Supporting Information

Organocatalytic Formal [2+2] Cycloaddition Initiated by Vinylogous Friedel-Crafts Alkylation: Enantioselective Synthesis of Substituted Cyclobutane Derivatives

Guo-Jian Duan, Jun-Bing Ling, Wei-Ping Wang, Yong-Chun Luo and Peng-Fei Xu*

Table of contents:

1. General information S1
2. General procedure for the preparation of vinyl pyrroles and analytical dateS1
3. General procedure for the cascade reaction and analytical date •••••••••••\$3
4. Synthesis of Indole-tethered cyclobutanes and analytical date
5. Synthesis of the fused 12-membered macrolide and analytical date S12
6. Determination of the stereochemistry of the cyclobutane adducts ••••••••••••••••••••••••••••••••••••
7. NMR Spectrum ······S15
8. HPLC Data·····S57
9. References ······S76

1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh) or aluminum oxide-neutral. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM-400 (400 MHz). Chemical shifts are given in δ relative to tetramethylsilane (TMS), the coupling constants *J* are given in Hz. The spectra were recorded in CDCl₃ as the solvent at room temperature, TMS served as internal standard ($\delta = 0$ ppm) for ¹H NMR and CDCl₃ used as an internal standard ($\delta = 77.00$ ppm) for ¹³C NMR. IR spectra were recorded on a Nicolet NEXUS 670 FT-IR instrument. Optical rotation was measured on the Perkin Elmer 341 polarimeter. HRMS were performed on a Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with Chiralcel OD-H, AD-H or AS-H columns on Waters 600 Delta eluting with *i*-PrOH and *n*-hexane.

2. General procedure for the preparation of vinyl pyrroles¹ and analytical date:

Potassium *t*-butoxide (3.9 mmol, 1.3 eq) was added slowly to methyltriphenylphosphonium bromide (3.9 mmol, 1.3 eq) in THF (10 mL) at 0 °C under nitrogen, formation of the bright yellow color characteristic of the ylide was observed immediately. The mixture was stirred at RT under nitrogen for 1 h and then cooled to 0 °C. A solution of pyrroles (3.0 mmol, 1.0 eq) in THF (4 mL) was added dropwise over 10 min, and the mixture was stirred at 50 °C until the reaction was completed as indicated by TLC analysis. The mixture was allowed to cool to room temperature and filtered. The filter cake was washed with THF (3×20 mL), the filtrate was then concentrated *in vacuo* and the crude product was purified by flash chromatography on aluminum oxide-neutral (eluting with petroleum ether/ethyl acetate) to afford the pure product.

1-allyl-2-vinyl-1H-pyrrole (1a)

Colorless oil (yield: 65%); ¹H NMR (400 MHz): δ 6.64 (t, J = 2.0 Hz, 1H), 6.55 (dd, J = 17.6, 11.2 Hz, 1H), 6.43–6.42 (m, 1H), 6.16 (t, J = 3.2 Hz , 1H), 6.00–5.91 (m, 1H), 5.50 (dd, J = 21.6, 1.2 Hz, 1H),

5.20 –5.17(m, 1H), 5.04 (dd, J = 11.2, 1.2 Hz, 1H), 5.01–4.96 (m, 1H), 4.54–4.52 (m, 2H); ¹³C NMR (100 MHz): δ 134.2, 131.7, 125.3, 122.2, 116.7, 111.2, 108.1, 106.4, 49.3.

1-allyl-4-bromo-2-vinyl-1H-pyrrole (1b)¹⁻²

Colorless oil (yield: 55%); ¹H NMR (400 MHz): δ 6.60 (d, J = 2.0 Hz, 1H), 6.45 (dd, J = 17.2, 11.2 Hz, 1H), 6.38 (d, J = 2.0 Hz, 1H), 5.95–5.85 (m, 1H), 5.49 (dd, J = 17.6, 1.2 Hz, 1H), 5.20 (dd, J = 10.0, 1.2 Hz, 1H), 5.08 (dd, J = 10.8, 0.8 Hz, 1H), 5.00 (dd, J = 16.8, 1.2 Hz, 1H), 4.47–4.45 (m, 2H); ¹³C NMR (100 MHz): δ 133.4, 132.4, 124.3, 121.4, 117.3, 113.0, 108.6, 95.9, 49.4.

1-allyl-2-methyl-5-vinyl-1H-pyrrole (1c)^{1, 3}

Colorless oil (yield: 62%); ¹H NMR (400 MHz): δ 6.49 (dd, J = 17.6, 11.2 Hz, 1H), 6.32 (d, J = 3.6 Hz, 1H), 5.93–5.86 (m, 2H), 5.44 (dd, J = 17.2, 1.2 Hz, 1H), 5.14 (dd, J = 10.4, 1.2 Hz, 1H), 4.95 (dd, J = 11.2, 1.2 Hz, 1H), 4.77 (dd, J = 17.2, 1.2 Hz, 1H), 4.47–4.45 (m, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz): δ 133.9, 131.2, 129.8, 125.8, 116.0, 109.9, 106.9, 105.2, 45.5, 12.2.

1-(propa-1,2-dien-1-yl)-2-vinyl-1H-pyrrole (1d)

Colorless oil (yield: 68%); ¹H NMR (400 MHz): δ 6.95 (t, J = 6.4 Hz, 1H), 6.79 (s, 1H), 6.64 (dd, J = 17.6, 11.2 Hz, 1H), 6.38 (s, 1H), 6.19 (d, J = 2.4 Hz, 1H), 5.51 (d, J = 17.2 Hz, 1H), 5.45 (d, J = 6.4 Hz, 2H), 5.09 (d, J = 11.2 Hz, 1H); ¹³C NMR (100 MHz): δ 203.6, 131.7, 125.0, 120.3, 112.6, 109.9, 107.7, 97.3, 86.5.

ethyl 2-(2-vinyl-1H-pyrrol-1-yl)acetate (1e)

COOEt

Colorless oil (yield: 57%); ¹H NMR (400 MHz): δ 6.62 (d, J = 1.6 Hz, 1H), 6.49–6.41 (m, 2H), 6.17 (t, J = 3.2 Hz, 1H), 5.48 (d, J = 17.2 Hz, 1H), 5.07 (d, J = 11.6 Hz, 1H), 4.22 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz): δ 168.5, 132.1, 124.8, 123.1, 112.1, 108.8, 107.1, 61.6, 48.5, 14.1.

