆H₁₆: 208.2. Found: 208.1

1-(1-Naphthyl)cyclohexene [40358-51-8]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 60 hours. The product was purified by flash chromatography (hexane) as colorless oil (93 mg, 89%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 17:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.00-7.99 (m, 1H), 7.84-7.80 (m, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.46-7.38 (m, 3H), 7.25 (dd, J = 7.0, 1.2 Hz, 1H), 5.77-5.74 (m, 1H), 2.39-2.34 (m, 2H), 2.28-2.23 (m, 2H), 1.87-1.74 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 143.2, 137.7, 133.8, 131.5, 128.3, 127.3, 126.7, 125.9, 125.6, 125.5, 125.4, 124.9, 31.1, 25.6, 23.3, 22.4.

GCMS (EI): Calcd for C₁₆H₁₆: 208.1. Found: 208.1

1-(3-Thienyl)cyclohexene [**76441-42-4**]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 29 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (73 mg, 89%).

The ratio of the desired isomer versus all other isomers in the crude product was determined to be 30:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.25-7.22 (m, 2H), 7.08-7.07 (m, 1H), 6.19-6.16 (m, 1H), 2.41-2.37 (m, 2H), 2.22-2.16 (m, 2H), 1.79-1.73 (m, 2H), 1.67-1.62 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 144.1, 131.9, 125.2, 124.7, 123.9, 117.8, 27.3, 25.6, 22.9, 22.3.

GCMS (EI): Calcd for C₁₀H₁₂S: 164.0. Found: 164.0

3-(1-Cyclohexenyl)quinoline [33063-43-3]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 29 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (94 mg, 90%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 27:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 9.03 (d, J = 2.2 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 2.0 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.66-7.62 (m, 1H), 7.52-7.49 (m, 1H), 6.37-6.35 (m, 1H), 2.52-2.48 (m, 2H), 2.31-2.26 (m, 2H), 1.88-1.82 (m, 2H), 1.74-1.68 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 148.9, 147.0, 134.9, 133.9, 130.3, 129.1, 128.6, 128.0, 127.8, 127.2, 126.6, 27.1, 26.0, 22.9, 22.0.

GCMS (EI): Calcd for C₁₅H₁₅N: 209.1. Found: 209.1

3-(1-Cyclohexenyl)pyridine [19100-10-8]. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 29 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (75 mg, 94%).

The ratio of the desired isomer versus all other isomers in the crude product was determined to be 23:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.64 (d, *J* = 2.1 Hz, 1H), 8.44 (d, *J* = 4.8 Hz, 1H), 7.65-7.62 (m, 1H), 7.23-7.20 (m, 1H), 6.18-6.15 (m, 1H), 2.41-2.37 (m, 2H), 2.25-2.20 (m, 2H), 1.83-1.77 (m, 2H), 1.70-1.64 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 147.7, 146.7, 137.9, 133.9, 132.1, 126.6, 123.0, 27.1,

GCMS (EI): Calcd for C₁₁H₁₃N: 159.1. Found: 159.1

25.8, 22.8, 21.9.

5-(1-Cyclohexenyl)-2-methylbenzothiazole. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 36 hours. The product was purified by flash chromatography (1:4 EA/hexane) as white solid (103 mg, 90%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 22:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 1.6 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.41 (dd, J = 8.4, 1.6 Hz, 1H), 6.22-6.19 (m, 1H), 2.82 (s, 3H), 2.50-2.45 (m, 2H), 2.27-2.21 (m, 2H), 1.84-1.78 (m, 2H), 1.71-1.65 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 167.1, 153.9, 141.1, 136.2, 133.6, 125.4, 122.2, 120.8, 118.5, 27.6, 26.0, 23.1, 22.1, 20.2.

GCMS (EI): Calcd for C₁₄H₁₅NS: 229.0. Found: 229.0

6-(1-Cyclohexenyl)quinoline. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 36 hours. The product was purified by flash chromatography (1:4 EA/hexane) as white solid (90 mg, 86%). The ratio of

the desired isomer versus all other isomers in the crude product was determined to be 29:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, J = 3.0 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 8.02 (d, J = 8.9 Hz, 1H), 7.83 (dd, J = 8.9, 2.0 Hz, 1H), 7.70 (s, 1H), 7.35 (dd, J = 8.2, 4.0 Hz, 1H), 6.33-6.31 (m, 1H), 2.53-2.50 (m, 2H), 2.30-2.24 (m, 2H), 1.86-1.80 (m, 2H), 1.73-1.67 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 149.7, 147.6, 140.5, 136.1, 135.7, 129.0, 128.3, 127.4, 126.6, 122.7, 121.2, 27.3, 26.0, 23.0, 22.1.

GCMS (EI): Calcd for C₁₅H₁₅N: 209.1. Found: 209.0

5-(1-Cyclohexenyl)indole. The reaction was set up with 1 equiv of

N-Boc-5-bromoindole and 5 equiv of cyclohexene. The reaction mixture was stirred at 120 °C for 36 hours. The Boc-deprotected product was isolated by flash chromatography (1:4 EA/hexane) as colorless oil (92 mg, 93%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 33:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.02 (br s, 1H), 7.63 (s, 1H), 7.31-7.26 (m, 2H), 7.15-7.14 (m, 1H), 6.52-6.51 (m, 1H), 6.10-6.07 (m, 1H), 2.51-2.47 (m, 2H), 2.25-2.19 (m, 2H), 1.83-1.77 (m, 2H), 1.71-1.65 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 137.4, 135.1, 134.9, 127.9, 124.4, 123.1, 120.1, 116.9, 110.6, 102.9, 28.1, 26.0, 23.3, 22.4.

