Supporting Information

The first palladium-catalyzed 1,4-addition of terminal alkenes to acrylate esters

Pei Liu, Heng-shan Wang, Ying-ming Pan,* Wei-long Dai, Hong Liang, and Zhen-Feng Chen*

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004 (China)

Table of Contents

1 General Information	S2
2 General Experimental Procedure	S2
3 Characterization of the Compounds	S3-7
4 References	S8
5 Copies of ¹ H NMR and ¹³ C NMR Spectra of Products	S9-22
6 Copies of HRMS Spectra of Products	S23-27

1 General Information Methods.

All manipulations were performed under an air atmosphere unless otherwise statement. Column chromatography was performed on silica gel (300–400 mesh). NMR spectra were obtained using a Bruker Avance 500 spectrometer (¹H at 500 MHz and ¹³ C at 125 MHz). Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.0 ppm). High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Thermo Scientific, USA) equipped with APCI or ECI ionization source.

Materials. Unless stated otherwise, commercial reagents were used without further purification. All reagents were weighed and handled in air at room temperature.

2 General Experimental Procedure

The reaction mixture of alkenes **1** (0.5 mmol), acrylate esters **2** (0.75 mmol), $PdCl_2$ (6 mol%), and PhCl (2 mL) in a 15 mL sealed tube was stirred at 110 $^{\circ}C$ for 72 h, and monitored periodically by TLC. Upon completion, the reaction mixture was diluted with water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with water and brine, dried over Na_2SO_4 and filtered. The solvent was removed under vacuum. The residue was purified by flash column chromatography to afford (*E*)-alkenyl esters.

3 Characterization of the Compounds

(E)-Ethyl 5-phenylpent-4-enoate (3aa)

Yellowish oil; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.33 (m, 2H), 7.31-7.28 (m, 2H), 7.22-7.19 (m, 1H), 6.44 (d, J = 15.8 Hz, 1H), 6.22 (dt, J = 15.8, 6.6 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.57-2.53 (m, 2H), 2.51-2.46 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 137.3, 130.9, 128.5, 127.1, 126.0, 60.4, 34.0, 28.3, 14.2; **ESI HRMS** exact mass calcd for (C₁₃H₁₆O₂Na)⁺ requires m/z 227.10480, found m/z 227.10374.

The NMR data was in good agreement with that reported in the literature.¹

(E)-Methyl 5-phenylpent-4-enoate (3ab)

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 7.4 Hz, 2H), 7.31-7.28 (m, 2H), 7.22 (d, J = 7.2 Hz, 1H), 6.44 (d, J = 15.9 Hz, 1H), 6.21 (dt, J = 15.8, 6.5 Hz, 1H), 3.70 (s, 3H), 2.57-2.53 (m, 2H), 2.51-2.48 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 137.3, 131.0, 128.5, 128.4, 127.1, 126.0, 51.6, 33.8, 28.2; **ESI** HRMS exact mass calcd for (C₁₂H₁₅O₂)⁺ requires m/z 191.10720, found m/z 191.10664.

The NMR data was in good agreement with that reported in the literature.²

(E)-Butyl 5-phenylpent-4-enoate (3ac)

Yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (d, J = 7.3 Hz, 2H), 7.31-7.28 (m, 2H), 7.22-7.20 (m, 1H), 6.44 (d, J = 15.9 Hz, 1H), 6.22 (dt, J = 15.8, 6.6 Hz, 1H), 4.11 (t, J = 6.7 Hz, 2H), 2.57-2.53 (m, 2H), 2.52-2.47 (m, 2H), 1.65-1.59 (m, 2H), 1.43-1.35 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.0, 137.3, 130.9, 128.4, 127.1, 126.0, 64.3, 34.0, 30.6, 28.3, 19.1, 13.6; **APCI**

HRMS exact mass calcd for $(C_{15}H_{21}O_2)^+$ requires m/z 233.15415, found m/z 233.15385.

(E)-Isobutyl 5-phenylpent-4-enoate (3ad)

Yellowish oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.36-7.34 (m, 2H), 7.32-7.29 (m, 2H), 7.23-7.20 (m, 1H), 6.45 (d, J = 15.9 Hz, 1H), 6.23 (dt, J = 15.8, 6.5 Hz, 1H), 3.90 (d, J = 6.7 Hz, 2H), 2.59-2.54 (m, 2H), 2.53-2.49 (m, 2H), 1.97-1.92 (m, 1H), 0.95 (s, 3H), 0.94 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.0, 137.3, 130.9, 128.4, 127.1, 127.0, 126.0, 70.5, 34.0, 28.3, 27.7, 19.0; **APCI HRMS** exact mass calcd for $(C_{15}H_{21}O_2)^+$ requires m/z 233.15415, found m/z 233.15387.