1-benzyl-2-vinyl-1H-pyrrole (1f)

Colorless oil (yield: 70%); ¹H NMR (400 MHz): δ 7.31–7.21 (m, 3H), 7.01 (d, *J* = 7.2 Hz, 2H), 6.67–6.66 (t, *J* = 2.0 Hz, 1H), 6.51–6.44 (m, 2H), 6.18–6.17 (t, *J* = 3.2 Hz, 1H), 5.46 (dd, *J* = 17.6, 1.6 Hz, 1H), 5.11 (s, 2H), 4.96 (dd, *J* = 11.2, 1.6 Hz, 1H); ¹³C NMR (100 MHz): δ 138.1, 131.9, 128.7, 127.4, 126.2, 125.3, 122.8, 111.4, 108.4, 106.7, 50.4.

1-allyl-2-vinyl-4,7-dihydro-1H-indole (1g)^{1, 4-5}

Colorless oil (yield: 72%); ¹H NMR (400 MHz): δ 6.51 (dd, J = 17.2, 11.2 Hz, 1H), 6.25 (s, 1H), 5.92-5.79 (m, 3H), 5.44 (dd, J = 17.2, 1.6 Hz, 1H), 5.11 (dd, J = 10.0, 1.2 Hz, 1H), 4.94 (dd, J = 11.2, 1.2 Hz, 1H), 4.82 (dd, J = 11.2, 1.2 Hz, 1H), 4.43-4.41 (m, 2H), 3.23-3.17 (m, 4H); ¹³C NMR (100 MHz): δ 134.1, 130.7, 126.3, 125.9, 125.5, 122.2, 115.9, 114.4, 109.8, 104.0, 45.4, 24.9, 23.2.

3. General procedure for the cascade reaction and analytical date:

A solution of 1-allyl-2-vinyl-1H-pyrrole (0.15 mmol), (*E*)-Cinnamaldehyde (0.10 mmol) and α,α diphenylprolinol trimethylsilyl ether catalyst (20 mol%, 0.02 mmol) in EtOH (0.5 mL) was stirred at room temperature for indicated time, then NaBH₄ (0.12 mmol) was added to the mixture at 0 °C. After the solvent was evaporated under vacuum, the residue was purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) to afford the pure product.

$((1R, 2R, 4S) - 2 - (1 - allyl - 1H - pyrrol - 2 - yl) - 4 - phenylcyclobutyl) methanol\ (3a)$

Colorless oil (yield: 76%). $[\alpha]_D^{20} = -18$ (*c* 1.50, CH₂Cl₂, 93% *ee*); ¹H NMR (400 MHz): δ 7.35–7.29 (m, 4H), 7.24–7.20 (m, 1H), 6.61 (t, *J* = 2.4 Hz, 1H), 6.15 (t, *J* = 3.2 Hz, 1H), 6.09 (d, *J* = 1.2 Hz, 1H), 6.02–5.92 (m, 1H), 5.17 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.97 (dd, *J* = 17.2, 1.2 Hz, 1H), 4.54–4.42 (m, 2H), 3.79 (d, *J* = 4.8 Hz, 2H), 3.33–3.21 (m, 2H), 2.81–2.69 (m, 1H), 2.68–2.64 (m, 1H), 2.08 (dd, *J* = 20.0, 10.4 Hz, 1H), 1.42 (s, 1H); ¹³C NMR (100 MHz): δ 143.9, 135.9, 134.8, 128.4, 126.9, 126,3, 120.7, 116.5, 107.2, 104.8, 64.0, 52.2, 49.1, 38.8, 34.6, 30.0; IR (KBr, cm⁻¹): 3391, 2931, 1644, 1486, 1283, 1076, 1027, 993, 922, 752, 701; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 12.6 min, minor enantiomer t_R = 17.3 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₂NO⁺: 268.1696, found: 268.1691.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(o-tolyl)cyclobutyl)methanol (3b)

Colorless oil (yield: 53%); $[\alpha]_D^{20} = -20.5$ (*c* 1.35, CH₂Cl₂, 91% *ee*); ¹H NMR (400 MHz): δ 7.35 (d, J = 8.0 Hz, 1H), 7.24–7.18 (m, 1H), 7.14–7.11 (m, 2H), 6.58 (s, 1H), 6.13 (t, J = 3.2 Hz, 1H), 6.07 (s, 1H), 6.00–5.91(m, 1H), 5.16 (d, J = 10.0 Hz, 1H), 4.95 (d, J = 17.2 Hz, 1H), 4.53–4.41 (m, 2H), 3.77 (d, J = 2.0 Hz, 2H), 3.44 (dd, J = 18.0, 9.6 Hz, 1H), 3.25 (dd, J = 17.6, 9.2 Hz, 1H), 2.97–2.90 (m, 1H), 2.72 (dd, J = 18.0, 8.0 Hz, 1H), 2.32 (s, 3H), 1.89 (dd, J = 20.4, 10.0 Hz, 1H), 1.39 (s, 1H); ¹³C NMR (100 MHz): δ 141.5, 136.0, 135.9, 134.8, 130.1, 126.1, 126.0, 125.6, 120.7, 116.4, 107.2, 104.9, 63.8, 50.3, 49.0, 35.6, 35.1, 30.1, 19.7; IR (KBr, cm⁻¹): 3405, 2934, 1643, 1486, 1284, 1076, 923, 755, 710, 615; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 10.6 min, minor enantiomer t_R = 16.7 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₄NO⁺: 282.1852, found: 282.1845.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(2-chlorophenyl)cyclobutyl)methanol (3c)

Colorless oil (yield: 78%); $[\alpha]_D^{20} = -18.9 (c \ 1.17, CH_2Cl_2, 95\% \ ee)$; ¹H NMR (400 MHz): δ 7.44 (dd, J = 7.6, 1.2 Hz, 1H), 7.34 (dd, J = 7.6, 1.2 Hz, 1H), 7.28–7.25 (m, 1H), 7.17–7.13 (m, 1H), 6.59 (t, J = 2.4 Hz, 1H), 6.13 (t, J = 3.2 Hz, 1H), 6.07–6.06 (m, 1H), 5.99–5.91 (m, 1H), 5.17 (dd, J = 10.4, 1.2 Hz, 1H), 4.95 (dd, J = 17.0, 1.2 Hz, 1H), 4.53–4.45 (m, 2H), 3.79 (d, J = 2.4 Hz, 2H), 3.67 (dd, J = 9.6 Hz, 1H), 3.28