GCMS (EI): Calcd for C₁₄H₁₅N: 197.1. Found: 197.1

4-(1-Cyclohexenyl)isoquinoline. The reaction was set up with 5.0 equiv of cyclohexene and the reaction mixture was stirred at 120 °C for 60 hours. The product was purified by flash chromatography (1:4 EA/hexane) as colorless oil (95 mg, 91%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 23:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 9.14 (s, 1H), 8.33 (s, 1H), 7.96 (d, J = 8.2 Hz, 2H), 7.68 (pseudotriplet, J = 7.4 Hz, 1H), 7.58 (pseudotriplet, J = 7.4 Hz, 1H), 5.85-5.83 (m, 1H), 2.40-2.36 (m, 2H), 2.31-2.27 (m, 2H), 1.89-1.76 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 151.2, 141.5, 135.8, 134.4, 134.2, 130.0, 129.0, 128.4, 127.8, 126.8, 124.7, 30.9, 25.6, 23.1, 22.1.

GCMS (EI): Calcd for C₁₅H₁₅N: 209.1. Found: 209.1

1-(*p-t*-**Butylphenyl**)**cyclopentene.** The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (hexane) as colorless oil (94 mg, 94%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.33 (m, 4H), 6.15-6.13 (m, 1H), 2.72-2.67 (m, 2H), 2.54-2.49 (m, 2H), 2.04-1.97 (m, 2H), 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 149.7, 142.2, 134.0, 125.3, 125.2, 125.1, 34.5, 33.3, 33.2, 31.3, 23.4.

GCMS (EI): Calcd for C₁₅H₂₀: 200.3. Found: 200.1

1-(*p*-Anisyl)cyclopentene [709-12-6]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product

was purified by flash chromatography (1:10 EA/hexane) as colorless oil (79 mg, 91%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 91:1 by GC.

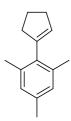
¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.06-6.04 (m, 1H), 3.81 (s, 3H), 2.70-2.65 (m, 2H), 2.54-2.48 (m, 2H), 2.04-1.97 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): 158.6, 141.8, 129.7, 126.7, 123.9, 113.7, 55.3, 33.4, 33.3, 23.4.

GCMS (EI): Calcd for C₁₂H₁₄O: 174.1. Found: 174.1

1-(p-Methoxycarbonylphenyl)cyclopentene [579472-58-5]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (95 mg, 94%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 54:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 6.34-6.32 (m, 1H), 3.91 (s, 3H), 2.75-2.70 (m, 2H), 2.58-2.53 (m, 2H), 2.08-2.00 (m, 2H).


GCMS (EI): Calcd for $C_{13}H_{14}O_2$: 202.0. Found: 202.0

1-(9-Phenanthrecenyl)cyclopentene [6569-76-8]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (hexane) as colorless oil (109 mg, 89%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 44:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.69 (d, J = 8.1 Hz, 1H), 8.63 (d, J = 7.9 Hz, 1H), 8.17

(d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.65-7.20 (m, 5H), 5.98-5.96 (m, 1H),2.87-2.82 (m, 2H), 2.67-2.62 (m, 2H), 2.16-2.09 (m, 2H).

GCMS (EI): Calcd for C₁₉H₁₆: 244.1. Found: 244.1

1-(2-Mesityl)cyclopentene [335233-28-8]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (hexane) as colorless oil (88 mg, 95%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 204:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 6.85 (s, 2H), 5.49-5.47 (m, 1H), 2.54-2.43 (m, 4H), 2.26 (s, 3H), 2.18 (s, 6H), 2.05-1.97 (m, 2H).

GCMS (EI): Calcd for C₁₄H₁₈: 186.1. Found: 186.1

1-(2,6-Dimethoxyphenyl)cyclopentene [64343-06-2]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (94 mg, 92%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 47:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.16 (t, J = 8.3 Hz, 1H), 6.57 (d, J = 8.3 Hz, 2H), 5.78-5.76 (m, 1H), 3.78 (s, 6H), 2.67-2.61 (m, 2H), 2.56-2.50 (m, 2H), 2.05-1.95 (m, 2H).

GCMS (EI): Calcd for C₁₃H₁₆O₂: 204.1. Found: 204.1

2-(1-Cyclopentenyl)-4, 5-difluorophenol. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (89 mg, 91%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 6.97-6.92 (m, 1H), 6.75-6.70 (m, 1H), 6.10 (m, 1H), 5.50 (s, 1H), 2.69-2.57 (m, 4H), 2.05-1.97 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 149.2 (d, J_{CF} = 11.5 Hz), 149.1 (dd, J_{CF} = 248.0, 14 Hz), 144.4 (dd, J_{CF} = 239.0, 13 Hz), 138.6, 129.9 (d, J_{CF} = 1.1 Hz), 119.9 (d, J_{CF} = 5.6 Hz), 115.5 (dd, J_{CF} = 18.5, 1.2 Hz), 104.8 (d, J_{CF} = 20.3 Hz), 36.2, 34.0, 22.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -137.4 (d, J_{FF} = 21.8 Hz), -148.9 (d, J_{FF} = 21.8 Hz). GCMS (EI): Calcd for C₁₁H₁₀F₂O: 196.0. Found: 196.0

1-(*p*-Formylphenyl)cyclopentene [915016-86-3]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 48 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (80 mg, 93%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 9.97 (s, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 6.40-6.38 (m, 1H), 2.76-2.71 (m, 2H), 2.60-2.54 (m, 2H), 2.08-2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): 191.7, 142.7, 141.7, 134.7, 130.5, 129.9, 125.9, 33.6, 33.0, 23.2.