(E)-Tert-butyl 5-phenylpent-4-enoate (3ae)

Yellow oil; ¹**H NMR** (500 MHz,CDCl₃) δ 7.33 (d, J = 7.0 Hz, 2H), 7.31-7.28 (m, 3H), 6.42 (d, J = 15.9 Hz, 1H), 6.21 (dt, J = 15.8, 6.7 Hz, 1H), 2.52-2.48 (m, 2H), 2.41-2.38 (m, 2H), 1.45 (s, 9H); ¹³**C NMR** (125 MHz, CDCl₃) δ 172.4, 139.7, 130.7, 128.8, 128.5, 127.0, 126.0, 80.3, 35.2, 29.7, 28.1; **APCI HRMS** exact mass calcd for $(C_{15}H_{21}O_2)^+$ requires m/z 233.15415, found m/z 233.15297.

(E)-Isobutyl 5-(o-tolyl)pent-4-enoate (3bd)

Yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (d, J = 5.7 Hz, 1H), 7.18-7.13 (m, 3H), 6.65 (d, J = 15.7 Hz, 1H), 6.10 (dt, J = 15.5, 6.6 Hz, 1H), 3.90 (d, J = 6.7 Hz, 2H), 2.61-2.57 (m, 2H), 2.55-2.51 (m, 2H), 2.34 (s, 3H), 1.98-1.91 (m, 1H), 0.96 (s, 3H), 0.95 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.0, 136.5, 135.0, 130.1, 129.8, 128.8, 127.0, 126.0, 125.5, 70.5, 34.2, 28.6, 27.7, 19.7, 19.1; **APCI HRMS** exact mass calcd for $(C_{16}H_{23}O_2)^+$ requires m/z 247.16980, found m/z 247.16870.

(E)-Mthyl 5-(p-tolyl)pent-4-enoate (3ca)

Yellowish oil; ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.9 Hz, 2H), 6.40 (d, J = 15.9 Hz, 1H), 6.15 (dt, J = 15.8, 6.6 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.56-2.49 (m, 2H), 2.49-2.45 (m, 2H), 2.33 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 136.9, 134.6, 130.7, 129.2, 127.4, 125.9, 60.4, 34.1, 28.3, 21.1, 14.3; **APCI HRMS** exact mass calcd for $(C_{14}H_{19}O_2)^+$ requires m/z 219.13850, found m/z 219.13763.

(E)-Ethyl 5-(4-bromophenyl)pent-4-enoate (3da)

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 1.9 Hz, 1H), 7.40 (d, J = 1.8 Hz, 1H), 7.20 (d, J = 2.0 Hz, 1H), 7.18 (d, J = 1.7 Hz, 1H), 6.36 (d, J = 15.9 Hz, 1H), 6.20 (dt, J = 15.8, 6.4 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 2.54-2.50 (m, 2H), 2.49-2.45 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 136.3, 131.6, 129.8, 129.4, 127.6, 120.8, 60.4, 33.9, 28.3, 14.3; **APCI HRMS** exact mass calcd for (C₁₃H₁₆O₂Br)⁺ requires m/z 283.03337, found m/z 283.03040.

(E)-Isobutyl 5-(4-fluorophenyl)pent-4-enoate (3ed)

Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 6.99-6.94 (m, 2H), 6.39 (d, J = 15.9 Hz, 1H), 6.12 (dt, J = 15.8, 6.4 Hz, 1H), 3.87 (d, J = 6.6 Hz, 2H), 2.55-2.47 (m, 4H), 1.96-1.88 (m, 1H), 0.93 (s, 3H), 0.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 163.0 and161.0, 133.5, 129.7, 128.2, 127.5, 127.4, 115.4 and 115.2, 70.6, 34.0, 28.2, 27.7, 19.0; **APCI HRMS** exact mass calcd for $(C_{15}H_{20}O_2F)^+$ requires m/z 251.14473, found m/z 251.14366.

(E)-Methyl 5-phenylhex-4-enoate (3fb)

Yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (d, J = 7.5 Hz, 2H), 7.34-7.31 (m, 2H), 7.25 (d, J = 7.4 Hz, 1H), 5.78-5.72 (m, 1H), 3.71 (s, 3H), 2.57-2.54 (m, 2H), 2.50-2.47 (m, 2H), 2.08 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.5, 143.5, 136.2, 128.1, 126.7, 125.9, 125.6, 51.5, 33.8, 24.2, 15.7; **ESI HRMS** exact mass calcd for $(C_{13}H_{17}O_2)^+$ requires m/z 205.12285, found m/z 205.12259.