(dd, J = 9.6 Hz, 1H), 2.84–2.72 (m, 2H), 1.97 (dd, J = 20.4, 10.0 Hz, 1H), 1.53 (t, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz): δ 140.7, 135.7, 134.7, 133.6, 129.4, 127.6, 127.4, 127.0, 120.8, 116.5, 107.1, 104.8, 63.7, 51.1, 49.1, 35.8, 34.2, 29.8; IR (KBr, cm⁻¹): 3410, 2935, 1645, 1478, 1438, 1283, 1034, 924, 754, 710, 614; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 95:5), 1.0 mL/min; major enantiomer t_R = 23.1 min, minor enantiomer t_R = 40.7 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₁ClNO⁺: 302.1306, found: 302.1308.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(2-bromophenyl)cyclobutyl)methanol (3d)

Colorless oil (yield: 63%); $[\alpha]_D^{20} = -15.2$ (*c* 1.05, CH₂Cl₂, 92% *ee*); ¹H NMR (400 MHz): δ 7.54 (d, J = 8.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 6.60 (d, J = 1.6 Hz, 1H), 6.14 (t, J = 3.2 Hz, 1H), 6.08 (s, 1H), 6.01–5.92 (m, 1H), 5.18 (d, J = 10.4 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 4.54–4.42 (m, 2H), 3.82–3.74 (m, 2H), 3.65 (dd, J = 10.0 Hz, 1H), 3.29 (dd, J = 9.6 Hz, 1H), 2.86–2.76 (m, 2H), 1.96 (dd, J = 20.0, 10.0 Hz, 1H), 1.55 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz): δ 142.4, 135.7, 134.7, 132.7, 127.8, 127.7, 127.7, 124.3, 120.8, 116.5, 107.2, 104.8, 63.6, 51.3, 49.1, 38.3, 34.5, 29.7; IR (KBr, cm⁻¹): 3416, 2935, 1643, 1474, 1283, 1024, 753, 709; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 12.3 min, minor enantiomer t_R = 20.2 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₁BrNO⁺: 346.0801, found: 346.0809.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(3-chlorophenyl)cyclobutyl)methanol (3e)

Colorless oil (yield: 68%); $[\alpha]_D^{20} = -10.5$ (*c* 1.05, CH₂Cl₂, 91% *ee*); ¹H NMR (400 MHz): δ 7.25–7.15 (m, 4H), 6.59 (t, J = 2.2 Hz, 1H), 6.13 (t, J = 3.2 Hz, 1H), 6.06–6.05 (m, 1H), 6.00–5.90 (m, 1H), 5.17 (dd, J = 10.0, 1.2 Hz, 1H), 4.95 (dd, J = 17.0, 1.2 Hz, 1H), 4.52–4.40 (m, 2H), 3.77 (d, J = 10.0 Hz, 2H), 3.31–3.20 (m, 2H), 3.76–2.63 (m, 2H), 2.03 (dd, J = 20.4, 10.0 Hz, 1H), 1.40 (s, 1H); ¹³C NMR (100 MHz): δ 146.0, 135.6, 134.7, 134.2, 129.6, 127.1, 126.4, 125.1, 120.8, 116.5, 107.2, 104.9, 63.7, 52.0, 49.1, 38.4, 34.5, 29.8; IR (KBr, cm⁻¹): 3400, 2934, 1596, 1480, 1077, 780, 710, 616; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 10.1 min, minor enantiomer t_R = 15.9 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₁ClNO⁺: 302.1306, found: 302.1314.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(p-tolyl)cyclobutyl)methanol (3f)

Colorless oil (yield: 62%); $[\alpha]_D^{20} = -26.2$ (*c* 1.26, CH₂Cl₂, 91% *ee*); ¹H NMR (400 MHz): δ 7.19 (d, *J* = 8 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.60 (t, *J* = 2.2 Hz, 1H), 6.14 (t, *J* = 3.2 Hz, 1H), 6.08 (t, *J* = 2.4 Hz, 1H), 6.10–5.92 (m, 1H), 5.19 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.96 (dd, *J* = 16.8, 1.2 Hz, 1H), 4.53–4.41 (m, 2H), 3.78 (s, 2H), 3.27–3.18 (m, 2H), 2.77–2.70 (m, 1H), 2.68–2.33 (m, 1H), 2.33 (s, 3H), 2.05 (dd, *J* = 20.4, 10.4 Hz, 1H), 1.34 (s, 1H); ¹³C NMR (100 MHz): δ 140.9, 136.0, 135.8, 134.8, 129.1, 126.8, 120.7, 116.5, 107.1, 104.8, 64.1, 52.3, 49.1, 38.5, 34.8, 30.0, 21.0; IR (KBr, cm⁻¹): 3376, 2923, 1652, 1443, 1161, 1026, 810, 706, 664; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 95:5), 1.0 mL/min; major enantiomer t_R = 20.1 min, minor enantiomer t_R = 26.9 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₄NO⁺: 282.1852, found [M+H]⁺: 282.1860.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(4-chlorophenyl)cyclobutyl)methanol (3g)

Colorless oil (yield: 70%); $[\alpha]_D^{20} = -7.1$ (*c* 1.57, CH₂Cl₂, 89% *ee*); ¹H NMR (400 MHz): δ 7.27 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.59 (t, J = 2.2 Hz, 1H), 6.13 (t, J = 3.2 Hz, 1H), 6.06–6.05 (m, 1H), 6.00–5.90 (m, 1H), 5.17 (dd, J = 10.4, 1.2 Hz, 1H), 4.95 (dd, J = 17.2, 1.2 Hz, 1H), 4.52–4.40 (m, 2H), 3.76 (s, 2H), 3.30–3.19 (m, 2H), 2.74–2.63 (m, 2H), 2.01 (dd, J = 20.4, 10.0 Hz, 1H), 1.38 (s, 1H); ¹³C NMR (100 MHz): δ 142.4, 135.7, 134.7, 131.9, 128.5, 128.3, 120.8, 116.5, 107.2, 104.8, 63.8, 52.2, 49.1, 38.2, 34.7, 29.8; IR (KBr, cm⁻¹): 3387, 2918, 1645, 1490, 1072, 1017, 922, 825, 708; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 95:5), 1.0 mL/min; major enantiomer t_R = 22.6 min, minor enantiomer t_R = 32.9 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₁ClNO⁺: 302.1306, found : 302.1299.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(4-bromophenyl)cyclobutyl)methanol (3h)

