Supporting Information For

Gold Catalyzed Enantioselective Intermolecular [2+3] Dipolar Cycloaddition of N-Allenyl amides with Nitrones

Guo-Hua Li,^{†, ‡} Wen Zhou, [†] Xiao-Xiao Li, [†] Qing-Wei Bi, [‡] Zhen Wang, [†] Zhi-Gang, Zhao, ^{‡,} * Wen-Xiang Hu[§] and Zili Chen^{†, *}

[†] Department of Chemistry, Renmin University of China, Beijing 100872, China

[‡] College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China

[§] Department of Chemistry, Capital Normal University, Beijing 100048, China

Email: zilichen@ruc.edu.cn, zzg63129@yahoo.com.cn

Contents

General conditions	S2
General procedure for [2+3] cycloaddition reaction	S 3
raney Ni reduction reaction of 3a	S 3
Transformation of compound 3f to 6	S4
Table S1. Optimization of the reaction conditions for the racen	nic [2 + 3] Dipolar
Cycloaddition	S5
The absolute configuration of compound (s)-3f	S6
A plausible reaction mechanism	S6
Characterization data	S7
References	S49
H ¹ NMR and C ¹³ NMR spectra	S50

General Conditions

All reactions were run under an inert atmosphere (Ar gas) with flame-dried glassware using standard techniques for manipulating air-sensitive compounds. THF and CH₂Cl₂ were obtained by fresh distilled over sodium/benzophenone or Calciumhydride respectively. Commercial reagents were used as supplied or purified by standard techniques where necessary. Column chromatography was performed using 200-300 mesh silica with the proper solvent system according to TLC analysis using KMnO₄ stain and UV light to visualize the reaction components. Unless otherwise noted, nuclear magnetic resonance spectra were recorded on 400 MHz spectrometer. NMR data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and bs = broad singlet), coupling constant in Hz and integration. Chemical shifts for ¹³C NMR spectra were recorded in parts per million from tetramethylsilane using the central peak of deuterochloroform (77.0 ppm) as the internal standard. IR spectra were recorded on an FTIR spectrometer (KBr) and reported in reciprocal centimeters (cm⁻¹). Low-resolution MS and HRMS data were obtained using ESI ionization. Mp data were measured with micro melting point apparatus.

N-allenyl amides **1a-1e** were prepared according to the published methods.¹⁻⁴ Nitrones **2a-2k** were prepared according to the published methods.⁵⁻¹¹ The chiral catalysts **L7-L14** was prepared according to the published methods.¹⁵ General Procedure for [2+3] cycloaddition reaction of *N*-allenyl amides with nitrones.

A solution of L13AuCl (2 mol%)/AgNTf $_2(5 \text{ mol}\%)$ in dry CH $_2$ Cl $_2$ (3 mL) with 100mg activated 4Å MS was stirred at room temperature for three minutes. Then, *N*-allenyl amide **1a** (32 mg, 0.1 mmol) and diphenyl nitrone **2a** (39 mg, 0.2 mmol) were added to the solution at -20 °C. The reaction mixture was stirred at -20 °C until the complete consumption of the starting material **1a** (TLC monitoring). Concentration of the reaction mixture in vacuo followed by purification through flash chromatography on silica gel column (hexane/EtOAc=10/1 as the eluent) afforded **3a** (51 mg, 99% yield) as a white solid.

To a solution of isoxazolidine **3a** (51 mg, 0.1 mmol) in EtOH (2 mL), was added Raney Ni (50% activated catalyst in H₂O, 5 x 200 μ L) in 5 portions at 0 °C. Upon completion, as indicated by TLC, the crude reaction mixture was filtered through SiO₂ and washed with EtOAc (5 mL). The combined filtrate was dried with anhydrous Na₂SO₄, and was then concentrated in vacuo. The resultant residue was purified by flash chromatography over SiO₂ (20% EtOAc/hexanes) to afford compound **4a** (51 mg, 99% yield) as a white solid. *Caution!: Raney Ni should never be left without solvent in order to prevent a spontaneous and highly exothermic reaction from occurring*.

Transformation of compound 3f to 6

Preparation of compound 5 from 3f:¹⁴

To a solution of **3f** (50mg, 0.087mmol) in THF (1.5 mL), was added Pd(PPh₃)₄ (1.7 mg, 5% equiv), PhB(OH)₂ (18.6 mg, 1.8 equiv) and 3M aqueous K₂CO₃ (1 mL). The reaction mixture was then heated at reflux for 8h. Upon completion, as indicated by TLC, the reaction mixture was cooled down to room temperature, and was then diluted with 10 mL EtOAc. The organic layer was washed with brine (5 mL) and distilled water (10 mL), and dried with anhydrous Na₂SO₄. After concentrated in vacuo, the resultant residue was purified by flash chromatography over SiO₂ (EtOAc/hexanes = 1/10) to afford compound **5** (41 mg, 92% yield) as a white solid.

Preparation of compound 6 from 6:

Following the same procedure for the reaction of 3a, the desired compound 6 can be obtained from 5 (30 mg, 0.052 mmol) as a white solid (24 mg, 81% yield).

F	$ + Ph \oplus O $	Cat. (5mol%) Ivent, (3.0 mL) rt. 1h Ph Ph Ph	F N Ts
			with a coup
	Catalyst (5 mol %)	Solvent/Time(h)	Yield $3a(\%)^{\circ}$
1	$Ph_3PAuCl/AgSbF_6(5)$	DCM/1.5	37 ^c
2	$Ph_3PAuCl/AgSbF_6(5)$	DCM/9	80
3	$Ph_3PAuCl/AgNTf_2(5)$	DCM/0.5	92
4	$Ph_{3}PAuCl/AgPF_{6}(5)$	DCM/0.5	63
5	Ph ₃ PAuCl/AgOTf (5)	DCM/0.5	77
6	$Ph_3PAuCl/AgBF_4(5)$	DCM/0.5	87
7	JohnphosAuCl/AgNTf ₂ (5)	DCM/6	< 5%
8	dppmAu ₂ Cl ₂ /AgNTf ₂ (5)	DCM/1	31
9	(IPR)AuNT f_2 , (5)	DCM/16	21
10	(SIPR)AuNTf ₂ , (5)	DCM/16	<5
11	$Au(OPh)_3Cl/AgNTf_2(5)$	DCM/1	53
12	$Ph_3PAuCl/AgNTf_2(5)$	Toluene/18	84
13	$Ph_3PAuCl/AgNTf_2(5)$	THF/18	75
14	$Ph_3PAuCl/AgNTf_2(5)$	CHCl ₃ /18	82
15	$Ph_{3}PAuCl/AgNTf_{2}(5)$	DCE/0.5	>99
16	$Ph_3PAuNTf_2(5)$	DCE/1	71
17	$AgNTf_2(5)$	DCE/24	NR
18	Ph ₃ PAuCl	DCE/24	Mixture

Table S1. Optimization of the Reaction Conditions for the Racemic [2 + 3] Dipolar Cycloaddition^a

^a Unless noted, all reactions were carried out at 0.1 mmol scale in 2 mL solvent with the addition of 5 mol % catalyst at rt. ^bIsolated yields. ^c 100 mg 4 Å MS was added.

The absolute configuration of compound (s)-3f was determined by its X-ray structure.

X-ray structure of compound 3f.

A plausible reaction mechanism for asymmetric [2+3] cycloaddition reaction of substrate 1a with 2a in the condition of chiral catalyst L13.

Characterization Data

N-(4-fluorobenzyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide 1a⁴

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* =8.2 Hz, 2H), 7.32 (d, *J* =8.1 Hz, 2H), 7.27 (dd, *J* =8.2, 5.4 Hz, 2H), 6.96 (t, *J* = 5.3 Hz, 2H), 6.81 (t, *J* = 6.2 Hz, 1H), 5.15 (d, *J* = 6.2 Hz, 2H), 4.3 (s, 2H), 2.4 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 162.1 (d, *J* = 244.3 Hz), 143.9, 135.2, 131.8, 129.7, 129.5 (d, *J* = 8.1 Hz), 127.1, 115.1 (d, *J* = 21.3 Hz), 99.9, 88.0, 49.3, 21.5.