(E)-Isobutyl 5-phenylhex-4-enoate (3fd)

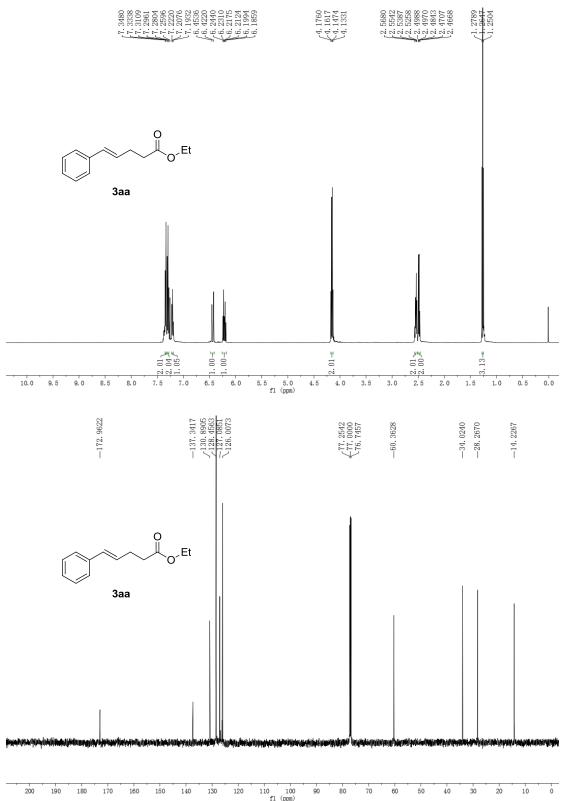
Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.32-7.29 (m, 2H), 7.24-7.21 (m, 1H), 5.76-5.72 (m, 1H), 3.88 (d, J = 6.7 Hz, 2H), 2.57-2.52 (m, 2H), 2.49-2.45 (m, 2H), 2.06 (s, 3H), 1.95-1.91 (m, 1H), 0.94 (s, 3H), 0.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 143.6, 139.0, 128.1, 126.7, 126.1, 125.6, 70.6, 34.2, 27.7, 24.3, 19.1, 15.8; **APCI HRMS** exact mass calcd for $(C_{16}H_{23}O_2)^+$ requires m/z 247.16980, found m/z 247.16943.

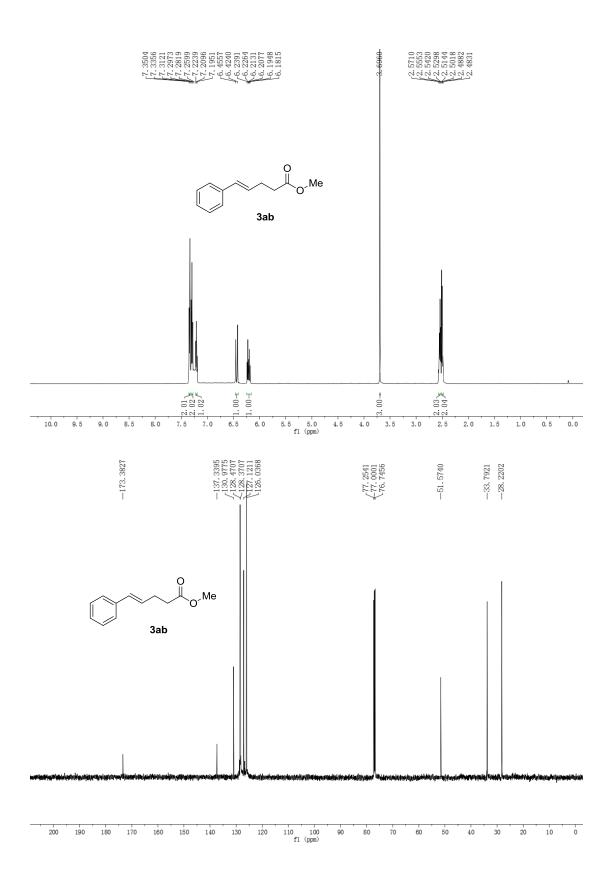
(E)-Isobutyl 5-(4-chlorophenyl)hex-4-enoate (3gd)