Colorless oil (yield: 65%); $[\alpha]_D^{20} = -41.0$ (*c* 1.00, CH₂Cl₂, 94% *ee*); ¹H NMR (400 MHz): δ 7.43 (dd, *J* = 6.8, 1.6 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.60 (t, *J* = 2.2 Hz, 1H), 6.13 (t, *J* = 3.2 Hz, 1H), 6.06–6.05 (m,

1H), 6.00–5.91 (m, 1H), 5.16 (dd, J = 10.4, 1.6 Hz, 1H), 4.95 (dd, J = 17.2, 1.2 Hz, 1H), 4.52–4.40 (m, 2 H), 3.77 (s, 2H), 3.28–3.19 (m, 2H), 2.74–2.63 (m, 2H), 2.01 (dd, J = 20.4, 10.0 Hz, 1H), 1.35 (s, 1H); ¹³C NMR (100 MHz): δ 142.9, 135.7, 134.7, 131.4, 128.7, 120.8, 119.9, 116.5, 107.2, 104.8, 63.8, 52.1, 49.1, 38.3, 34.6, 29.8; IR (KBr, cm⁻¹): 3397, 2932, 1643, 1486, 1300, 1073, 1010, 922, 822, 709; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 95:5), 1.0 mL/min; major enantiomer t_R = 24.6 min, minor enantiomer t_R = 36.4 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₁BrNO⁺: 346.0801, found [M+H]⁺: 346.0794.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(4-fluorophenyl)cyclobutyl)methanol (3i)

Colorless oil (yield: 72%); $[\alpha]_D^{20} = -83.3$ (*c* 1.80, CH₂Cl₂, 96% *ee*); ¹H NMR (400 MHz): δ 7.24–7.22 (m, 2H), 6.99 (t, *J* = 8.8 Hz, 2H), 6.60 (t, *J* = 2.2 Hz, 1H), 6.14 (t, *J* = 3.2 Hz, 1H), 6.07 (d, *J* = 1.2 Hz, 1H), 6.00–5.91 (m, 1H), 5.17 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.95 (dd, *J* = 17.2, 1.2 Hz, 1H), 4.52–4.41 (m, 2H), 3.77 (s, 2H), 3.30–3.18 (m, 2H), 2.75–2.63 (m, 2H), 2.01 (dd, *J* = 20.4, 10.0 Hz, 1H), 1.35 (s, 1H); ¹³C NMR (100 MHz): δ 139.6, 135.8, 134.7, 128.3, 120.8, 116.5, 115.2, 115.0, 107.2, 104.8, 63.9, 52.3, 49.1, 38.2, 34.9, 29.8; IR (KBr, cm⁻¹): 3410, 2921, 1711, 1510, 1362, 1224, 912, 737; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 95:5), 1.0 mL/min; major enantiomer t_R = 20.7 min, minor enantiomer t_R = 29.4 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₁FNO⁺: 286.1602, found: 286.1599.

4-((1S,2R,3R)-3-(1-allyl-1H-pyrrol-2-yl)-2-(hydroxymethyl)cyclobutyl)benzonitrile (3j)

Colorless oil (yield: 79%); $[\alpha]_D^{20} = -36.9$ (*c* 1.30, CH₂Cl₂, 95% *ee*); ¹H NMR (400 MHz): δ 7.60 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 6.60 (t, J = 2.4 Hz, 1H), 6.13 (t, J = 3.2 Hz, 1H), 6.05–6.04 (m, 1H), 6.00–5.91 (m, 1H), 5.18 (dd, J = 9.6, 1.2 Hz, 1H), 4.95 (dd, J = 16.8, 1.2 Hz, 1H), 4.52–4.41(m, 2H), 3.78 (m, 2H), 3.38 (dd, J = 18.0, 9.6 Hz, 1H), 3.28 (dd, J = 9.6 Hz, 1H), 2.78–2.67 (m, 2H), 2.04 (dd, J = 20.4, 10.4 Hz, 1H), 1.38 (d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz): δ 149.6, 135.3, 134.7, 132.2, 127.4, 121.0, 119.1, 116.5, 109.9, 107.2, 104.9, 63.5, 51.9, 49.1, 38.8, 34.4, 29.7; IR (KBr, cm⁻¹): 3434, 2933, 2227, 1606, 1486, 1300, 1075, 922, 835, 710, 558; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 80:20), 1.0 mL/min; major enantiomer t_R = 12.6 min, minor enantiomer t_R = 17.2 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₁N₂O⁺: 293.1648, found: 293.1640.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-(4-(trifluoromethyl)phenyl)cyclobutyl)methanol (3k)

Colorless oil (yield: 71%); $[\alpha]_D^{20} = -30.0$ (*c* 0.70, CH₂Cl₂, 92% *ee*); ¹H NMR (400 MHz): δ 7.56 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 6.60 (t, J = 2.4 Hz, 1H), 6.14 (t, J = 3.2 Hz, 1H), 6.07–6.05 (m, 1H), 6.01–5.91 (m, 1H), 5.18 (dd, J = 10.0, 1.2 Hz, 1H), 4.96 (dd, J = 17.2, 1.2 Hz, 1H), 4.52–4.41 (m, 2H), 3.79 (d, J = 4.4 Hz, 2H), 3.37 (dd, J = 18.4, 9.6 Hz, 1H), 3.27 (dd, J = 18.0, 9.6 Hz, 1H), 2.80–2.67 (m, 2H), 2.07 (dd, J = 20.4, 10.4 Hz, 1H), 1.38 (s, 1H); ¹³C NMR (100 MHz): δ 148.0, 135.5, 134.7, 128.3, 127.3, 125.4, 125.3, 120.8, 116.5, 107.2, 104.9, 63.7, 52.0, 49.1, 38.6, 34.5, 29.8; IR (KBr, cm⁻¹): 3406, 2918, 1710, 1326, 1266, 1121, 910, 737; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 9.4 min, minor enantiomer t_R = 13.4 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₁F₃NO⁺: 336.1570, found: 336.1582.