N-benzyl-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide 1b⁴

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3Hz, 2H), 7.32 (d, *J* = 7.9Hz, 2H), 7.30 - 7.24 (m, 5H), 6.83 (t, *J* = 6.2 Hz, 1H), 5.15 (d, *J* = 6.2 Hz, 2H), 4.30 (s, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.2, 143.8, 136.2, 135.4, 129.7, 128.3, 127.8, 127.4, 127.2, 100.1, 87.9, 50.0, 21.5.

4-methyl-N-phenyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide 1c⁴

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.31 - 7.26 (m, 5H), 7.10 (t, *J* = 6.3 Hz, 1H), 7.01 - 6.98 (m, 2H), 5.02 (d, *J* = 6.3 Hz, 2H), 2.43 (S, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 143.8, 137.1, 135.2, 129.5, 129.4, 128.6, 128.5, 127.6, 102.3, 87.4, 21.5.

3-(propa-1,2-dien-1-yl)oxazolidin-2-one 1d⁴

¹H NMR (400 MHz, CDCl₃) δ 6.81 (t, J = 6.4 Hz, 1H), 5.39 (d, J = 6.3 Hz, 2H), 4.37 (t, J = 7.9 Hz, 2H), 3.56 (t, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 155.2, 96.9, 87.8, 62.3, 43.1.

2-(propa-1,2-dien-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide 1e⁴

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 1H), 7.63 (td, *J* = 7.5, 0.9 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 1H), 6.76 (t, *J* = 6.2 Hz, 1H), 5.51 (d, *J* = 6.2 Hz, 2H), 4.46 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 134.8, 133.1, 132.8, 129.2, 124.6, 121.4, 95.3, 88.6, 48.6.

(Z)-N-benzylideneaniline oxide 2a⁵

¹H NMR (400 MHz, CDCl₃) δ 8.41 - 8.38 (m, 2H), 7.92 (s, 1H), 7.78 - 7.76 (m, 2H), 7.48 - 7.47 (m, 2H); ³C NMR (100 MHz, CDCl₃) δ 149.1, 134.6, 130.9, 129.9, 129.1, 128.6, 121.7.

(Z)-N-(4-bromobenzylidene) aniline oxide 2b⁸

¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.6Hz, 2H), 7.88 (s, 1H), 7.76 - 7.73 (m, 2H), 7.59 - 7.57 (m, 2H), 7.47 - 7.46 (m, 3H), 3.80 (s, 3H), 2.70 (t, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 133.4, 131.8, 130.2, 130.1, 129.5, 129.2, 124.7, 121.6.

(Z)-N-(4-fluorobenzylidene) aniline oxide 2c⁹

¹H NMR (400 MHz, CDCl₃) δ 8.44 - 8.41 (m, 2H), 7.89 (s, 1H), 7.74 - 7.72 (m, 2H), 7.45 - 7.43 (m, 3H), 7.14 - 7.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 251.9 Hz), 148.7, 133.2, 131.2 (d, J = 8.2 Hz), 129.8, 129.0, 127.0, 121.5, 115.6(d, J = 21.6Hz).

(Z)-N-(4-methylbenzylidene) aniline oxide 2d⁹

¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.2 Hz, 2H), 7.87 (s, 1H), 7.76 - 7.74 (m, 2H), 7.45 - 7.43 (m, 3H), 7.27 - 7.25 (m, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 141.4, 134.4, 129.6, 129.2, 129.0, 127.9, 121.5, 21.6.

(Z)-N-(3-chlorobenzylidene) aniline oxide 2e⁹

¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.17 - 8.14 (m, 1H), 7.90 (s, 1H), 7.77 -

7.75 (m, 2H), 7.51 - 7.417 (m, 3H), 7.45-7.48 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 134.7, 133.1, 132.2, 130.7, 130.2, 129.8, 129.2, 128.4, 127.0, 121.7.

(Z)-N-(naphthalen-2-ylmethylene) aniline oxide 2f⁹

¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 8.06 (s, 1H), 8.02 - 7.96 (m, 2H), 7.88 (d, J = 8.6 Hz, 1H), 7.83 - 7.81 (m, 3H), 7.56 - 7.46 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 134.4, 134.3, 133.1, 129.8, 129.3, 129.1, 129.0, 128.0, 127.8, 127.6, 127.5, 126.5, 126.1, 121.6.

(Z)-N-benzylidene-2-methylaniline oxide $2g^7$

¹H NMR (400 MHz, CDCl₃) δ 8.37 - 8.34 (m, 2H), 7.57 (s, 1H), 7.49 - 7.47 (m, 3H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.36 - 7.25 (m, 3H), 2.4 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 137.5, 131.7, 131.4, 130.8, 130.4, 129.3, 128.7, 128.6, 126.7, 123.3, 17.0.

(Z)-N-benzylidene-4-methylaniline oxide 2h⁷

¹H NMR (400 MHz, CDCl₃) δ 8.39 - 8.37 (m, 2H), 7.89 (s, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.47 - 7.45(m, 3H), 7.26 - 7.24 (m, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) *δ* 146.7, 140.1, 134.0, 130.7, 129.5, 128.9, 128.5, 121.4, 21.2.

(Z)-N-benzylidene-4-chloroaniline oxide 2i¹⁰

¹H NMR (400 MHz, CDCl₃) δ 8.38 - 8.36 (m, 2H), 7.89 (s, 1H), 7.72 (d, *J* = 8.8Hz, 2H), 7.47 - 7.46 (m, 3H), 7.44 - 7.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 135.7, 134.4, 131.1, 130.3, 129.2, 129.0, 128.6, 122.9.

(Z)-N-benzylidene-4-(ethoxycarbonyl) aniline oxide 2j⁹

¹H NMR (400 MHz, CDCl₃) δ 8.42 - 8.40 (m, 2H), 8.17 (d, *J* = 8.7 Hz, 2H), 7.97 (s, 1H), 7.86 (d, *J* = 8.6 Hz, 2H), 7.50 - 7.49 (m, 3H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 151.7, 135.2, 131.7, 131.3, 130.5, 130.2, 129.2, 128.6, 121.6, 61.4, 14.2.

(Z)-N-(pyridin-2-ylmethylene) aniline oxide 2k¹¹

¹H NMR (400 MHz, CDCl₃) δ 9.32 (d, J = 8.0 Hz, 1H), 8.66 (d, J = 4.4 Hz, 1H), 8.26 (s, 1H), 7.84 - 7.78 (m, 3H), 7.47 - 7.46 (m, 3H), 7.32 - 7.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 149.7, 148.7, 136.7, 135.5, 130.4, 129.2, 124.5, 123.9, 121.6.

(S, E)-N-((2,3-diphenylisoxazolidin-4-ylidene)methyl)-N-(4-fluorobenzyl)-4-meth

ylbenzenesulfonamide 3a

Obtained as a white solid in 99% yield and 98.3% ee. $[\alpha]_D^{20} = -6.0 \ (c = 0.25); \text{ M.p.}$ 170 – 172 °C; IR (neat) 3030, 2922, 1597, 1508, 1348, 1220, 1165, 750, 696, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.33 - 7.25 (m, 7H), 7.21 (t, J =7.5 Hz, 2H), 6.96 (t, J = 7.3 Hz, 1H), 6.90 (d, J = 7.8 Hz, 2H), 6.82 - 6.73 (m, 4H), 5.69 (s, 1H), 5.53 (s, 1H), 4.63 (s, 2H), 4.30 (d, J = 14.9 Hz, 1H), 3.76 (d, J = 14.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, J = 244.5 Hz), 149.5, 144.0, 141.6, 139.3, 134.9, 130.7, 129.7, 129.4 (d, J = 8.1 Hz), 128.7, 127.9, 127.6, 127.3, 122.4, 117.9, 115.4 (d, J = 17.4 Hz), 70.2, 69.5, 52.7, 21.5. HRMS (ESI) calcd for C₃₀H₂₈FN₂O₃S [M+H]⁺ 515.1799; found, 515.1793. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3a**, t_R = 11.3 min, (*R*, *E*)-**3a**, t_R = 19.9min.