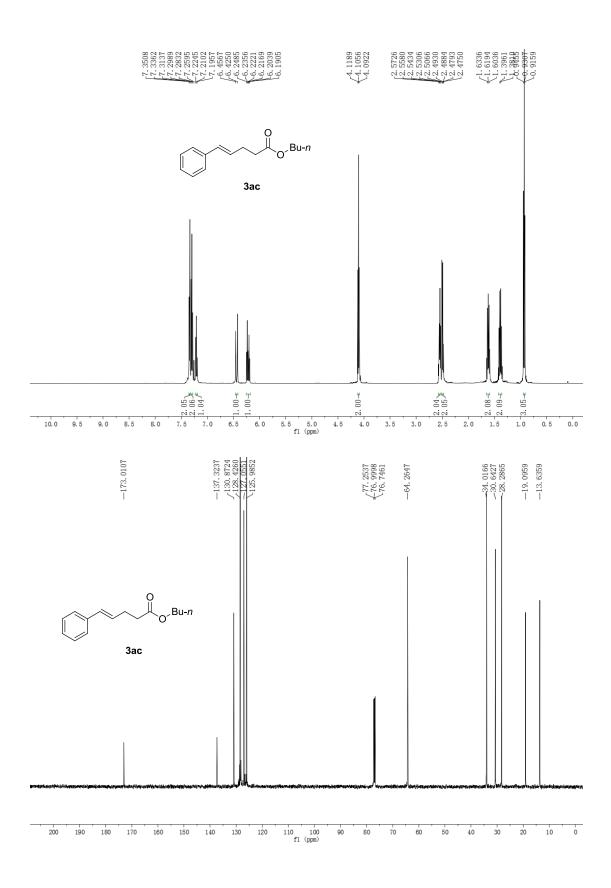
Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.26 (m, 4H), 5.75-5.72 (m, 1H), 3.89 (d, J = 6.7 Hz, 2H), 2.55-2.52 (m, 2H), 2.50-2.47 (m, 2H), 2.36-2.30 (m, 1H), 2.04 (s, 3H), 0.95 (s, 3H), 0.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 142.0, 135.1, 132.4, 128.2, 126.9, 126.6, 70.6, 34.0, 27.7, 24.3, 19.0, 15.8; **APCI HRMS** exact mass calcd for (C₁₆H₂₂O₂Cl)⁺ requires m/z 281.13083, found m/z 281.13016.

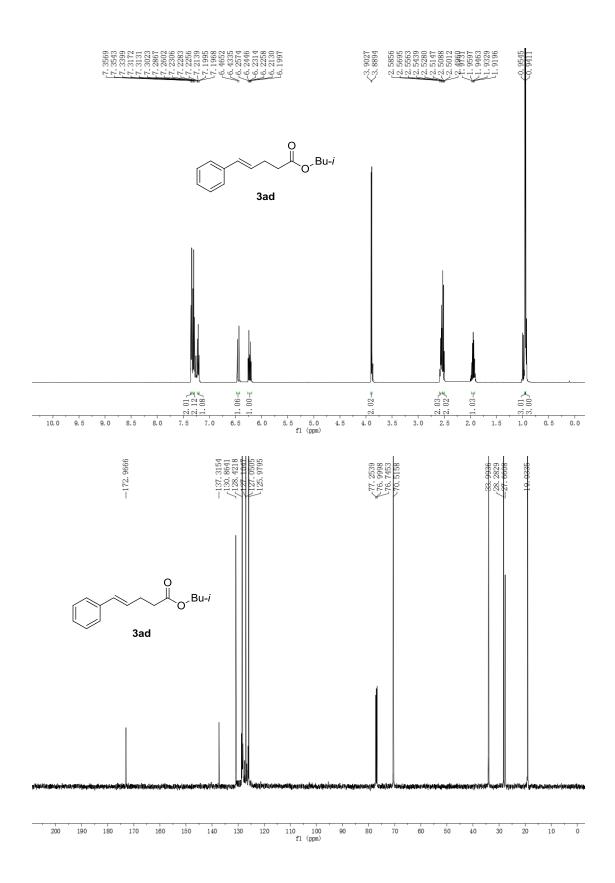
(Z)-Methyl 4-(3,3-dimethylbicyclo[2.2.1]heptan-2-ylidene)butanoate (3ib)

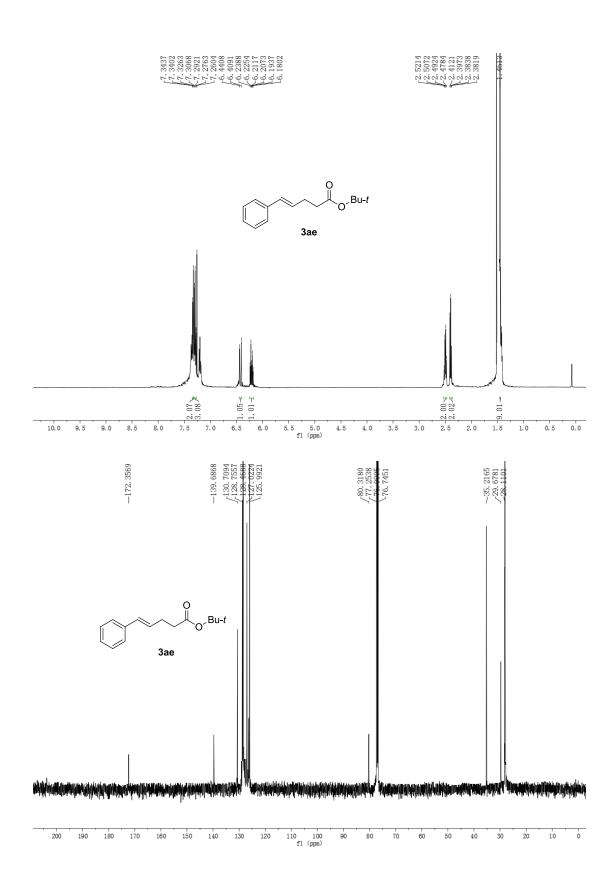
3H), 3.29-3.28 (m, 1H), 2.34-2.29 (m, 1H), 2.04-1.96 (m, 2H), 1.78-1.73 (m, 1H), 1.73-1.67 (m, 2H), 1.67-1.63 (m, 1H), 1.47-1.40 (m, 1H), 1.33-1.29 (m, 1H), 1.25-1.23 (m, 1H), 1.21-1.16 (m, 1H), 1.07 (s, 3H), 1.04 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 171.5, 168.2, 117.0, 51.3, 47.7, 43.2, 42.6, 37.4, 28.4, 28.3, 28.1, 25.3, 23.6; **APCI HRMS** exact mass calcd for $(C_{14}H_{23}O_2)^+$ requires m/z 223.16980, found m/z 233.16942.