4-((1S,2R,3R)-3-(1-allyl-4-bromo-1H-pyrrol-2-yl)-2-(hydroxymethyl)cyclobutyl)benzonitrile (3l) Br

Colorless oil (yield: 70%); $[\alpha]_D^{20} = -15.4$ (*c* 1.30, CH₂Cl₂, 98% *ee*); ¹H NMR (400 MHz): δ 7.60 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 6.57 (d, J = 2.0 Hz, 1H), 6.05 (d, J = 1.6 Hz, 1H), 5.95–5.86 (m, 1H), 5.20 (dd, J = 10.0, 1.2 Hz, 1H), 4.98 (dd, J = 17.2, 1.2 Hz, 1H), 4.47–4.35(m, 2H), 3.76 (d, J = 4.8 Hz, 2H), 3.39 (dd, J = 18.0, 9.6 Hz, 1H), 3.27 (dd, J = 18.0, 9.6 Hz, 1H), 2.72–2.65 (m, 2H), 2.02 (dd, J = 20.4, 10.0 Hz, 1H), 1.26 (s, 1H); ¹³C NMR (100 MHz): δ 149.2, 136.3, 133.9, 132.3, 127.7, 120.3, 119.0, 117.1, 110.0, 107.8, 94.8, 63.1, 51.9, 49.2, 38.5, 34.1, 29.4; IR (KBr, cm⁻¹): 3421, 2928, 2228, 1606, 1414, 1307, 1022, 925, 835, 663; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 22.9 min, minor enantiomer t_R = 19.1 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₀BrN₂O⁺: 371.0754, found: 371.0745.

((1R,2R,4S)-2-(1-allyl-4-bromo-1H-pyrrol-2-yl)-4-(4-(trifluoromethyl)phenyl)cyclobutyl)methanol (3m)

Colorless oil (yield: 65%); $[\alpha]_D^{20} = -11.7$ (*c* 1.20, CH₂Cl₂, 97% *ee*); ¹H NMR (400 MHz): δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 6.57 (d, *J* = 1.6 Hz, 1H), 6.0 (d, *J* = 1.2 Hz, 1H), 5.96–5.87 (m, 1H), 5.20 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.99 (dd, *J* = 17.2, 1.2 Hz, 1H), 4.48–4.36 (m, 2H), 3.77 (d, *J* = 4.4 Hz, 2H), 3.37 (dd, *J* = 18.0, 10.0 Hz, 1H), 3.26 (dd, *J* = 18.0, 9.6 Hz, 1H), 2.72–2.65 (m, 2H), 2.04 (dd, *J* = 20.4, 10.4 Hz, 1H), 1.46 (s, 1H); ¹³C NMR (100 MHz): δ 147.7, 136.5, 134.0, 127.2, 125.4, 125.3, 120.3, 117.1, 107.7, 94.8, 63.3, 52.0, 49.2, 38.3, 34.2, 29.5; IR (KBr, cm⁻¹): 3384, 2925, 1645, 1415, 1327, 1122, 1067, 926, 838, 600; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 95:5), 1.0 mL/min; major enantiomer t_R = 28.4 min, minor enantiomer t_R = 24.6 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₀BrF₃NO⁺: 414.0675, found: 414.0662.

((1R,2R,4S)-2-(1-allyl-5-methyl-1H-pyrrol-2-yl)-4-phenylcyclobutyl)methanol (3n)

Colorless oil (yield: 53%); $[\alpha]_D^{20} = -54$ (c 1.05, CH₂Cl₂, 65% ee); ¹H NMR (400 MHz): δ 7.31–7.26 (m, 4H), 7.22–7.18 (m, 1H), 5.98–5.86 (m, 3H), 5.11 (dd, J = 10.4, 1.2 Hz, 1H), 4.72 (dd, J = 17.2, 1.2 Hz, 1H), 4.49–4.34 (m, 2H), 3.78 (d, J = 4.0 Hz, 2H), 3.29–3.14 (m, 2H), 2.80–2.73 (m, 1H), 2.76–2.61 (m, 1H), 2.18 (s, 3H), 2.03 (dd, J = 20.4, 10.4 Hz, 1H), 1.25 (s, 1H); ¹³C NMR (100 MHz): δ 144.0, 135.3, 134.5, 128.5, 128.4, 127.0, 126.2, 115.5, 105.6, 103.4, 64.2, 51.9, 45.7, 38.9, 35.2, 30.5, 12.1; IR (KBr, cm⁻¹): 3426, 2930, 1643, 1417, 1265, 1028, 737, 700; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 10.0 min, minor enantiomer t_R = 14.2 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₄NO⁺: 282.1852, found: 282.1849.

((1R,2S,4R)-2-phenyl-4-(1-(propa-1,2-dien-1-yl)-1H-pyrrol-2-yl)cyclobutyl)methanol (30)

Colorless oil (yield: 62%); $[\alpha]_D{}^{20} = -65$ (c 1.55, CH₂Cl₂, 92% ee); ¹H NMR (400 MHz): δ 7.29–7.20 (m, 5H), 6.96 (t, J = 6.4 Hz, 1H), 6.79–6.78 (m, 1H), 6.17 (t, J = 3.2 Hz, 1H), 6.07 (s, 1H), 5.48 (d, J = 6.4 Hz, 2H), 3.85–3.77 (m, 2H), 3.40–3.29 (m, 2H), 2.75–2.66 (m, 2H), 2.13 (dd, J = 20.4, 10.4 Hz, 1H), 1.47 (s,

1H); ¹³C NMR (100 MHz): δ 203.2, 143.7, 135.8, 128.4, 126.9, 126.3, 118.9, 109.1, 106.0, 97.5, 86.7, 63.7, 52.0, 38.8, 33.7, 29.8; IR (KBr, cm⁻¹): 3392, 2934, 1706, 1480, 1266, 1068, 738, 702; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 9.5 min, minor enantiomer t_R = 12.5 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₈H₂₀NO⁺: 266.1539, found: 266.1534.

ethyl 2-(2-((1R,2R,3S)-2-(hydroxymethyl)-3-phenylcyclobutyl)-1H-pyrrol-1-yl)acetate (3p)

Colorless oil (yield: 68%); $[\alpha]_D^{20} = -47$ (c 1.18, CH₂Cl₂, 90% ee); ¹H NMR (400 MHz): δ 7.33–7.25 (m, 4H), 7.23–7.19 (m, 1H), 6.57 (dd, J = 2.4, 2.0 Hz, 1H), 6.17 (t, J = 3.2 Hz, 1H), 6.11–6.10 (m, 1H), 4.62 (dd, J = 31.6, 17.6 Hz, 2H), 4.23 (q, J = 7.2 Hz, 2H), 3.80–3.72 (m, 2H), 3.25 (dd, J = 18.0, 9.6 Hz, 1H), 3.14 (dd, J = 18.0, 9.6 Hz, 1H), 2.79–2.72 (m, 1H), 2.66–2.60 (m, 1H), 2.08 (dd, J = 20.4, 10.4 Hz, 1H), 1.70 (s, 1H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz): δ 169.3, 143.7, 136.4, 128.4, 126.9, 126.3, 121.5, 108.1, 105.6, 63.9, 61.7, 52.7, 48.3, 38.5, 34.5, 30.1, 14.2; IR (KBr, cm⁻¹): 3505, 2977, 2935, 1751, 1488, 1303, 1199, 1026, 753, 701; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 16.2 min, minor enantiomer t_R = 28.3 min; ESI-HRMS: calcd. [M+H]⁺ for C₁₉H₂₄NO₃⁺: 314.1751, found: 314.1755.