Racemic sample

R. T.	Area(%)	Area
11.396 19.987	54.04 45.96	1170073 995016

3a, 98.3% ee (Catalyst: (R, R)-L13AuCl/AgNTf₂)

(S, E)-N-((3- (4-bromophenyl)-2-phenylisoxazolidin-4ylidene)methyl)-N-(4-fluoro

Obtained as a white solid in 94% yield and 96.7% ee. $[\alpha]_D^{20} = -11.6$ (c = 0.4); M.p. 166 – 168 °C; IR (neat) 3061, 2922, 1595, 1510, 1344, 1224, 1165, 1010, 748, 567; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.35 - 7.33 (m, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.24 - 7.17 (m, 4H), 6.96 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 7.7 Hz, 2H), 6.82 (t, J = 8.6 Hz, 2H), 6.75 – 6.71 (m, 2H), 5.61 (s, 1H), 5.53 (s, 1H), 4.64 – 4.56 (m, 2H), 4.44 (d, J = 14.3 Hz, 1H), 3.53 (d, J = 14.3 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 245.5 Hz), 149.3, 144.2, 143.5, 138.3, 134.5, 131.5, 130.3, 129.8, 129.7 (d, J = 8.3 Hz), 128.8, 127.4, 122.6, 121.7, 118.3, 115.6, 115.4 (d, J = 21.5 Hz), 69.8, 69.4, 53.6, 21.6. HRMS (ESI) calcd for C₃₀H₂₇BrFN₂O₃S [M+H]⁺ 593.0904; found, 593.0902. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3b**, t_R = 6.8 min, (*R*, *E*)-**3b**, t_R = 19.7min.

	R. T.	Area(%)	Area*
L 2	6.894 19.789	50.02 49.98	3853713 3851139

3b, 96.7% ee (Catalyst: (R, R)-L13AuCl /AgNTf₂)

(*S*, *E*)-N-(4-fluorobenzyl)-N-((3-(4-fluorophenyl)-2-phenylisoxazolidin-4-ylidene)

methyl)-4-methylbenzenesulfonamide 3c

Obtained as a white solid in 91% yield and 98.1% ee. $[\alpha]_D^{20} = -9.0$ (c = 0.25); M.p. 165 – 167 °C; IR (neat) 2920, 1597, 1508, 1346, 1274, 1259, 1165, 1087, 750, 546; ¹H NMR (400 MHz, CDCl₃) δ 7.53(d, J = 8.2 Hz, 2H), 7.28 – 7.25 (m, 4H), 7.22 (t, J = 7.6 Hz, 2H), 6.97 (t, J = 7.3 Hz, 1H), 6.93 – 6.90 (m, 4H), 6.83 – 6.74 (m, 4H), 5.59 (s, 1H), 5.57 (s, 1H), 4.65 – 4.58 (m, 2H), 4.38 (d, J = 14.5 Hz, 1H), 3.63 (d, J = 14.5 Hz, 1H), 2.43(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 245.0 Hz), 149.3, 144.2, 143.2, 135.1, 134.7, 130.54, 129.8 (d, J = 4.9 Hz), 129.7, 128.8, 127.4, 122.6, 118.2, 115.6, 115.4 (d, J = 12.0 Hz), 115.3, 115.2, 69.7, 69.4, 53.8, 21.5. HRMS (ESI) calcd for C₃₀H₂₇F₂N₂O₃S [M+H]⁺ 533.1705; found, 533.1708. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3c**, t_R = 6.3 min, (*R*, *E*)-**3c**, t_R = 12.0min.

3c, 98.1% ee (Catalyst: (*R*, *R*)-L13AuCl /AgNTf₂)

(*S*, *E*)-N-(4-fluorobenzyl)-4-methyl-N-((2-phenyl-3-(p-tolyl)isoxazolidin-4-ylide ne)methyl)benzenesulfonamide 3d

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Obtained as a white solid in 99% yield and 97.4% ee. $[\alpha]_D^{20} = -2.6$ (c = 0.25); M.p. 142 – 144 °C; IR (neat) 2922, 1597, 1510, 1348, 1220, 1165, 1089, 815, 750, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.22 – 7.17 (m, 4H), 7.05 (d, J = 7.9 Hz, 2H), 6.95 (t, J = 7.3 Hz, 1H), 6.89 (d, J = 7.8 Hz, 2H), 6.79 – 6.77 (m, 4H), 5.70 (s, 1H), 5.46 (s, 1H), 4.62 (s, 2H), 4.32 (d, J = 15.0 Hz, 1H), 3.76 (d, J = 14.9 Hz, 1H), 2.42 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 244.0 Hz), 149.6, 144.0, 141.5, 137.3, 136.4, 135.1, 130.9, 129.7, 129.5 (d, J = 8.0 Hz), 129.2, 128.7, 127.9, 127.3, 122.3, 117.8, 115.5, 115.3 (d, J = 21.5 Hz), 115.2, 70.1, 69.6, 52.7, 21.5, 21.1. HRMS (ESI) calcd for C₃₁H₃₀FN₂O₃S [M+H]⁺ 529.1955; found, 529.1960. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3d**, t_R = 16.1 min, (*R*, *E*)-**3d**, t_R = 28.1 min.

	R. T.	Area(%)	Area*
2	16.103 28.148	49.35 50.65	6613062 6787278

3d, 97.4% ee (Catalyst: (R, R)-L13AuCl /AgNTf₂)

(*S*, *E*)-N-benzyl-N-((2,3-diphenylisoxazolidin-4-ylidene)methyl)-4-methylbe nzenesulfonamide 3e

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Obtained as a white solid in 99% yield and 99.1% ee. $[\alpha]_D^{20} = +18.6 (c = 0.25);$ M.p. 132 – 134 °C; IR (neat) 3030, 2920, 1597, 1490, 1348, 1168, 1089, 750, 694, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.2 Hz, 2H), 7.28 – 7.20 (m, 7H), 7.17 – 7.09 (m, 5H), 6.90 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 7.7 Hz, 4H), 5.80 (s, 1H), 5.44 (s, 1H), 4.57 (s, 2H), 4.29 (d, J = 15.2 Hz, 1H), 3.84 (d, J = 15.2 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 143.9, 139.6, 139.3, 135.3, 135.2, 129.7, 128.8, 128.7, 128.6, 128.0, 127.6, 127.3, 122.4, 118.2, 115.5, 70.0, 69.7, 53.0, 21.5. HRMS (ESI) calcd for C₃₀H₂₉N₂O₃S [M+H]⁺ 497.1893; found, 497.1895. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3e**, t_R = 9.1 min, (*R*, *E*)-**3e**, t_R = 12.6 min.

Racemic sample

R.T.	Area(%)	Area
8. 123 12. 688	49. 95 50. 05	2176856 2181308

3e, 99.1% ee (Catalyst: (R, R)-L13AuCl /AgNTf₂)

\mathbf{mV}					
560.	8.036'-				
420-			R.T.	Area(%)	Area
140.	12.553-	1	8.036	99.57 0.4292	9797066 42231
O+'	2_{ψ} 4_{ψ} 6_{ψ} 8_{ψ} 10_{ψ} 12_{ψ} 14_{ψ} 16 18_{ψ} min	2	12.000	0. 1202	12201

(*S*, *E*)-N-benzyl-N-((3-(4-bromophenyl)-2-phenylisoxazolidin-4-ylidene)methyl) -4-methylbenzenesulfonamide 3f

Obtained as a white solid in 98% yield and 98.3% ee. $[\alpha]_D^{20} = -4.2$ (c = 0.25); M.p. 188 – 190 °C; IR (neat) 2926, 1595, 1487, 1348, 1274, 1165, 1025, 750, 694, 547; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.32 – 7.27 (m, 4H), 7.24 – 7.14 (m, 7H), 6.96 (t, J = 7.3 Hz, 1H), 6.88 (d, J = 7.6 Hz, 2H), 6.81 (d, J = 7.3 Hz, 2H), 5.64 (s, 1H), 5.62 (s, 1H), 4.63 – 4.56 (m, 2H), 4.50 (d, J = 14.5 Hz, 1H), 3.62 (d, J = 14.6 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 144.1, 141.8, 138.4, 134.7, 131.5, 129.8, 128.8, 128.6, 127.9, 127.8, 127.4, 122.6, 118.6, 115.6, 69.5, 54.0, 21.6. HRMS (ESI) calcd for C₃₀H₂₈BrN₂O₃S [M+H]⁺ 575.0998; found, 575.1010. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3f**, t_R = 7.3 min, (*R*, *E*)-**3f**, t_R = 21.2 min.