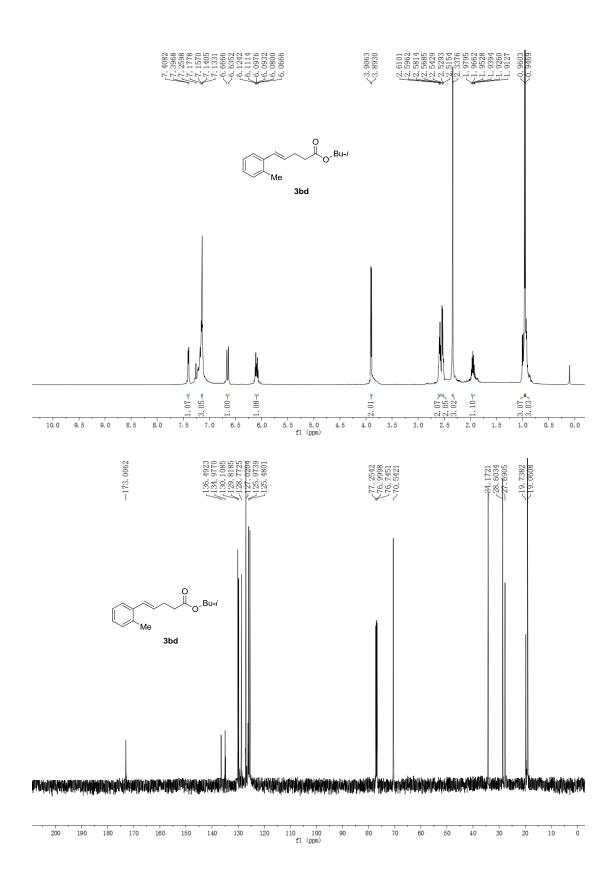

D-(E)-Ethyl 5-phenylpent-4-enoate (3aa-d)