((1R,2R,4S)-2-(1-benzyl-1H-pyrrol-2-yl)-4-phenylcyclobutyl)methanol (3q)

Colorless oil (yield: 72%); $[\alpha]_D^{20} = -32$ (c 1.25, CH₂Cl₂, 90% ee); ¹H NMR (400 MHz): δ 7.31–7.16 (m, 8H), 6.99 (d, J = 7.2 Hz, 2H), 6.64 (t, J = 2.4, 1H), 6.18 (t, J = 3.2 Hz, 1H), 6.14 (d, J = 1.2 Hz, 1H), 5.09 (d, J = 28.4, 16.4 Hz, 2H), 3.63–3.55 (m, 2H), 3.20–3.09 (m, 2H), 2.74–2.67 (m, 1H), 2.47–2.40 (m, 1H), 1.97 (dd, J = 20.4, 10.0 Hz, 1H), 1.12 (s, 1H); ¹³C NMR (100 MHz): δ 144.0, 138.8, 136.4, 128.8, 128.5, 127.5, 127.0, 126.3, 121.6, 107.4, 105.5, 63.8, 52.6, 50.5, 38.6, 34.9, 30.0; IR (KBr, cm⁻¹): 3416, 2934, 1603, 1494, 1452, 1296, 1076, 1028, 751, 730, 700; The enantiomeric excess was determined by HPLC with an AS-H column. (*n*-hexane: *i*-PrOH = 95:5), 1.0 mL/min; major enantiomer t_R = 14.7 min, minor enantiomer t_R = 20.3 min; ESI-HRMS: calcd. [M+H]⁺ for C₂₂H₂₄NO⁺: 318.1860, found: 318.1852.

$((1R, 2R, 4S) - 2 - (1 - allyl - 4, 7 - dihydro - 1H - indol - 2 - yl) - 4 - phenylcyclobutyl) methanol\ (3r)$

Colorless oil (yield: 42%); $[\alpha]_D^{20} = -68$ (c 1.15, CH₂Cl₂, 88% ee); ¹H NMR (400 MHz): δ 7.33-7.20 (m, 5H), 5.94-5.80 (m, 4H), 5.10 (dd, J = 10.0, 1.2 Hz, 1H), 4.79 (dd, J = 16.8, 1.2 Hz, 1H), 4.47-4.32 (m, 2H), 3.79-3.77 (m, 2H), 3.29-3.17 (m, 6H), 2.79-2.72 (m, 1H), 2.69-2.62 (m, 1H), 2.04 (dd, J = 20.0, 10.0 Hz, 1H), 1.25 (s, 1H); ¹³C NMR (100 MHz): δ 144.0, 135.0, 134.8, 128.4, 127.0, 126.2, 125.9, 124.7, 122.5, 115.7, 113.2, 102.6, 64.2, 52.2, 45.6, 38.9, 35.3, 30.1, 25.1, 23.2; IR (KBr, cm⁻¹): 3339, 2930, 1693, 1614, 1492, 1461, 1410, 1314, 1022923, 749, 699; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 14.7 min, minor enantiomer t_R = 24.1 min; ESI-HRMS: calcd. [M+H]⁺ for C₂₂H₂₆NO⁺: 320.2009, found: 320.2003.

4. Synthesis of Indole-tethered cyclobutanes^[6] and analytical date:

The solution of $3\mathbf{r}$ (1.0 eq) and *p*-benzoquinone (1.5 eq) in MeCN was stirred at room temperature overnight. After the reaction was completed, the reaction was poured into water, extracted with EtOAc (three times), the combined organic layers were dried over Na₂SO₄, evaporated, and the crude product was purified by flash chromatography on silica gel (eluting with petroleum ether/ethyl acetate) to yield the desired product **3s** (yield: 92%) as a colorless oil.

((1R,2R,4S)-2-(1-allyl-1H-indol-2-yl)-4-phenylcyclobutyl)methanol (3s)

Colorless oil (yield: 92%); $[\alpha]_D^{20} = -96$ (c 0.95, CH₂Cl₂, 85% ee); ¹H NMR (400 MHz): δ 7.57 (d, J = 7.7 Hz, 1H), 7.35-7.30 (m, 4H), 7.25-7.21 (m, 2H), 7.17-7.13 (m, 1H), 7.10-7.06 (m, 1H), 6.44 (s, 1H), 6.00-5.91 (m, 1H), 5.12 (dd, J = 10.4, 1.2 Hz, 1H), 4.85 (dd, J = 17.1, 1.2 Hz, 1H), 4.81-4.67 (m, 2H), 3.87-3.81 (m, 2H), 3.47-3.36 (m, 2H), 2.95-2.88 (m, 1H), 2.80-2.74 (m, 1H), 2.17 (dd, J = 20.4, 10.2 Hz, 1H), 1.39 (s, 1H); ¹³C NMR (100 MHz): δ 143.6, 143.5, 137.0, 133.6, 128.5, 127.9, 126.9, 126.4, 121.0, 120.0, 119.5, 116.1, 109.3, 98.2, 63.9, 51.6, 45.5, 38.9, 34.4, 30.3; IR (KBr, cm⁻¹): 3366, 2929, 1644, 1603, 1494, 1462, 1409, 1312, 1016, 922, 748, 700; The enantiomeric excess was determined by HPLC with an AD-H

column. (*n*-hexane: *i*-PrOH = 85:15), 1.0 mL/min; minor enantiomer $t_R = 8.4$ min, major enantiomer $t_R = 9.6$ min; ESI-HRMS: calcd. [M+H]⁺ for $C_{22}H_{24}NO^+$: 318.1852, found: 318.1848.