Racemic sample

3f, 98.3% ee (Catalyst: (*R*, *R*)-L13AuCl/AgNTf₂)

m∨ 300-	7.337'										
240.											
180-									R.T.	Area(%)	Area
120-											
60+								1	7.337	99.19	4893578
0	 9	12.	15.	18.	21.035	24	27- min-	2	21.035	0.8091	39916

(*S*, *E*)-N-benzyl-N-((3-(4-fluorophenyl)-2-phenylisoxazolidin-4-ylidene)methyl) -4-methylbenzenesulfonamide 3g

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Obtained as a white solid in 88% yield and 98.8% ee. $[\alpha]_D{}^{20} = + 3.6 (c = 0.25);$ M.p. 174 – 176 °C; IR (neat) 2922, 1597, 1508, 1348, 1220, 1167, 1089, 754, 694, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.1 Hz, 2H), 7.28 – 7.14 (m, 9H), 6.96 (t, J = 7.3 Hz, 1H), 6.92 – 6.88 (m, 4H), 6.85 (d, J = 7.4 Hz, 1H), 5.70 (s, 1H), 5.62 (s, 1H), 4.61 (s, 2H), 4.47 (d, J = 14.7 Hz, 1H), 3.71 (d, J = 14.7 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, J = 244.3 Hz), 149.4, 144.1, 141.3, 135.3, 134.9, 129.8, 129.7 (d, J = 8.1 Hz), 128.8, 128.6, 127.9, 127.7, 127.4, 122.5, 118.4, 115.6, 115.3 (d, J = 21.3 Hz), 69.5, 69.4, 53.8, 21.5. HRMS (ESI) calcd for C₃₀H₂₈FN₂O₃S [M+H]⁺ 515.1799; found, 515.1800. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3g**, t_R = 6.8 min, (*R*, *E*)-**3g**, t_R = 12.1 min.

Racemic sample

3g, 98.8% ee (Catalyst: (*R*, *R*)-L13AuCl /AgNTf₂)

(*S*, *E*)-N-benzyl-4-methyl-N-((2-phenyl-3-(p-tolyl)isoxazolidin-4-ylidene)methyl) benzenesulfonamide 3h

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Obtained as a white solid in 99% yield and 97.7% ee. $[\alpha]_D^{20} = +14.0 \ (c = 0.25); \text{ M.p.}$ 158 – 159 °C; IR (neat) 3028, 2920, 1595, 1487, 1346, 1274, 1165, 1029, 750, 547; ¹H NMR (400 MHz, CDCl₃) δ 7.55(d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 7.22 – 7.14 (m, 7H), 7.06 (d, J = 7.9 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 7.2 Hz, 2H), 6.81 (d, J = 7.8 Hz, 2H), 5.88(s, 1H), 5.41 (s, 1H), 4.60 (s, 2H), 4.35 (d, J = 15.3Hz, 1H), 3.89 (d, J = 15.3 Hz, 1H), 3.89 (d, J = 15.3 Hz 1H), 2.43 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 143.8, 138.9, 137.2, 136.6, 135.4, 135.3, 129.7, 129.2, 128.7, 128.5, 127.8, 127.5, 127.3, 122.2, 117.9, 115.5, 69.7, 52.8, 21.5, 21.1. HRMS (ESI) calcd for C₃₁H₃₁N₂O₃S [M+H]⁺ 511.2049; found, 511.2060. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3h**, t_R = 6.5 min, (*R*, *E*)-**3h**, t_R = 13.1 min.

Racemic sample

3h, 97.7% ee (Catalyst: (R, R)-L13AuCl /AgNTf₂)

(*S*, *E*)-N-benzyl-N-((3-(3-chlorophenyl)-2-phenylisoxazolidin-4-ylidene)methyl)-4 -methylbenzenesulfonamide 3i

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Obtained as a white solid in 99% yield and 96.7% ee. $[\alpha]_D^{20} = -4.4$ (c = 0.25); M.p. 160 – 162 °C; IR (neat) 3062, 2922, 1595, 1490, 1348, 1213, 1165, 1089, 763, 547; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.31 - 7.24 (m, 4H), 7.23 - 7.13 (m, 7H), 6.96 (t, J = 7.3 Hz, 1H), 6.86 (d, J = 7.8 Hz, 2H), 6.82 (d, J = 7.2 Hz, 2H), 5.74 (s, 1H), 5.58 (s, 1H), 4.59 (s, 2H), 4.44 (d, J = 14.8 Hz, 1H), 3.74 (d, J = 14.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 144.1, 141.5, 140.1, 134.8, 134.7, 134.4, 129.8, 129.6, 128.8, 128.6, 128.0, 127.9, 127.8, 127.7, 127.3, 126.4, 122.5, 118.6, 115.5, 69.5, 69.4, 53.6, 21.5. HRMS (ESI) calcd for C₃₀H₂₈ClN₂O₃S [M+H]⁺ 531.1503; found, 513.1499. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3i**, t_R = 5.6 min, (*R*, *E*)-**3i**, t_R = 8.3 min.

Racemic sample

3i, 96.7% ee (Catalyst: (*R*, *R*)-L13AuCl /AgNTf₂)

(*S*, *E*)-N-(4-fluorobenzyl)-N-((3-(3-chlorophenyl)-2-phenylisoxazolidin-4ylidene)methyl)-4-methylbenzenesulfonamide 3j

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Obtained as a white solid in 95% yield and 97.7% ee. $[\alpha]_D^{20} = -10.8 \ (c = 0.25); \text{ M.p.}$ 183 – 185 °C; IR (neat) 3622, 3026, 1595, 1510, 1348, 1274, 1165, 750, 692, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.2 Hz, 2H), 7.30 - 7.28 (m, 2H), 7.26 – 7.16 (m, 6H), 6.97 (t, J = 7.3 Hz, 1H), 6.92 (d, J = 7.8 Hz, 2H), 6.80 - 6.74 (m, 4H), 5.63 (s, 1H), 5.59 (s, 1H), 4.61 (s, 2H), 4.41 (d, J = 14.5 Hz, 1H), 3.62 (d, J = 14.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 245.1 Hz), 149.2, 144.2, 142.5, 141.4, 134.5, 134.3, 130.4, 129.8, 129.5 (d, J = 7.9 Hz), 128.8, 128.0, 127.8, 127.3, 126.4, 122.6, 118.4, 115.5, 115.4 (d, J = 21.3 Hz), 69.6, 69.3, 53.3, 21.5. HRMS (ESI) calcd for C₃₀H₂₇CIFN₂O₃S [M+H]⁺ 549.1420; found, 549.1421. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3j**, t_R = 5.3 min, (*R*, *E*)-**3j**, t_R = 8.3 min.