GCMS (EI): Calcd for C₁₂H₁₂O: 172.0. Found: 172.0

1-(4-Hydroxymethylphenyl)cyclopentene. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 48 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (78 mg, 90%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 6.19-6.17 (m, 1H), 4.63 (d, J = 2.4 Hz, 2H), 2.72-2.67 (m, 2H), 2.55-2.50 (m, 2H), 2.05-1.98 (m, 2H), 1.87 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃): 142.1, 139.4, 136.3, 127.0, 126.3, 125.8, 65.2, 33.4, 33.2, 23.4.

GCMS (EI): Calcd for C₁₂H₁₄O: 174.0. Found: 174.0

5-(1-Cyclopentenyl)pyrimidine [1352124-38-9]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (65 mg, 89%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 9.05 (s, 1H), 8.77 (s, 2H), 6.40-6.38 (m, 1H), 2.75-2.70 (m, 2H), 2.61-2.56 (m, 2H), 2.11-2.04 (m, 2H).

GCMS (EI): Calcd for C₉H₁₀N₂: 146.2. Found: 146.2

5-(1-Cyclopentenyl)indole. The reaction was set up with 1 equiv of 5-bromoindole and 2 equiv of cyclopentene. The reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid

(85 mg, 93%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.97 (s, 1H), 7.64 (s, 1H), 7.40 (dd, J = 8.6, 1.6 Hz, 1H), 7.27 (d, J = 8.5 Hz, 1H), 7.11 (t, J = 2.8 Hz, 1H), 6.52-6.51 (m, 1H), 6.13-6.11 (m, 1H), 2.81-2.76 (m, 2H), 2.57-2.51 (m, 2H), 2.07-1.99 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 143.3, 135.0, 129.2, 127.9, 124.4, 123.6, 120.5, 117.8, 110.9, 103.0, 33.7, 33.4, 23.5.

GCMS (EI): Calcd for C₁₃H₁₃N: 183.2. Found: 183.2

$$N-\sqrt{}$$

N, *N*-Dimethyl-*p*-(1-cyclopentenyl)aniline. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (84 mg, 90%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 5.98-5.96 (m, 1H), 2.94 (s, 6H), 2.70-2.64 (m, 2H), 2.53-2.47 (m, 2H), 2.02-1.95 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 149.6, 142.2, 126.5, 125.7, 122.0, 112.4, 40.6, 33.3 (2 overlapping signals), 23.4.

GCMS (EI): Calcd for C₁₃H₁₇N: 187.2. Found: 187.2

1-(3-Thienyl)cyclopentene [115754-84-2]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (74 mg, 98%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.25 (s, 2H), 7.07 (pseudotriplet, J = 1.9 Hz, 1H), 6.02-6.00 (m, 1H), 2.70-2.65 (m, 2H), 2.53-2.48 (m, 2H), 2.03-1.96 (m, 2H). GCMS (EI): Calcd for C₉H₁₀S: 150.0. Found: 150.0

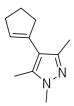
1-(3-Pyridyl)cyclopentene [62113-25-1]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (70 mg, 96%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.69 (d, J = 2.0 Hz, 1H), 8.44 (dd, J = 4.8, 1.4 Hz, 1H), 7.70-7.67 (m, 1H), 7.24-7.20 (m, 1H), 6.28-6.26 (m, 1H), 2.74-2.69 (m, 2H), 2.58-2.52 (m, 2H), 2.08-2.00 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 147.9, 147.2, 139.5, 132.5, 132.3, 128.2, 123.2, 33.4, 32.9, 23.2.

GCMS (EI): Calcd for $C_{10}H_{11}N$: 145.0. Found: 145.0

3-(1-Cyclopentenyl)quinoline [1352124-42-5]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (90 mg, 92%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.


¹H NMR (400 MHz, CDCl₃): δ 9.13 (d, J = 2.1 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.92 (s, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.66-7.62 (m, 1H), 7.50 (pseudotriplet, J = 7.5 Hz, 1H), 6.44-6.43 (m, 1H), 2.83-2.78 (m, 2H), 2.63-2.59 (m, 2H), 2.11-2.04 (m, 2H). GCMS (EI): Calcd for C₁₄H₁₃N: 195.1. Found: 195.1

5-(1-Cyclopentenyl)-2-methylbenzothiazole. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (97 mg, 90%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 130:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 1.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.52 (dd, J = 8.4, 1.4 Hz, 1H), 6.30-6.27 (m, 1H), 2.84-2.78 (m, 5H), 2.62-2.56 (m, 2H), 2.12-2.04 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 167.2, 153.8, 142.1, 135.2, 133.8, 126.6, 122.7, 120.9, 119.2, 33.5, 33.4, 23.3, 20.2

GCMS (EI): Calcd for C₁₃H₁₃NS: 215.0. Found: 215.0

4-(1-Cyclopentenyl)-1,3,5-trimethyl-1*H***-pyrazole.** The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:4 EA/hexane) as colorless oil (79 mg, 90%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 5.60-5.58 (m, 1H), 3.71 (s, 3H), 2.64-2.59 (m, 2H), 2.49-2.44 (m, 2H), 2.24 (pseudosinglet, 6H), 1.99-1.91 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 145.2, 136.1, 135.9, 126.4, 115.3, 35.9, 35.8, 32.8, 23.7, 13.7, 10.9.