5. Synthesis of the fused 12-membered macrolide and analytical date:

Step 1: The mixture of **3a** (26.7 mg, 0.1 mmol), pent-4-enoic acid (12.2 mg, 0.12 mmol), N,N'-dicyclohexylcarbodiimide (30.9 mg, 0.15 mmol) and 4-dimethylamiopryidine (2.4 mg, 0.02 mmol) in toluene (1.0 mL) was stirred at room temperature for 3 h. The reaction mixture was evaporated under vacuum; the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to afford the desired product **3a'** (Yield: 96%) as colorless oil.

Step 2: A flame-dried vial was charged with 3a' (10.5 mg, 0.03 mmol), evacuated with an oil pump and refilled with argon gas, then CH₂Cl₂ (20.0 mL) was added. Finally, Grubbs Catalyst 2nd Generation (1.0 mg, 0.0012 mmol) was added to the above solution under argon gas protection. The resultant solution was stirred at room temperature for 24 h. The reaction solution was then concentrated and the residue was purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) to afford the desired products of 3a'' (Yield: 95%) as colorless oil.

((1R,2R,4S)-2-(1-allyl-1H-pyrrol-2-yl)-4-phenylcyclobutyl)methyl pent-4-enoate (3a')

Colorless oil (yield: 96%); ¹H NMR (400 MHz): δ 7.33-7.29 (m, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 7.23-7.19 (m, 1H), 6.58 (t, *J* = 2.1 Hz, 1H), 6.13 (t, *J* = 3.2 Hz, 1H), 6.06-6.05 (m, 1H), 5.98-5.89 (m, 1H), 5.82-5.72 (m, 1H), 5.16 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.04-4.95 (m, 3H), 4.49-4.38 (m, 2H), 4.30-4.19 (m, 2H), 3.27-3.16 (m, 2H), 2.90-2.83 (m, 1H), 2.70-2.64 (m, 1H), 2.36-2.28 (m, 4H), 2.07 (dd, *J* = 20.4, 10.4 Hz, 1H); ¹³C NMR (100 MHz): δ 173.0, 143.3, 136.7, 135.4, 134.6, 128.4, 126.9, 126.3, 120.7, 116.5, 115.4, 107.2, 104.9, 65.3, 49.1, 48.8, 39.7, 34.7, 33.4, 30.7, 28.7; IR (KBr, cm⁻¹): 3081, 2976, 2940, 1735,

1642, 1486, 1444, 1285, 1245, 1169, 993, 919, 754, 702; ESI-HRMS: calcd. $[M+H]^+$ for $C_{23}H_{28}NO_2^+$: 350.2115, found: 350.2111.

(2S,2aR,14bR,E)-2-phenyl-2a,3,6,7,10,14b-hexahydro-1H-cyclobuta[c]pyrrolo[2,1-e][1,6]oxaazacyclododecin-5(2H)-one (3a'')

Colorless oil (yield: 95%); $[\alpha]_D^{20} = -85$ (c 0.85, CH₂Cl₂, 95% ee); ¹H NMR (400 MHz): δ 7.37-7.33 (m, 2H), 7.30-7.28 (m, 2H), 7.24-7.22 (m, 1H), 6.52 (t, J = 2.0 Hz, 1H), 6.21-6.20 (m, 1H), 6.15-6.14 (m, 1H), 5.53 (ddd, J = 15.2, 6.4, 2.8 Hz, 1H), 5.20-5.13 (m, 1H), 4.52-4.40 (m, 2H), 4.13 (m, ddd, J = 25.6, 11.6, 3.6 Hz, 2H), 3.19-3.09 (m, 2H), 2.82-2.69 (m, 2H), 2.43-2.30 (m, 4H), 2.10 (dd, J = 20.8 10.4 Hz, 1H); ¹³C NMR (100 MHz): δ 173.4, 143.3, 136.4, 130.6, 128.5, 128.2, 126.8, 126.4, 120.8, 107.0, 106.2, 64.6, 51.8, 49.0, 38.2, 37.3, 35.1, 30.6, 29.6; IR (KBr, cm⁻¹): 2939, 1731, 1479, 1443, 1337, 1248, 1152, 755, 700; The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane: *i*-PrOH = 90:10), 1.0 mL/min; major enantiomer t_R = 11.8 min, minor enantiomer t_R = 14.6 min; ESI-HRMS: calcd. [M+H]⁺ for C₂₁H₂₄NO₂⁺: 322.1802, found: 322.1797.

6. Determination of the stereochemistry of the cyclobutane adducts^[7]:

2,4-dinitrophenylhydrazine (21.8 mg, 0.11 mmol) was added to a solution of **3h'** (34.4 mg, 0.1 mmol) in MeOH (1.5 mL) and AcOH (a drop) The mixture was stirred at room temperature for 24 h. The reaction mixture was then concentrated *in vacuo* and the residue was purified by column chromatography (petroleum ether/ethyl acetate) to afford pure product of **3h''** (yield: 85%) as a orange solid.

Orange crystal of **3h**'' suitable for X-Ray analysis was obtained by recrystallization from petroleum ether /CH₂Cl₂

Datablock:

Bond precision:	C-C = 0.0118	8 A Wavelength=0.71070		
Cell:	a=5.6126(3)	b=16.8138(9) $c=25.1126(10)$		
alpha=90 be	a=90 beta=90 gamma=90			
Temperature:	292 K			
	Calculated	l Rep	orted	
Volume	2369.9(2)	2369	9.8(2)	
Space group	P 21 21 21	P 21	1 21 21	
Hall group	P 2ac 2ab	P 2a	ic 2ab	
Moiety formula	C24 H22 Br N	N5 O4 C24 H	122 Br N5 O4	
Sum formula	C24 H22 Br N	15 O4 C24 H	22 Br N5 O4	
Mr	524.37	524.	.38	
Dx,g cm-3	1.470	1.47	0	
Z	4	4		
Mu (mm-1)	1.775	1.77	5	
F000	1072.0	1072	.0	
F000'	1071.27			
h,k,lmax	6,20,30	6,20,2	30	
Nref	2613[4490]	4294	Ļ	
Tmin,Tmax	0.556,0.653	0.967,	1.000	
Tmin'	0.532			
Correction method= MULTI-SCAN				
Data completeness= $1.64/0.96$ Theta(max)= 25.680				
R(reflections) = 0.0676(2219) wR2(reflections) = 0.2118(4294)				
S = 0.928 Npar= 307				

7. NMR Spectrum:

8. HPLC Data:

Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
1	DAD 210.8 nm	12.632	3.47405e4	779.61511	96.8531
2	DAD 210.8 nm	17.320	1128.75403	25.41377	3.1469