Racemic sample

	R.T.	Area(%)	Area
1 2	5. 308 8. 353	50.35 49.65	1096149 1081011

3j, 97.7% ee (Catalyst: (*R*, *R*)-L13AuCl /AgNTf₂)

(S, E)-N-benzyl-4-methyl-N-((3-(naphthalen-2-yl)-2-phenylisoxazolidin-4-

ylidene)methyl)benzenesulfonamide 3k

Obtained as a white solid in 92% yield and 98.9% ee. $[\alpha]_D^{20} = -3.6 \ (c = 0.25); \text{ M.p.}$ 158 – 160 °C; IR (neat) 3059, 2920, 1597, 1489, 1348, 1165, 1089, 1028, 734, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.83 (m, 1H), 7.76 – 7.72 (m, 3H), 7.57 (d, J =8.2 Hz, 2H), 7.51-7.48 (m, 3H), 7.23 (d, J = 8.1 Hz, 2H), 7.21 – 7.17 (m, 2H), 7.08 (t, J = 7.4Hz, 1H), 6.97 – 6.87 (m, 5H), 6.71 (d, J = 7.4 Hz, 1H), 5.90 (s, 1H), 5.70 (s, 1H), 4.73 – 4.66 (m, 2H), 4.38 (d, J = 15.1 Hz, 1H), 3.77 (d, J = 15.1 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 143.9, 137.0, 135.1, 134.9, 132.9, 129.7, 128.7, 128.3, 128.1, 127.5, 127.4, 127.3, 127.2, 127.0, 126.0, 125.9, 122.3, 118.3, 115.5, 70.1, 69.8, 53.0, 21.5. HRMS (ESI) calcd for C₃₄H₃₁N₂O₃S [M+H]⁺ 547.2049; found, 547.2054. Enantioselectivity determined by chiral HPLC analysis, Chiralpak OD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3k**, t_R = 10.3 min, (*R*, *E*)-**3k**, t_R = 14.1 min.

	R.T.	Area(%)	Area
1 2	10. 533 14. 158	49. 45 50. 55	21889803 22376795

3k, 98.9% ee (Catalyst: (R, R)-L13AuCl /AgNTf₂)

(S, E)-N-(4-fluorobenzyl)-4-methyl-N-((3-(naphthalen-2-yl)-2-phenylisoxazolidin

-4-ylidene)methyl)benzenesulfonamide 3m

Obtained as a white solid in 92% yield and 92.1% ee. $[\alpha]_D^{20} = -13.8 (c = 0.25);$ M.p. 169 – 171 °C; IR (neat) 3423, 3059, 2905, 1508, 1346, 1222, 1165, 1089, 742, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.83 (m, 1H), 7.77 – 7.72 (m, 3H), 7.56 (d, J = 8.2 Hz, 2H), 7.53 -7.47 (m, 3H), 7.24 – 7.20 (m, 3H), 6.97 - 6.95(m, 3H), 6.58 (d, J = 5.4 Hz, 1H), 6.57 (d, J = 5.3 Hz, 1H), 6.44 (t, J = 8.6 Hz, 2H), 5.77 (s, 1H), 5.68 (s, 1H), 4.71 (s, 2H), 4.34 (d, J = 14.7 Hz, 1H), 3.58 (t, J = 14.7 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, J = 244.7 Hz), 149.7, 144.1, 142.3, 136.8, 134.8, 133.3, 133.0, 130.4, 129.4 (d, J = 8.1 Hz), 128.8, 128.4, 128.1, 127.6, 127.3, 127.2, 126.1, 125.9, 122.4, 118.2, 115.5, 115.1 (d, J = 21.4 Hz), 70.6, 69.7, 53.1, 21.5. HRMS (ESI) calcd for C₃₄H₃₀FN₂O₃S [M+H]⁺ 565.1955; found, 565.1964. Enantioselectivity determined by chiral HPLC analysis, Phenomenex-Lux, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3m**, t_R = 16.5 min, (*R*, *E*)-**3m**, t_R = 27.4 min.

 mV
 16.503'

 40
 27,476'

 20
 0

12

16 20

	R.T.	Area(%)	Area	
1 2	16.503 27.476	48.38 51.62	2896902 3090540	

3m, 92.1% ee (Catalyst: (R, R)-L13AuCl/AgNTf₂)

28

32

24

40

36

(R, E)-N-benzyl-4-methyl-N-((2-phenyl-3-(pyridin-2-yl)isoxazolidin-4-ylidene)me

thyl)benzenesulfonamide 3n

Obtained as a yellow oil in 30% yield and 63.0% ee. $[\alpha]_D^{20} = -10.0 \ (c = 0.25)$; IR (neat) 2924, 1475, 1346, 1274, 1165, 1091, 1047, 750, 694, 543; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 4.6 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 7.63 (td, J = 7.7, 1.6 Hz, 1H), 7.37 (t, J = 8.1 Hz, 4H), 7.32 (s, 1H), 7.25-7.19 (m, 4H), 7.15-7.10 (m, 2H), 6.91 (t, J = 7.3 Hz, 1H), 6.74 (s, 1H), 6.64 (d, J = 7.7 Hz, 2H), 5.14(s, 1H), 5.07 (s, 1H), 4.98 (s, 1H), 4.45 (d, J = 16.1 Hz, 1H), 4.29 (d, J = 16.2 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 149.1, 147.9, 147.7, 143.7, 137.3, 137.1, 136.7, 129.4, 128.5, 128.1, 128.0, 127.9, 127.1, 122.9, 122.4, 122.0, 116.1, 113.6, 87.8, 72.2, 48.2, 21.5. HRMS (ESI) calcd for C₂₉H₂₈N₃O₃S [M+H]⁺ 498.1845; found, 498.1848. Enantioselectivity determined by chiral HPLC analysis, Chiralpak OD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3n**, t_R = 5.8 min, (*R*, *E*)-**3n**, t_R = 9.0 min.

Racemic sample

	R.T.	Area(%)	Area	
1 2	5.811 9.045	48.33 51.67	17336698 18537333	

3n, 63.0% ee (Catalyst: (*R*, *R*)-L13AuCl /AgNTf₂)

mV														
900												ЪΤ	A res(0/)	Area
600					9.197							K.I.	Alea(%)	Alea
300			5.908		\bigwedge						1	5.908	18.5	3390725
0	2	4.	6	8	10	1.2.	14	16	18 m	in	2	9.197	81.5	14938024

(*S*, *E*)-N-(4-fluorobenzyl)-4-methyl-N-((3-phenyl-2-(p-tolyl)isoxazolidin-4ylidene)methyl)benzenesulfonamide 30

Obtained as a pale yellow solid in 96% yield and 97.2% ee. $[\alpha]_D^{20} = + 6.0 (c = 1)$; M.p. 163 – 165 °C; IR (neat) 3030, 2922, 1604, 1508, 1348, 1222, 1165, 1089, 750, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.0 Hz, 2H), 7.29 -7.25 (m, 7H), 7.01 (d, J = 8.2 Hz, 2H), 6.81 - 6.73 (m, 6H), 5.72 (s, 1H), 5.47 (s, 1H), 4.61 (s, 2H), 4.30 (d, J = 14.9 Hz, 1H), 3.75 (d, J = 14.9 Hz, 1H), 2.43 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, J = 249.2 Hz), 147.1, 144.0, 141.6, 139.4, 135.0, 134.1, 134.0, 132.0, 129.7, 129.4 (d, J = 8.1 Hz), 129.2, 128.5, 128.0, 127.6, 127.3, 117.8, 115.9, 115.3 (d, J = 21.4 Hz), 70.4, 69.5, 52.6, 21.5, 20.5. HRMS (ESI) calcd for C₃₁H₃₀FN₂O₃S [M+H]⁺ 529.1955; found, 529.1958. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**30**, t_R = 9.7 min, (*R*, *E*)-**30**, t_R = 14.8 min.

Racemic sample

30, 97.2% ee (Catalyst: (R, R)-L13AuCl/AgNTf₂)

(S, E)-N-((2-(4-chlorophenyl)-3-phenylisoxazolidin-4-ylidene)methyl)-N-(4-

fluorobenzyl)-4-methylbenzenesulfonamide 3p

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Obtained as a pale yellow solid in 83% yield and 96.8% ee. $[\alpha]_D^{20} = -2.0 \ (c = 0.25);$ M.p. 153 – 155 °C; IR (neat) 2924, 1597, 1510, 1487, 1348, 1222, 1672, 1091, 746, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.1 Hz, 2H), 7.29 - 7.26 (m, 7H), 7.16 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.77 (t, J = 8.6 Hz, 2H), 6.73 – 6.69 (m, 2H), 5.61 (s, 1H), 5.52 (s, 1H), 4.61 (s, 2H), 4.29 (d, J = 14.5 Hz, 1H), 3.69 (d, J =14.6 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 244.9 Hz), 148,2, 144.2, 142.4, 138.9, 134.7, 130.6, 129.8, 129.6 (d, J = 8.1 Hz), 128.7, 128.6, 128.0, 127.8, 127.5, 127.4, 118.2, 116.9, 115.4 (d, J = 21.4 Hz), 70.4, 69.5, 53.1, 21.6. HRMS (ESI) calcd for C₃₀H₂₇ClFN₂O₃S [M+H]⁺ 549.1405; found, 549.1411. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3p**, t_R = 8.9 min, (*R*, *E*)-**3p**, t_R = 12.0 min.