GCMS (EI): Calcd for $C_{11}H_{16}N_2$: 176.1. Found: 176.2

N-Acetyl-*p*-(1-cyclopentenyl)aniline. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:4 EA/hexane) as colorless oil (75 mg, 94%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.45-7.36 (m, 5H), 6.12-6.11 (m, 1H), 2.70-2.65 (m, 2H), 2.54-2.49 (m, 2H), 2.16 (s, 3H), 2.04-1.97 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 168.3, 141.8, 136.6, 133.0, 126.1, 125.4, 119.7, 33.3, 33.2, 24.6, 23.3.

GCMS (EI): Calcd for C₁₃H₁₅NO: 201.2. Found: 201.2

2-Acetyl-5-(1-cyclopentenyl)thiophene. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 30 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (73 mg, 76%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 3.9 Hz, 1H), 6.94 (d, J = 3.9 Hz, 1H), 6.26-6.24 (m, 1H), 2.73-2.67 (m, 2H), 2.57-2.53 (m, 5H), 2.08-2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 190.6, 149.5, 141.8, 136.5, 133.1, 130.3, 124.1, 33.9, 33.6, 26.5, 23.4.

GCMS (EI): Calcd for C₁₁H₁₂OS: 192.0. Found: 192.1

1-(*m*-Formylphenyl)cyclopentene [680203-54-7]. The reaction was set up with 2.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 41 hours. The product was purified by flash chromatography (1:10 EA/hexane) as yellow oil (80 mg,

93%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 7.91 (s, 1H), 7.73-7.69 (m, 2H), 7.47 (t, J = 7.6 Hz, 1H), 6.31-6.29 (m, 1H), 2.77-2.72 (m, 2H), 2.59-2.54 (m, 2H), 2.09-2.02 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 192.6, 141.3, 137.8, 136.5, 131.5, 128.9, 128.2, 128.1, 126.6, 33.5, 33.2, 23.3.

GCMS (EI): Calcd for C₁₂H₁₂O: 172.1. Found: 172.1

1-Styrylcyclopentene [**109432-85-1**]. The reaction was set up with 5.0 equiv of cyclopentene and the reaction mixture was stirred at 120 °C for 36 hours. The product was purified by flash chromatography (hexane) as white oil (63 mg, 74%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.19 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 16.0 Hz, 1H), 6.41 (d, J = 16.0 Hz, 1H), 5.85 (s, 1H), 2.57-2.53 (m, 2H), 2.49-2.45 (m, 2H), 2.01-1.93 (m, 2H).

GCMS (EI): Calcd for $C_{13}H_{14}$: 170.1. Found: 170.1

3-(p-t-Butylphenyl)cyclopent-2-enone [115614-45-4]. The reaction was set up with 2% Pd(hfacac)₂, 3% tBu₃P·HBF₄ and 1.5 equiv of Li₂CO₃. The reaction mixture was stirred at 120 °C for 36 hours. The product was purified by flash chromatography (1:4 EA/hexane) as white solid (100 mg, 93%). When iPr₂NEt was used as base, the yield was 80% due to partial reduction of ArBr to ArH.

¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 6.55 (t, J = 1.6 Hz, 1H), 3.06-3.03 (m, 2H), 2.59-2.57 (m, 2H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 209.4, 173.9, 155.0, 131.4, 126.8, 126.7, 125.9, 35.3, 35.0, 31.1, 28.6.

GCMS (EI): Calcd for C₁₅H₁₈O: 214.1. Found: 214.1

3-(*p*-Anisyl)cyclopent-2-enone [2108-53-4]. The reaction was set up with 2% Pd(hfacac)₂, 3% *t*Bu₃P·HBF₄ and 1.5 equiv of Li₂CO₃. The reaction mixture was stirred at 120 °C for 42 hours. The product was purified by flash chromatography (1:4 EA/hexane) as white solid (92 mg, 97%).

¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.9 Hz, 2H), 6.96 (d, J = 8.9 Hz, 2H), 6.47 (t, J = 1.6 Hz, 1H), 3.87 (s, 3H), 3.03-3.00 (m, 2H), 2.57-2.55 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 209.3, 173.6, 162.1, 128.6, 126.7, 125.5, 114.3, 55.4, 35.2, 28.6.

GCMS (EI): Calcd for C₁₂H₁₂O₂: 188.0. Found: 188.0

3-(*p*-Methoxycarbonylphenyl)cyclopent-2-enone [1107640-98-1]. The reaction was set up with 2% Pd(hfacac)₂, 3% tBu₃P·HBF₄ and 1.5 equiv of Li₂CO₃. The reaction mixture was stirred at 120 °C for 48 hours. The product was purified by flash chromatography (1:4 EA/hexane) as white solid (61 mg, 56%), the conjugate addition byproduct was also isolated in 42% yield.

¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 1.4 Hz, 1H), 3.95 (s, 3H), 3.09-3.06 (m, 2H), 2.63-2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 208.9, 172.2, 166.3, 138.1, 132.2, 130.1, 129.3, 126.7,

52.4, 35.3, 28.7.