2

DAD 210.8 nm

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 210.8 nm	24.383	2.45484e4	292.96021	50.1230
2	DAD 210.8 nm	41.868	2.44279e4	204.32729	49.8770

2530.82275

40.715

24.09236

2.3062

Peak	Processed Channel	Retention Time (min)	Peak Area	Peak Height	Peak Area (%)
1	DAD 210.8 nm	10.538	3.93419e4	975.06042	49.3218
2	DAD 210.8 nm	16.663	4.04238e4	787.07544	50.6782

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 210.8 nm	20.826	2.49617e4	335.94046	50.5582
2	DAD 210.8 nm	27.815	2.44105e4	290.61996	49.4418

I Cak	Tiocessed Channel	Time (min)	(mAU*s)	(mAU)	$1 \operatorname{cak} \operatorname{Aica}(70)$
1	DAD 210.8 nm	22.555	2.70532e4	285.97119	49.6723
2	DAD 210.8 nm	32.523	2.74101e4	264.13980	50.3277

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 210.8 nm	22.638	2.31475e4	247.2093	94.2487
2	DAD 210.8 nm	32.889	1412.52405	14.95035	5.7513

Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
1	DAD 210.8 nm	25.369	4235.46484	43.98576	50.2732
2	DAD 210.8 nm	36.937	4189.42773	34.20866	49.7268

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 210.8 nm	20.694	1.49598e4	190.64757	97.7465
2	DAD 210.8 nm	29.427	344.88440	4.62198	2.2535

1DAD 210.8 nm11.4413.49133e4485.2903749.61592DAD 210.8 nm15.1913.54407e4478.1660850.3654	Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
2 DAD 210.8 nm 15.191 3.54407e4 478.16608 50.3654	1	DAD 210.8 nm	11.441	3.49133e4	485.29037	49.6159
	2	DAD 210.8 nm	15.191	3.54407e4	478.16608	50.3654

 $\frac{1}{2}$

DAD 254.4 nm

Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
1	DAD 254.4 nm	9.359	3055.26367	100.90082	50.1840
2	DAD 254.4 nm	13.233	3032.86133	74.84806	49.8160

338.03052

13.372

9.16491

3.8001

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	(mAU)	Peak Area (%)
1	DAD 210.8 nm	19.423	6.31269e4	853.27728	49.3150
2	DAD 210.8 nm	23.455	6.48805e4	741.45447	50.6850

Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
1	DAD 210.8 nm	19.133	492.01031	10.39235	1.0055
2	DAD 210.8 nm	22.919	4.84421e4	574.87585	98.9945

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 210.8 nm	24.233	2.36339e4	307.88058	50.3742
2	DAD 210.8 nm	28.632	2.32828e4	245.36508	49.6258

Peak	Processed Channel	Retention	Peak Area	Peak Height	Peak Area (%)
		Time (min)	(mAU*s)	(mAU)	
1	DAD 210.8 nm	24.583	1850.07068	25.57025	1.6792
2	DAD 210.8 nm	28.436	1.08329e5	983.88000	98.3208

Peak	Processed Channel	Retention	Peak Area	Peak Height	Peak Area (%)
		Time (min)	(mAU*s)	(mAU)	
1	DAD 254.4 nm	9.520	5.51196e4	1673.75598	95.9804
2	DAD 254.4 nm	12.529	2308.38916	71.02544	4.0196

Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
1	DAD 230.16 nm	16.642	3.74961e4	682.27606	50.0543
2	DAD 230.16 nm	28.698	3.74147e4	430.18222	49.9457

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 230.16 nm	16.230	7.47050e4	1327.39063	95.1180
2	DAD 230.16 nm	28.252	3834.27832	49.64068	4.8820

Peak	Processed Channel	Retention	Peak Area	Peak Height	Peak Area (%)
		Time (mm)	(IIIAU 'S)	(IIIAU)	
1	DAD 254.4 nm	15.685	1.31822e4	220.67876	50.5853
2	DAD 254.4 nm	20.555	1.28771e4	269.34744	49.4147

Dool	Processed Channel	Retention	Peak Area	Peak Height	Peak Area (%)
ТСак	Theessed Chaliner	Time (min)	(mAU*s)	(mAU)	
1	DAD 254.4 nm	14.722	8.71798e4	1195.40088	94.7631
2	DAD 254.4 nm	20.253	4817.78125	126.40548	5.2369

Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
1	DAD 254.4 nm	14.210	1857.14258	41.92830	49.6693
2	DAD 254.4 nm	23.224	1881.87476	26.49141	50.3307

Peak Processed Channel		Retention	Peak Area	Peak Height	Peak Area (%)
Tour	ribeebbed chamer	Time (min)	(mAU*s)	(mAU)	Four Fileu (70)
1	DAD 254.4 nm	14.742	3024.91211	65.01622	94.1475
2	DAD 254.4 nm	24.140	188.03696	2.87063	5.8525

2

DAD 254.4 nm

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254.4 nm	8.362	1.87965e4	754.09204	49.5044
2	DAD 254.4 nm	9.701	1.91728e4	673.86755	50.4956

9.609

2.97899e4

889.34247

92.3271

Peak	Processed Channel	Time (min)	(mAU*s)	(mAU)	Peak Area (%)
1	DAD 254.4 nm	12.179	1077.23547	27.96583	50.6295
2	DAD 254.4 nm	14.550	1050.44958	23.06739	49.3705

9. References:

[1] W. E. Noland, N. P. Lanzatella, L. Venkatraman, N. F. Anderson, G. C. Gullickson. J. Heterocyclic Chem., 2009, 46, 1154-1176.

- [2] H. J. Anderson, S. -F. Lee. Canadian Journal of Chemistry, 1965, 43, 409-414.
- [3] P. A. Liddell, T. P. Forsyth, M. O. Senge, K. M. Smith. Tetrahedron, 1993, 49, 1343-1350.
- [4] H. Çavdar, Nurullah Saraçoğlu. Tetrahedron, 2005, 61, 2401-2405.
- [5] D. J. Zack, T. Bannister, T. Vojkovsky, Z. -Y. Yang, C. Berlinicke, WO2011119777 A2, 2011.

[6] L. Hong, C. -X. Liu, W. -S. Sun, L. Wang, Kwokyin Wong, R. Wang. Org. Lett., 2009, 11, 2177–2180.

[7] K. Shen, X. –L. Han, X. –Y. Lu. Org. Lett., 2012, 14, 1756–1759.