Racemic sample

3p, **96.8%** ee (Catalyst: (*R*, *R*)-L13AuCl/AgNTf₂)

(*S*, *E*)-ethyl 4-(4-((N-(4-fluorobenzyl)-4-methylphenylsulfonamido)methylene)-3phenylisoxazolidin-2-yl) benzoate 3q Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Obtained as a white solid in 45% yield and 96.7% ee. $[\alpha]_D^{20} = + 18.2 \ (c = 0.25);$ M.p. 138 – 140 °C; IR (neat) 2980, 1707, 1602, 1508, 1623, 1165, 1222, 1165, 1107, 742, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.34 – 7.26 (m, 7H), 6.92 (d, J = 8.8 Hz, 2H), 6.75 (t, J = 8.6 Hz, 2H), 6.70 – 6.66 (m, 2H), 5.69 (s, 1H), 5.55 (s, 1H), 4.63 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 4.27 (d, J = 14.6 Hz, 1H), 3.68 (d, J = 14.4 Hz, 1H), 2.42 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 162.1 (d, J = 231.8 Hz), 153.1, 144.1, 143.0, 138.7, 134.6, 130.6, 130.4, 129.8, 129.6 (d, J = 8.1 Hz), 128.6, 127.9, 127.8, 127.3, 123.7, 118.2, 115.3 (d, J = 21.3 Hz), 114.1, 69.7, 69.6, 60.5, 53.2, 21.5, 14.3. HRMS (ESI) calcd for C₃₃H₃₂FN₂O₅S [M+H]⁺ 587.2010; found, 587.2014. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3q**, t_R = 9.2 min, (*R*, *E*)-**3q**, t_R = 17.1 min.

	R.T.	Area(%)	Area
1 2	9. 251 17. 185	49. 18 50. 82	26134594 27008637

3q, 96.7% ee (Catalyst: (*R*, *R*)-L13AuCl/AgNTf₂)

(*S*, *E*) -N-(4-fluorobenzyl)-4-methyl- N-((3-phenyl-2-(o-tolyl)isoxazolidin- 4ylidene)methyl)benzenesulfonamide 3r

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Obtained as a white solid in 72% yield and 93.9% ee. $[\alpha]_D^{20} = -16.2 \ (c = 0.25); \text{ M.p.}$ 140 – 142 °C; IR (neat) 3062, 2924, 1600, 1510, 1348, 1222, 1160, 815, 750, 547; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 7.22 – 7.20 (m, 5H), 7.09 – 6.98 (m, 4H), 6.84 – 6.77 (m, 4H), 5.71 (s, 1H), 5.28 (s, 1H), 4.72 (d, J = 12.0 Hz, 1H), 4.63 (q, J = 12.0 Hz, 1H), 4.23 (d, J = 14.8 Hz, 1H), 3.68 (d, J = 14.8 Hz, 1H), 2.44 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 244.5 Hz), 147.1, 143.9, 143.5, 138.5, 135.0, 131.2, 130.9, 130.8, 129.7, 129.6 (d, J = 8.1 Hz), 128.2, 128.0, 127.5, 127.3, 125.8, 124.8, 118.1, 117.7, 115.3 (d, J = 21.4 Hz), 69.9, 69.05, 52.9, 21.5, 18.6. HRMS (ESI) calcd for C₃₁H₃₀FN₂O₃S [M+H]⁺529.1955; found, 529.1961. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3r**, t_R = 7.8 min, (*R*, *E*)-**3r**, t_R = 10.3 min.

3r, 93.9% ee (Catalyst: (R, R)-L13AuCl/AgNTf₂)

(*S*, *E*)-N-((2,3-diphenylisoxazolidin-4-ylidene)methyl)-4-methyl-N-phenyl benzenesulfonamide 3s

Obtained as a pale yellow solid in 88% yield and 94.4% ee. $[\alpha]_D^{20} = + 38.0 \ (c = 0.25);$ M.p. 179 – 181 °C; IR (neat) 2922, 2854, 1595, 1487, 1354, 1166, 1089, 763, 694, 569; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.2 Hz, 2H), 7.19 – 7.13 (m, 6H), 7.11 – 7.01 (m, 7H), 6.83 (t, J = 7.3 Hz, 1H), 6.67 – 6.65 (m, 3H), 6.61 (s, 1H), 6.59 (s, 1H), 4.60 (s, 2H), 4.53 (s, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 144.1, 138.5, 138.1, 134.6, 131.7, 129.5, 128.9, 128.7, 128.2, 128.0, 127.6, 127.5, 122.3, 120.0, 115.2, 69.5, 69.2, 21.5. HRMS (ESI) calcd for C₂₉H₂₇N₂O₃S [M+H]⁺ 483.1736; found, 483.1746. Enantioselectivity determined by chiral HPLC analysis, Chiralpak OD-H, rt, (Hexane - iPrOH = 90: 10, 1.0 ml/min). (*S*, *E*)-**3s**, t_R = 22.08 min, (*R*, *E*)-**3s**, t_R = 26.4 min.

3s, 94.4% ee (Catalyst: (*R*, *R*)-L13AuCl/AgNTf₂)

(*S*, *E*)-2-((2,3-diphenylisoxazolidin-4-ylidene)methyl)-2,3-dihydrobenzo[d]iso thiazole 1,1-dioxide 3t

Obtained as a white solid in 97% yield and 86.1% ee. $[\alpha]_D^{20} = -22.0 \ (c = 0.25); \text{ M.p.}$ 187 – 189 °C; IR (neat) 3442, 2920, 1687, 1597, 1487, 1305, 1170, 1029, 750, 567; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.5 Hz, 1H), 7.59 – 7.50 (m, 4H), 7.31 – 7.26 (m, 5H), 7.21 (d, J = 7.5 Hz, 1H), 7.13 (d, J = 7.8 Hz, 2H), 6.99 (t, J = 6.9 Hz, 1H), 6.12 (s, 1H), 5.77 (s, 1H), 4.81 (s, 2H), 4.16 (d, J = 13.6 Hz, 1H), 3.74 (d, J =13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 145.4, 140.0, 133.9, 132.9, 132.8, 129.2, 128.9, 128.5, 127.8, 127.7, 124.3, 122.7, 121.5, 115.5, 113.8, 70.8, 68.9, 50.8. HRMS (ESI) calcd for C₂₃H₂₁N₂O₃S [M+H]⁺ 405.1267; found, 405.1271. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 30: 70, 1.0 ml/min). (*R*, *E*)-**3t**, t_R = 10.8 min, (*S*, *E*)-**3t**, t_R = 17.2 min.

(*S*, *E*)-2-((3-(4-bromophenyl)-2-phenylisoxazolidin-4-ylidene)methyl)-2,3-dihy drobenzo[d]isothiazole 1,1-dioxide 3u

Obtained as a white solid in 85% yield and 97.7% ee. $[\alpha]_D^{20} = -12.0 \ (c = 0.25); \text{ M.p.}$ 225 - 227 °C; IR (neat) 2920, 1593, 1487, 1305, 1261, 1170, 1010, 750, 694, 552; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.6 Hz, 1H), 7.63 - 7.53 (m, 2H), 7.45 - 7.38 (m, 4H), 7.30 – 7.26 (m, 3H), 7.10 (d, J = 7.8 Hz, 2H), 7.00 (d, J = 7.3 Hz, 1H), 6.06 (s, 1H), 5.76 (s, 1H), 4.82 (s, 2H), 4.20 (d, J = 13.6 Hz, 1H), 3.81 (d, J = 13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 146.2, 133.2, 132.7, 131.6, 129.7, 129.6, 129.4, 129.1, 127.9, 126.0, 124.5, 122.9, 121.6, 115.6, 114.4, 70.1, 68.8, 51.1. HRMS (ESI) calcd for C₂₃H₂₀BrN₂O₃S [M+H]⁺ 483.0372; found, 483.0373. Enantioselectivity determined by chiral HPLC analysis, Chiralpak OD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3u**, t_R = 14.7 min, (*R*, *E*)-**3u**, t_R = 16.2 min.