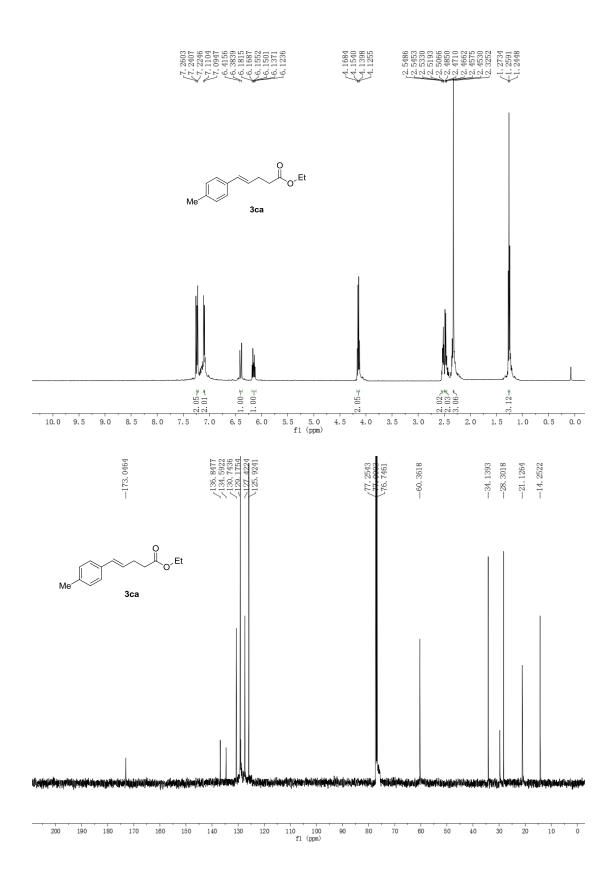

4 References

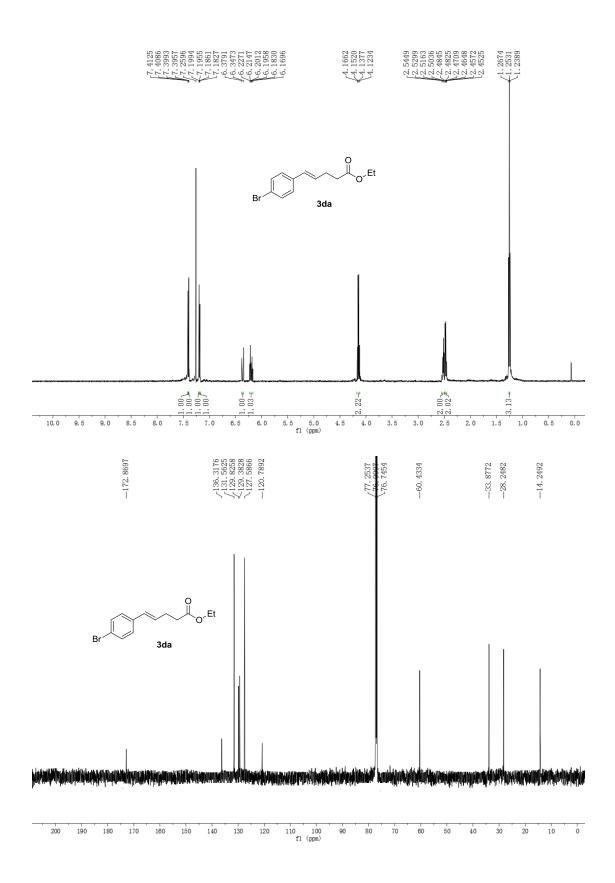

1 V. B. Phapale; M. Guisán-Ceinos; E. Buñuel; D. J. Cárdenas *Chem. Eur. J.* 2009, **15**, 12681-12688

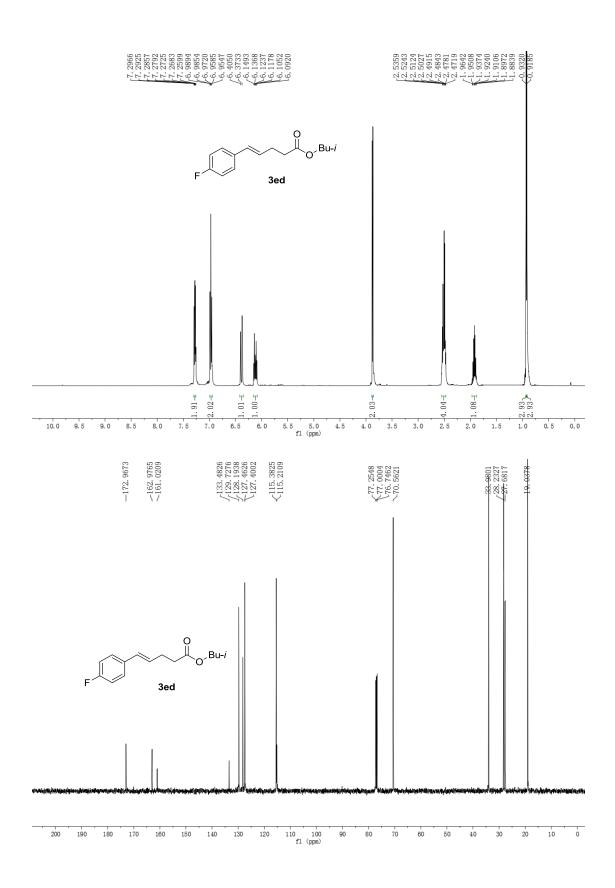

2 C. M. Thompson; J. A. Frick J. Org. Chem. 1989, 54, 890-896.