GCMS (EI): Calcd for $C_{13}H_{12}O_3$: 216.0. Found: 216.0

3-p-(t-Butylphenyl)cyclohex-2-enone. The reaction was set up with 2% Pd(hfacac)₂, 3% tBu₃P·HBF₄ and 1.5 equiv of Li₂CO₃. The reaction mixture was stirred at 120 °C for 36 hours. The product was purified by flash chromatography (1:4 EA/hexane) as yellow oil (103 mg, 90%).

¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 6.43 (t, J = 1.3 Hz, 1H), 2.79-2.75 (m, 2H), 2.50-2.46 (m, 2H), 2.18-2.11 (m, 2H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 199.9, 159.6, 153.6, 135.8, 125.9, 125.7, 124.8, 37.3, 34.8, 31.2, 28.0, 22.8.

GCMS (EI): Calcd for C₁₆H₂₀O: 228.1. Found: 228.1

3-p-Anisylcyclohex-2-enone [**17159-98-7**]. The reaction was set up with 2% Pd(hfacac)₂, 3% tBu₃P·HBF₄ and 1.5 equiv of Li₂CO₃. The reaction mixture was stirred at 120 °C for 42 hours. The product was purified by flash chromatography (1:4 EA/hexane) as white solid (95 mg, 94%).

¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 6.39 (s, 1H), 3.84 (s, 3H), 2.76-2.73 (m, 2H), 2.46 (t, J = 6.8 Hz, 2H), 2.16-2.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 161.2, 159.1, 130.8, 127.6, 123.7, 114.1, 55.4, 37.2, 27.8, 22.8.

GCMS (EI): Calcd for C₁₃H₁₄O₂: 202.0. Found: 202.0

3-p-(t-Butylphenyl)cyclohex-2-enone. The reaction was set up with 4% Pd(hfacac)₂,

8% $tBu_3P \cdot HBF_4$ and 1.5 equiv of DIPEA. The reaction mixture was stirred at 120 °C for 36 hours. The product was purified by flash chromatography (1:4 EA/hexane) as white solid (101 mg, 88%).

¹H NMR (400 MHz, CDCl₃): δ 7.51-7.45 (m, 4H), 6.37 (s, 1H), 4.52 (t, J = 6.2 Hz, 2H), 2.88-2.84 (m, 2H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 165.2, 155.1, 154.4, 133.0, 126.0, 125.8, 114.2, 66.0, 34.9, 31.1, 26.2.

GCMS (EI): Calcd for C₁₅H₁₈O₂: 230.1. Found: 230.1

3-(p-Anisyl)cyclohex-2-enone. The reaction was set up with 4% Pd(hfacac)₂, 8% tBu₃P·HBF₄, and 1.5 equiv of DIPEA. The reaction mixture was stirred at 120 °C for 48 hours. The product was purified by flash chromatography (1:2 EA/hexane) as white solid (78 mg, 76%).

¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 8.7 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 6.30 (d, J = 1.1 Hz, 1H), 4.51 (t, J = 6.2 Hz, 2H), 3.86 (s, 3H), 2.84 (t, J = 6.2, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 161.7, 154.7, 128.1, 127.6, 114.4, 112.8, 65.9, 55.5, 26.2.

GCMS (EI): Calcd for $C_{12}H_{12}O_3$: 204.1. Found: 204.1

2-(p-t-Butylphenyl)-1, **4-dioxene.** The reaction was set up with 4% Pd(hfacac)₂, 8% tBu₃P·HBF₄, 1.5 equiv of DIPEA and 5 equiv of 1, 4-dioxene. The reaction mixture was stirred at 120 °C for 48 hours. The product was purified by flash chromatography (hexane) as colorless oil (93 mg, 85%).

¹H NMR (400 MHz, CDCl₃): δ 7.33 (ψs, 4H), 6.60 (s, 1H), 4.25-4.23 (m, 2H), 4.13-4.11 (m, 2H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 150.1, 136.5, 131.1, 125.2, 123.8, 122.7, 64.7, 64.4,

34.5, 31.3.

GCMS (EI): Calcd for C₁₄H₁₈O₂: 218.1. Found: 218.1

2-(p-Anisyl)-1,4-dioxene. The reaction was set up with 4% Pd(hfacac)₂, 8% tBu₃P·HBF₄, 1.5 equiv of DIPEA and 5 equiv of 1, 4-dioxene. The reaction mixture was stirred at 120 °C for 42 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (71 mg, 74%).

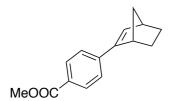
¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 6.51 (s, 1H), 4.26-4.24 (m, 2H), 4.12-4.10 (m, 2H), 3.80 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 158.9, 136.4, 126.7, 124.4, 123.0, 113.8, 64.8, 64.3, 55.3.