Racemic sample

\underline{mV}										7 —			
90											R.T.	Area(%)	Area
60													
30					14.474	5.251				1	14.474	40.94	628081
0		A4								2	16.251	59.06	906137
	3	6	9	12	15	18	21	24	27 mi	n			

3u, 97.7% ee (Catalyst: (*R*, *R*)- L9AuCl /AgNTf₂)

(*S*, *E*)-2-((3-(3-chlorophenyl)-2-phenylisoxazolidin-4-ylidene)methyl)-2,3-dihy drobenzo[d]isothiazole 1,1-dioxide 3v

Obtained as a pale yellow solid in 68% yield and 93.5% ee. $[\alpha]_D{}^{20} = -58.6 \ (c = 0.25);$ M.p. 98 – 100 °C; IR (neat) 3061, 2922, 1593, 1489, 1305, 1170, 1132, 758, 694, 567; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1H), 7.63 – 7.53 (m, 3H), 7.44 (d, J = 7.0 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.22 – 7.18 (m, 2H), 7.11 (d, J = 7.8 Hz, 2H), 7.01 (t, J = 7.3 Hz, 1H), 6.07 (s, 1H), 5.80 (s, 1H), 4.79 (s, 2H), 4.22 (d, J = 13.6 Hz, 1H), 3.81 (d, J = 13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 146.3, 133.1, 129.6, 129.4, 129.0, 128.0, 127.9, 126.0, 124.4, 122.9, 121.6, 115.5, 114.4, 70.1, 68.7, 51.1. HRMS (ESI) calcd for $C_{23}H_{20}ClN_2O_3S$ [M+H]⁺ 439.0877; found, 439.0878. Enantioselectivity determined by chiral HPLC analysis, Chiralpak OD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3v**, t_R = 12.4 min, (*R*, *E*)-**3v**, t_R = 13.8 min.

Racemic sample

3v, 93.5% ee (Catalyst: (R, R)-L9AuCl/AgNTf₂)

(S, E)-3-((2,3-diphenylisoxazolidin-4-ylidene)methyl)oxazolidin-2-one 3w

Obtained as a white solid in 91% yield and 55.4% ee. $[\alpha]_D^{20} = +60.0 \ (c = 0.25); \text{ M.p.}$ 164 – 166 °C; IR (neat) 2920, 1751, 1697, 1415, 1247, 1085, 1037, 738, 698, 540; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.2 Hz, 2H), 7.40-7.36 (m, 2H), 7.34 - 7.27 (m, 3H), 7.11 (t, J = 7.6Hz, 2H), 7.00 (t, J = 7.2Hz, 1H), 6.53 (s, 1H), 5.50 (s, 1H), 4.80 – 4.72 (m, 2H), 4.14 (td, J = 8.8, 2.0 Hz, 2H), 3.58 (dd, J = 15.5, 8.4 Hz, 1H), 3.58 (dd, J = 16.4, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 150.1, 139.8, 129.1, 128.8, 128.2, 127.7, 126.3, 122.9, 116.3, 115.5, 70.8, 70.1, 62.0, 44.1. HRMS (ESI) calcd for C₁₉H₁₉N₂O₃ [M+H]⁺ 323.1390; found, 323.1393. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 50: 50, 1.0 ml/min). (*S*, *E*)-**3w**, t_R = 6.4 min, (*R*, *E*)-**3w**, t_R = 9.0 min.

Racemic sample

2

9.812

22.3

1488553

Obtained as a white solid in 99% yield and 96.8% ee. $[\alpha]_D^{20} = + 64.2$ (c = 0.25); M.p. 194 – 196 °C; IR (neat) 3396, 2920, 1751, 1697, 1485, 1415, 1247, 1037, 754, 546; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 2H), 7.31 - 7.27 (m, 2H), 7.19 (d, J = 7.9 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 7.00 (t, J = 7.2 Hz, 1H), 6.55 (s, 1H), 5.47 (s, 1H), 4.79 – 4.72 (m, 2H), 4.16 (t, J = 8.0 Hz, 2H), 3.64 – 3.54 (m, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 150.2, 137.9, 136.7, 129.4, 129.0, 127.6, 125.9, 122.7, 116.0, 115.4, 70.5, 70.0, 61.9, 44.0, 21.09. HRMS (ESI) calcd for C₂₀H₂₁N₂O₃ [M+H]⁺ 337.1546; found, 337.1549. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3x**, t_R = 11.3 min, (*R*, *E*)-**3x**, t_R = 28.9 min.

3x, 96.8% ee (Catalyst: (R, S)-L12AuCl/AgNTf₂)

(*S*, *E*)-3-((3-(3-chlorophenyl)-2-phenylisoxazolidin-4-ylidene)methyl)oxazolidin-2 -one 3y

Obtained as a white solid in 99% yield and 95.7% ee. $[\alpha]_D^{20} = +44.4$ (c = 0.25); M.p. 200 – 202 °C; IR (neat) 3061, 2920, 1749, 1697, 1479, 1415, 1247, 1083, 756, 694; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.36 - 7.28 (m, 5H), 7.10 (d, J = 7.8 Hz, 2H), 7.02 (t, J = 7.3 Hz, 1H), 6.51 (s, 1H), 5.51 (s, 1H), 4.78 – 4.71 (m, 2H), 4.25 – 4.15 (m, 2H), 3.64 – 3.58 (m, 1H), 3.57 – 3.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 149.8, 141.8, 134.7, 130.0, 129.1, 128.3, 127.8, 126.2, 125.8, 123.0, 116.6, 115.4, 70.0, 69.9, 61.9, 44.2. HRMS (ESI) calcd for C₁₉H₁₈ClN₂O₃ [M+H]⁺ 357.1000; found, 357.1006. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3**y, t_R = 9.3 min, (*R*, *E*)-**3**y, t_R = 15.3 min.

3y, 95.7% ee (Catalyst: (R, S)-L12AuCl/AgNTf₂)

(*S*,*E*)-3-((3-(4-fluorophenyl)-2-phenylisoxazolidin-4-ylidene)methyl)oxazolidin-2one 3z

Obtained as a white solid in 99% yield and 66.1% ee. $[\alpha]_D^{20} = +52.3$ (c = 0.25); M.p. 198 – 200 °C; IR (neat) 3130, 2920, 1762, 1701, 1506, 1423, 1249, 1083, 758, 692; ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.42 (m, 2H), 7.31 - 7.27 (m, 2H), 7.10 - 7.00 (m, 5H), 6.50 (s, 1H), 5.49 (s, 1H), 4.79 – 4.71 (m, 2H), 4.23 – 4.14 (m, 2H), 3.62 – 3.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, J = 246.0 Hz), 155.7, 149.9, 135.5, 129.5 (d, J = 8.1 Hz), 129.1, 126.9, 123.0, 116.3, 115.7 (d, J = 20.8 Hz), 70.1, 70.0, 61.9, 44.2. HRMS (ESI) calcd for C₁₉H₁₈FN₂O₃ [M+H]⁺ 341.1301; found, 341.1306. Enantioselectivity determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**3z**, t_R = 10.9 min, (*R*, *E*)-**3z**, t_R = 23.6 min.