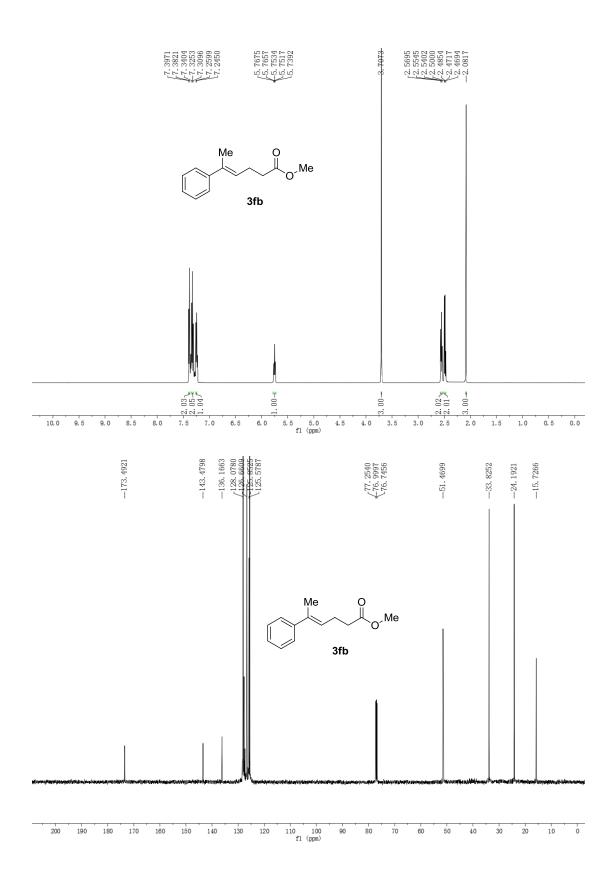

5 Copies of ¹H NMR and ¹³C NMR Spectra of Products

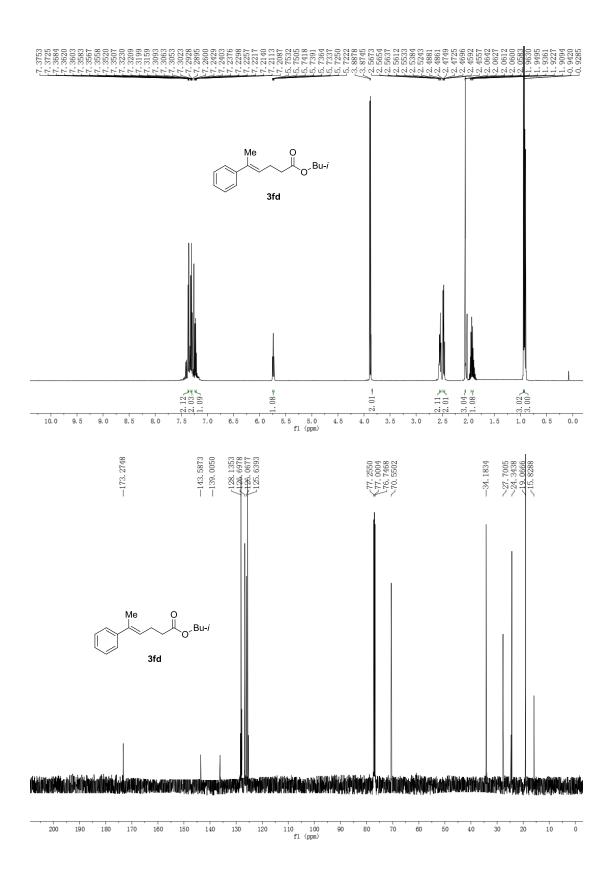


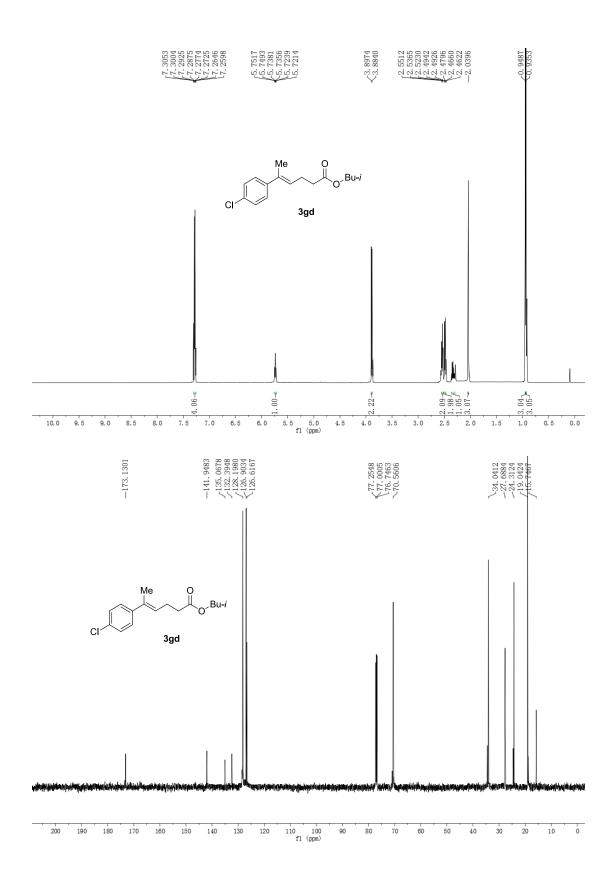


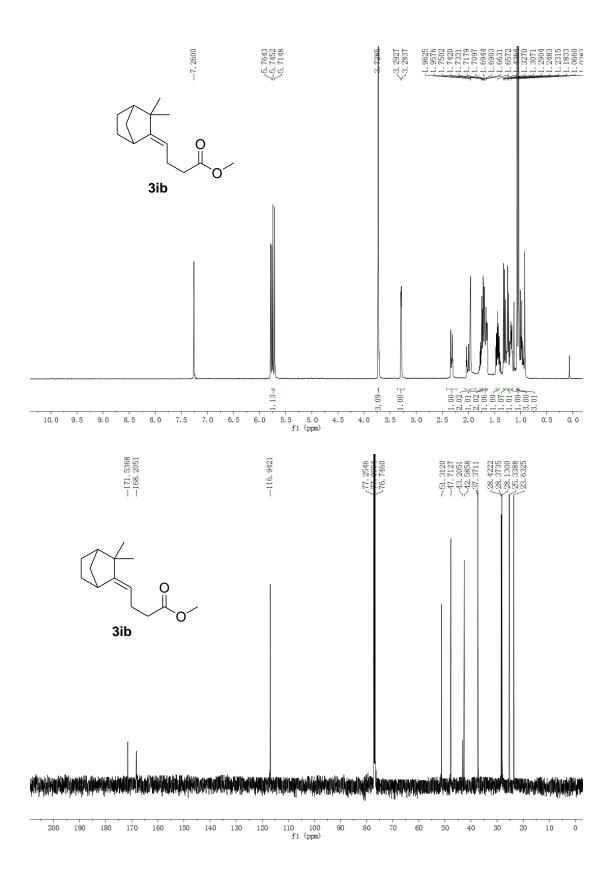


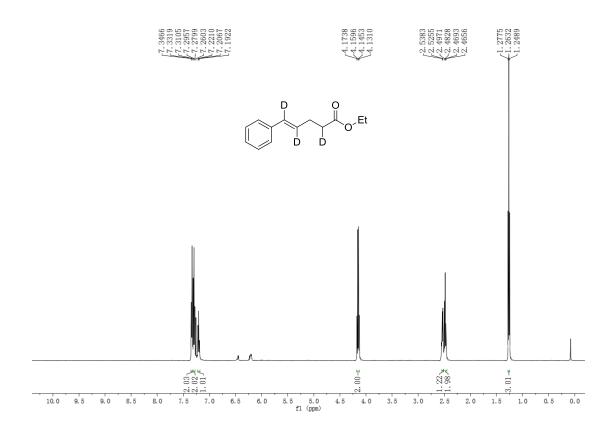