GCMS (EI): Calcd for C₁₁H₁₂O₃: 192.1. Found: 192.1

2-(*p-t*-**Butylphenyl**)**norborn-2-ene.** The reaction was set up with 4% Pd(hfacac)₂, 8% $tBu_3P \cdot HBF_4$, 2.0 equiv of NaOPh, 2 equiv of norbornene and 1mL of dry PhCF₃. The reaction mixture was stirred at 120 °C for 48 hours. The product was purified by flash chromatography (hexane) as colorless oil (99 mg, 90%). When iPr_2NEt and DMPU were used under standard conditions, no reaction occurred at 120 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.39-7.32 (m, 4H), 6.25 (d, J = 3.1 Hz, 1H), 3.31 (s, 1H), 2.97 (d, J = 1.4 Hz, 1H), 1.81-1.73 (m, 2H), 1.53-1.50 (m, 1H), 1.31 (s, 9H), 1.24 (d, J = 8.1 Hz, 1H), 1.14 (dd, J = 7.4, 2.4 Hz, 2H).


¹³C NMR (100 MHz, CDCl₃): δ 149.7, 147.6, 133.0, 128.9, 125.3, 124.6, 47.9, 43.4, 43.1, 34.5, 31.3, 26.9, 24.8.

GCMS (EI): Calcd for C₁₇H₂₂: 226.2. Found: 226.2

2-(*p*-Anisyl)norborn-2-ene [24920-37-4]. The reaction was set up with 4% Pd(hfacac)₂, 8% tBu₃P·HBF₄, 2.0 equiv of NaOPh, 2 equiv of norbornene and 1mL of dry PhCF₃. The reaction mixture was stirred at 120 °C for 72 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (63 mg, 63%). ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 6.15 (d, J = 3.1 Hz, 1H), 3.81 (s, 3H), 3.28 (s, 1H), 2.97-2.96 (m, 1H), 1.81-1.71 (m, 2H), 1.54-1.50 (m, 1H), 1.25-1.24 (m, 1H), 1.22-1.08 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 158.6, 147.2, 128.6, 127.4, 126.1, 113.9, 55.3, 47.9, 43.4, 43.0, 27.0, 24.8.

GCMS (EI): Calcd for C₁₄H₁₆O: 200.0. Found: 200.0

2-(*p*-Methoxycarbonylphenyl)norborn-**2-ene.** The reaction was set up with 4% $Pd(hfacac)_2$, 8% $tBu_3P \cdot HBF_4$, 2.0 equiv of NaOPh, 2 equiv of norbornene and 1mL of dry PhCF₃. The reaction mixture was stirred at 120 °C for 48 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (95 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 6.44 (d, J = 3.1 Hz, 1H), 3.90 (s, 3H), 3.34 (s, 1H), 3.03 (s, 1H), 1.85-1.76 (m, 2H), 1.56-1.53 (m, 1H), 1.28 (d, J = 8.3 Hz, 1H), 1.19-1.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 147.2, 140.3, 132.8, 129.8, 128.0, 124.6, 52.0, 47.9, 43.4, 43.3, 26.6, 24.8.

GCMS (EI): Calcd for C₁₅H₁₆O₂: 228.0. Found: 228.0

2-Phenyl-*1H***-indene** [**4505-48-0**]. The reaction was set up with 4% Pd(dba)₂(12 mg, 0.02 mmol), 8% tBu₃P·HBF₄(12 mg, 0.04 mmol), 1.5 equiv of BnNHMe (102 mg, 0.75 mmol), 2 equiv of indene (116 mg, 1.0 mmol) and 2.5 mL of dry DMPU. The reaction mixture was stirred at 120 °C for 46 hours. The product was purified by flash chromatography (Hexane) as white solid (90 mg, 94%). When the standard condition was used including Pd(hfacac)₂, tBu₃P·HBF₄, iPr₂NEt and DMPU, β/α selectivity of arylated product was 4:1.

¹H NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 2H), 7.47 (d, J = 7.2 Hz, 1H), 7.41-7.37 (m, 3H), 7.29-7.24 (m, 3H), 7.21-7.17 (m, 1H), 3.80 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 146.4, 145.4, 143.2, 136.0, 128.7, 127.5, 126.6, 126.5, 126.7, 124.8, 123.7, 121.0, 39.0.

GCMS (EI): Calcd for C₁₅H₁₂: 192.2. Found: 192.2

2-(p-Acetophenyl)-1H-indene [79449-08-4]. The reaction was set up with 4% $Pd(dba)_2(12 \text{ mg}, 0.02 \text{ mmol})$, 8% tBu_3P ·HBF $_4(12 \text{ mg}, 0.04 \text{ mmol})$, 1.5 equiv of BnNHMe (102 mg, 0.75 mmol), 1 equiv of ArBr, 2 equiv of indene (116 mg, 1.0 mmol) and 2.5 mL of dry DMPU. The reaction mixture was stirred at 120 °C for 40 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (108 mg, 92%).

¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.37 (s, 1H), 7.30 (ψt, J = 7.4 Hz, 1H), 7.23(ψt, J = 7.4 Hz, 1H), 3.81 (s, 2H), 2.61 (s, 3H).

GCMS (EI): Calcd for C₁₇H₁₄O: 234.1. Found: 234.1

2-(p-Anisyl)-1H-indene [54288-29-8]. The reaction was set up with 4% Pd(dba)₂(12 mg, 0.02 mmol), 8% tBu₃P·HBF₄(12 mg, 0.04 mmol), 1.5 equiv of BnNHMe (102

mg, 0.75 mmol), 1 equiv of ArBr, 2 equiv of indene (116 mg, 1.0 mmol) and 2.5 mL of dry DMPU. The reaction mixture was stirred at 120 °C for 40 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (102 mg, 92%).

¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 7.3 Hz, 1H), 7.36 (d, J = 7.4 Hz, 1H), 7.25 (ψt, J = 7.4 Hz, 1H), 7.15 (ψt, J = 7.4 Hz, 1H), 7.09 (s, 1H), 6.92 (d, J = 8.7 Hz, 2H), 3.84 (s, 3H), 3.75 (s, 2H).

GCMS (EI): Calcd for C₁₆H₁₄O: 222.1. Found: 222.1

Heck reactions of aryl and heteroaryl chlorides using 0.5 mmol of organic chlorides.

In an argon-filled glove box, a dry 10-mL Schlenk tube containing a magnetic stir bar was charged with Pd(hfacac)₂ (10 mg, 0.02 mmol), $tBu_3P \cdot HBF_4$ (12 mg, 0.04 mmol) and 2.5 mL of dry DMPU. After stirring at room temperature for 10 minutes, aryl chloride (0.50 mmol), cyclic olefin (5 equiv, 2.5 mmol), and DIPEA (0.75 mmol, 97 mg) were added sequentially via syringe. The Schlenk tube was capped tightly and the mixture was heated with vigorous stirring in a 120 °C oil bath (external temperature). After the aryl chloride was fully consumed (monitored by GC), the reaction mixture was passed through a pad of silica gel with diethyl ether washings to remove DMPU, inorganic salts and catalyst first. Then the filtrate was concentrated on a rotary evaporator and the residue was directly subjected to silica gel flash chromatography. The ratio of the conjugated isomer versus all other isomers was determined by GC analysis of unpurified samples.

Note: ¹H NMR spectroscopy was unsuitable for determination of the amount of minor isomers due to low signal intensity and overlap of signals. The structure of the desired isomer was confirmed by ¹H NMR spectroscopy of the purified sample.

1-Phenylcyclopentene [825-54-7]. The reaction was stirred at 120 °C for 27 hours.

The product was purified by flash chromatography (hexane) as colorless oil (69 mg, 96%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 7.7 Hz, 2H), 7.22 (t, J = 7.7 Hz, 2H), 7.12 (t, J = 7.7 Hz, 1H), 6.11-6.09 (m, 1H), 2.65-2.60 (m, 2H), 2.47-2.42 (m, 2H), 1.97-1.89 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 142.4, 136.8, 128.2, 126.8, 126.1, 125.5, 33.3, 33.2, 23.3.

GCMS (EI): Calcd for C₁₁H₁₂: 144.2. Found: 144.1

1-(*p*-**Anisyl**)**cyclopentene** [709-12-6]. The reaction was stirred at 120 °C for 66 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (80 mg, 92%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 147:1 by GC.

1-(*p*-Cyanophenyl)cyclopentene. The reaction was stirred at 120 °C for 52 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (82 mg, 97%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 174:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 6.38-6.36 (m, 1H), 2.74-2.69 (m, 2H), 2.61-2.56 (m, 2H), 2.10-2.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 141.2, 141.1, 132.1, 130.7, 126.0, 119.2, 109.9, 33.6, 32.9, 23.2.

GCMS (EI): Calcd for $C_{12}H_{11}N$: 169.1. Found: 169.1

1-(p-Acetophenyl)cyclopentene. The reaction was stirred at 120 °C for 48 hours. The

product was purified by flash chromatography (1:10 EA/hexane) as white solid (91 mg, 98%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 6.35-6.34 (m, 1H), 2.74-2.70 (m, 2H), 2.58-2.53 (m, 5H), 2.08-2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 141.8, 141.4, 135.4, 129.6, 128.5, 125.6, 33.6, 33.1, 26.5, 23.3.

GCMS (EI): Calcd for C₁₃H₁₄O: 186.1. Found: 186.1

1-(6-Quinolinyl)cyclopentene. The reaction was stirred at 120 °C for 27 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (89 mg, 91%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.83 (d, J = 4.2 Hz, 1H), 8.08 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.64 (s, 1H), 7.36-7.33 (m, 1H), 6.36-6.35 (m, 1H), 2.83-2.78 (m, 2H), 2.61-2.57 (m, 2H), 2.11-2.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): 149.8, 147.8, 141.8, 136.0, 134.9, 129.1, 128.4, 128.3, 127.9, 123.6, 121.3, 33.6, 33.2, 23.3.

GCMS (EI): Calcd for C₁₄H₁₃N: 195.1. Found: 195.1

5-(1-Cyclopentenyl)-2-methylindole. The reaction was stirred at 120 °C for 46 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (95 mg, 97%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 118:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 7.68 (s. 1H), 7.52 (s. 1H), 7.30 (dd, J = 8.4, 1.5 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 6.17-6.16 (m, 1H), 6.10 (d, J = 1.9 Hz, 1H), 2.79-2.75 (m, 2H), 2.55-2.51 (m, 2H), 2.38 (s, 3H), 2.06-1.98 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 143.4, 135.4, 135.3, 129.1, 128.9, 123.1, 119.3, 116.8, 110.0, 100.7, 33.7, 33.4, 23.5, 13.7.

GCMS (EI): Calcd for C₁₄H₁₅N: 197.1. Found: 197.1

4-(1-Cyclopentenyl)-2,6-dimethoxypyrimidine. The reaction was stirred at 120 °C for 52 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (93 mg, 90%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 61:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 6.87-6.85 (m, 1H), 6.27 (s, 1H), 4.00 (s, 3H), 3.96 (s, 3H), 2.70-2.64 (m, 2H), 2.59-2.53 (m, 2H), 2.07-2.00 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 172.4, 165.0, 163.3, 141.7, 135.7, 97.3, 54.5, 53.7, 33.4, 31.8, 23.2.