(*S*, *E*)-N-(4-fluorobenzyl)-N-(2-(hydroxymethyl)-3-phenyl-3-(phenylamino)prop-1-en-1-yl)-4-methylbenzenesulfonamide 4a

Obtained as a white solid in 99% yield and 98.2% ee. $[\alpha]_D^{20} = -86.2$ (c = 0.25); M.p. 86 – 87 °C; IR (neat) 3223, 2922, 1598, 1510, 1348, 1267, 1165, 750, 663, 551; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.18 – 7.13 (m, 5H), 7.08 (t, J = 7.9 Hz, 2H), 7.03 – 7.01 (m, 2H), 6.84 (t, J = 8.6 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.39 (d, J = 7.8 Hz, 2H), 5.59 (s, 1H), 5.54 (s, 1H), 4.22 (d, J = 13.8 Hz, 1H), 4.13 (d, J = 13.8 Hz, 1H), 3.95 (d, J = 13.1 Hz, 1H), 3.77 (d, J = 13.4 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 245.4 Hz), 146.9, 145.3, 144.2, 139.6, 134.3, 130.9 (d, J = 8.1 Hz), 129.8, 128.8, 128.4, 127.8, 127.1, 126.8, 125.3, 117.9, 115.4 (d, J = 21.3 Hz), 114.3, 62.5, 55.9, 54.4, 21.5. HRMS (ESI) calcd for C₃₀H₃₀FN₂O₃S [M+H]⁺ 517.1955; found, 517.1958. Enantioselectivity

determined by chiral HPLC analysis, Chiralpak AD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**4a**, $t_R = 9.3$ min, (*R*, *E*)-**4a**, $t_R = 11.9$ min.

<u>mV</u> 600 500 9.304 400 11.918' R.T. Area(%) Area 300 200 100 1 9.304 48.82 11898504 2 11.918 51.18 12471801 4a, 98.2% ee

Racemic sample

(*S*, *E*)-N-((3-([1,1'-biphenyl]-4-yl)-2-phenylisoxazolidin-4-ylidene)methyl)-N-ben zyl-4-methylbenzenesulfonamide 5

Obtained as a white solid in 92% yield and 99.1% ee. $[\alpha]_D^{20} = +5.6 \ (c = 0.25); \text{ M.p.}$ 170 – 172 °C; IR (neat) 3028, 2920, 1595, 1487, 1348, 1165, 1089, 758, 696, 547; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.39 – 7.35 (m, 4H), 7.28 - 7.25 (m, 3H), 7.17 – 7.15 (m, 2H), 7.13 – 7.07 (m, 3H), 7.02 (dd, J = 7.5, 7.0 Hz, 2H), 6.86 (t, J = 7.3 Hz, 1H), 6.78 (dd, J = 8.7, 8.1 Hz, 4H), 5.76 (s, 1H), 5.53 (s, 1H), 4.54 (s, 2H), 4.39 (d, J = 15.1 Hz, 1H), 3.73 (d, J = 15.1 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 143.9, 140.7, 140.4, 139.3, 138.5, 135.1, 129.7, 128.7, 128.5, 128.3, 127.5, 127.2, 126.9, 122.4, 118.2, 115.5, 69.7, 69.6, 53.1, 21.4. HRMS (ESI) calcd for C₃₆H₃₃N₂O₃S [M+H]⁺ 573.2206; found, 573.2205. Enantioselectivity determined by chiral HPLC analysis, Chiralpak OD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-**5**, $t_R = 16.0$ min, (*R*, *E*)-**5**, $t_R = 28.2$ min.

Racemic sample

(S, E)-N-(3-([1,1'-biphenyl]-4-yl)-2-(hydroxymethyl)-3-(phenylamino)prop-1-en-

1-yl)-N-benzyl-4-methylbenzenesulfonamide 6

Obtained as a white solid in 81% yield and 97.6% ee. $[\alpha]_D^{20} = -37.2 \ (c = 3); \text{ M.p. 101} - 103 \ ^{\circ}\text{C}; \text{ IR (neat) 3404, 3028, 2924, 1600, 1498, 1344, 1163, 1089, 740, 549; }^{1}\text{H} NMR (400 MHz, MeOD-<math>d_4$) δ 7.76 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 7.3 Hz, 2H), 7.42 $- 7.39 \ (\text{m}, 2\text{H})$, 7.35 (dd, J = 9.4, 8.3 Hz, 4H), 7.29 $- 7.17 \ (\text{m}, 6\text{H})$, 7.01 (t, J = 10.1 Hz, 2H), 6.93 (d, J = 8.2 Hz, 2H), 6.59 (t, J = 7.2 Hz, 1H), 6.40 (d, J = 7.8 Hz, 2H), 5.70 (s, 1H), 5.53 (s, 1H), 4.43 (d, J = 13.9 Hz, 1H), 4.05 $- 4.00 \ (\text{m}, 2\text{H})$, 3.66 (d, J = 14.8 Hz, 1H), 2.44 (s, 3H); ^{13}C NMR (100 MHz, MeOD- d_4) δ 147.6, 145.3, 144.2, 140.7, 139.6, 139.5, 135.7, 134.6, 129.6, 129.0, 128.4, 128.3, 128.2, 127.7, 127.6, 127.3, 126.7, 126.4, 126.3, 124.1, 116.7, 113.6, 60.5, 55.4, 55.0, 20.1. HRMS (ESI) calcd for $C_{36}\text{H}_{35}\text{N}_2\text{O}_3\text{S}$ [M+H]⁺ 575.2362; found, 575.2363. Enantioselectivity

determined by chiral HPLC analysis, Chiralpak OD-H, rt, (Hexane - iPrOH = 70: 30, 1.0 ml/min). (*S*, *E*)-6, $t_R = 10.7 \text{ min}$, (*R*, *E*)-6, $t_R = 14.9 \text{ min}$.

Racemic sample

	R. T.	Area(%)	Area	
1 2	10.798 14.908	47.98 52.02	3962450 4296823	

6, 97.6% ee

References

- (1) González-Gómez, Á.; Añorbe, L.; Poblador, A.; Domínguez, G.; Pérez-Castells, J.
- Eur. J. Org. Chem. 2008, 1370–1377.
- (2) Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.; Hsung, R. P. *Tetrahedron.* **2001**, *57*, 459-466.
- (3) Chapman, J. M. Jr.; Cocolas, G. H.; Hall, I. H. J. Med. Chem. 1983, 26, 243-246.
- (4) Xiao-Xiao Li, Li-Li Zhu, Wen Zhou, and Zili Chen*. Org. Lett. 2012, 14, 436-439.
- (5) Organic Syntheses, 1941, Coll. Vol. 1, 445; 1925, Vol. 4, 57.
- (6) Organic Syntheses, 1973, Coll. Vol. 5, 957; 1966, Vol. 46, 96.
- (7) Richmond, E.; Duguet, N.; Slawin, A. M. Z.; Lébl, T.; Smith, A. D. Org, Lett.
 2012, 14, 2762-2765.
- (8) Lobo, A. M.; Prabhakar, S.; Rzepa, H. S.; Skapski, A. C.; Tavares, M. R.;Widdowson, D. A. *Tetrahedron* 1983, *39*, 3833-41.
- (9) Raunak; Kumar, V.; Mukherjee, S.; Poonam; Prasad, A. K.; Olsen, C. E.; Schaeffer, S. J. C.; Sharma, S. K.; Watterson, A. C.; Errington, W.; Parmar, V. S. *Tetrahedron* **2005**, *61*, 5687-5697.
- (10) Baker, A. D.; Wong, Dora; Lo, Simon; Bloch, Michele; Horozoglu, G.; Goldman,N. L.; Engel, R.; Riotta, D. C. *Tetrahedron Lett.* **1978**, 19, 215-18.
- (11) Dooley, B. M.; Bowles, S. E.; Storr, T.; Frank, N. L. Organic Lett. 2007, 9, 4781-4783.
- (12) Aurich, H. G.; Mobus, K.-D. Tetrahedron Lett., 1988, 29, 5755-5758.
- (13) Schmidt, V. A.; Alexanian. E. J. J. Am. Chem. Soc. 2011, 133, 11402–11405.
- (14) Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701-2704.
- (15) González, A. Z.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A. Toste, F. D. J. *Am. Chem. Soc.* **2011**, *133*, 5500–5507 and reference therein.

H¹NMR and C¹³NMR spectra

ppm

Ph