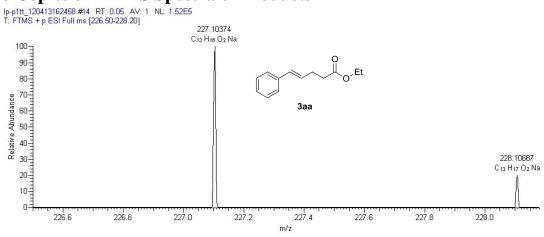


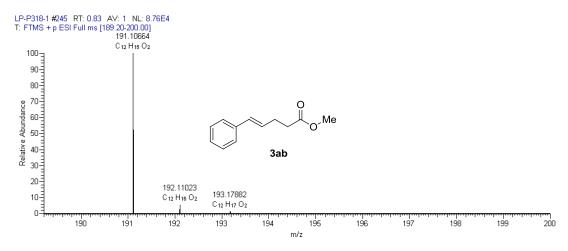


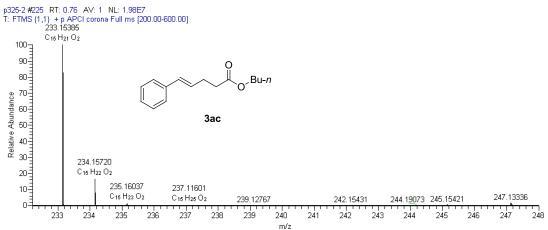


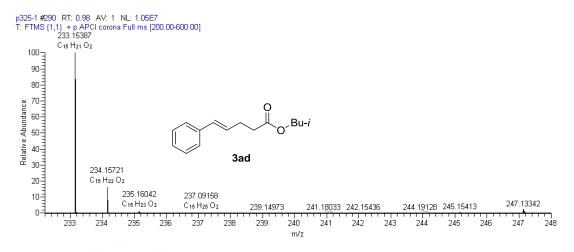


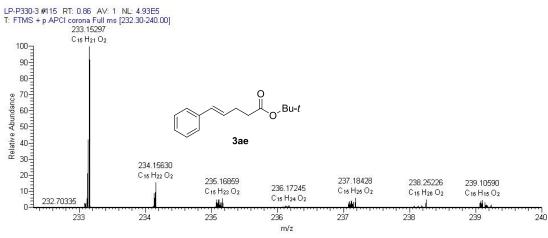











6 Copies of HRMS Spectra of Products