GCMS (EI): Calcd for C₁₁H₁₄N₂O₂: 206.1. Found: 206.1

5-(1-Cyclopentenyl)-2-methylbenzothiazole. The reaction was stirred at 120 °C for 66 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (98 mg, 91%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 105:1 by GC.

1-(3-Pyridyl)cyclopentene [62113-25-1]. The reaction was stirred at 120 °C for 27 hours. The product was purified by flash chromatography (1:10 EA/hexane) as colorless oil (68 mg, 94%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

5-(1-Cyclopentenyl)furan-2-carbaldehyde. The reaction was stirred at 120 °C for 27 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (72 mg, 89%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

¹H NMR (400 MHz, CDCl₃): δ 9.57 (s, 1H), 7.22 (d, J = 3.7 Hz, 1H), 6.48 (pseodusinglet, 1H), 6.37 (d, J = 3.7 Hz, 1H), 2.70-2.65 (m, 2H), 2.59-2.54 (m, 2H), 2.07-1.99 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 177.1, 157.8, 151.6, 132.3, 132.1, 123.5, 108.6, 33.6, 32.1, 23.2.

GCMS (EI): Calcd for C₁₀H₁₀O₂: 162.1. Found: 162.1

5-(1-Cyclopentenyl)-2-(*p***-ethoxycarbonylphenyl)indole.** The reaction was stirred at 120 °C for 46 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (125 mg, 98%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 127:1 by GC.

¹H NMR (400 MHz, CDCl₃): δ 8.92 (s, 1H), 7.64 (s, 1H), 7.55 (d, J = 8.7 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.20 (s, 1H), 6.15 (pseodusinglet, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.80-2.76 (m, 2H), 2.57-2.53 (m, 2H), 2.08-2.01 (m, 2H), 1.42 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 161.9, 142.7, 136.0, 130.1, 127.7, 127.6, 124.5, 124.0,

119.1, 111.6, 109.0, 61.0, 33.5, 33.4, 23.4, 14.4.

GCMS (EI): Calcd for C₁₆H₁₇NO₂: 255.1. Found: 255.1

2-Acetyl-5-(1-cyclopentenyl)thiophene. The reaction was stirred at 120 °C for 27 hours. The product was purified by flash chromatography (1:10 EA/hexane) as white solid (85 mg, 88%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be 100:0 by GC.

IV. Mechanistic studies for Heck reaction of aryl bromides

Synthesis of 3-Phenylcyclohexene [15232-96-9]. The compound was made using a reported procedure by Larock. In an argon-filled glove box, a dry 4-mL vial containing a magnetic stir bar was charged with Pd(OAc)₂ (2.5 mol%, 3 mg, 0.125 mmol), nBu₄NCl (139 mg, 0.5 mmol) and 1.0 mL of dry DMF. After stirring at room temperature for 10 minutes, phenyl iodide (0.50 mmol, 102 mg), NaOAc (3 equiv, 1.50 mmol, 123 mg), cyclohexene (5 equiv, 2.5 mmol, 205 mg), and GC standard, 1-dodecane (10 μL) was added sequentially via syringe. The vial was capped tightly and the mixture was vigorous stirred at RT for 5 days (monitored by GC). After removing the solvent, the product was purified by flash chromatography (hexane) as colorless oil (75 mg, 95%). The ratio of the desired isomer versus all other isomers in the crude product was determined to be >200:1 by GC. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.17 (m, 5H), 5.76 (pseudotriplet, J = 13.7 Hz, 2H), 2.83-2.78 (m, 1H), 2.30-2.12 (m, 4H), 1.95-1.92 (m, 1H), 1.81-1.70 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 147.4, 128.4, 127.0, 126.9, 126.8, 126.0, 40.2, 33.5, 29.8, 25.9.

Isomerization of 3-phenylcyclohexene in an active Heck reaction of ArBr and cyclohexene. In an argon-filled glove box, a dry 4-mL reaction tube containing a magnetic stir bar was charged with Pd(hfacac)₂ (4 mol%, 2 mg, 0.004 mmol), tBu₃P·HBF₄ (8 mol%, 2 mg, 0.008 mmol) and 0.5 mL of dry DMPU. After prestirring at room temperature for 10 minutes, p-methoxycarbonylphenyl bromide (0.10 mmol, 22 mg), DIPEA (1.5 equiv, 19 mg), cyclohexene (5 equiv, 0.50 mmol, 41 mg, 52 μL), 3-phenylcyclohexene (>99% purity, 1 equiv, 0.10 mmol, 16 mg) and GC standard 1-dodecane (10 µL) were added sequentially via syringe. The tube was capped tightly and the mixture was vigorously stirred in a 120 °C oil bath. At intervals, the reaction tube was cooled to RT and taken into the glove box. An aliquot was removed and

passed through a short plug of silica gel with Et₂O washing. The filtrate was subjected to GC analysis to determine the yield and conjugated selectivity of the Heck products, as well as the extent of the isomerization of 3-phenylcyclohexene.

Table S5 Isomerization of 3-phenylcyclohexene in an active Heck reaction of ArBr and cyclochexene.

V. Reference

1) R. C. Larock and B. E. Baker, *Tetrahedron Lett.*, **1988**, *29*, 905.