Supporting information for

Copper (II) ion selective and strong acid-tolerable hydrogel by an L-histidine ester terminated bolaamphiphile: from single molecular thick nanofiber to single-wall nanotube

Yaqing Liu,^a Tianyu Wang,^{*a} Zhibo Li,^b and Minghua Liu^{*a}

^a Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. Tel:86-10-82612655;

E-mail: <u>liumh@iccas.ac.cn</u> (M. Liu); <u>twang@iccas.ac.cn</u> (T. Wang)

^b State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Experimental Section

Instruments and methods: ¹H NMR spectra were recorded on a Bruker AV400 (400 MHz) spectrometer. Mass spectral data were obtained by using a BIFLEIII matrix-assisted laser desorption/ionization time-of fight mass spectrometry (MALDI-TOF MS) instrument. Elemental analysis was performed on a Carlo–Erba-1106 Thermo-Quest.

Fourier transform infrared (FT-IR) spectra were recorded on a JASCO FT/IR-660 plus spectrophotometer with a wavenumber resolution of 4 cm⁻¹ at room temperature. X-ray diffraction (XRD) was achieved on a Rigaku D/Max-2500 X-ray diffractometer (Japan) with Cu/K α radiation (λ =1.5406Å), which was operated at 45 kV, 100 mA. Scanning electron microscopy (SEM) was performed on a Hitachi S-4800 FE-SEM microscope and transmission electron microscopy (TEM) images were obtained on a JEM-1011 electron microscope operating at accelerating voltages of 10 and 200 kV, respectively.

Cryo-TEM was performed on a JEOL JEM-2200FS TEM operating at 200 kV equipped with a Gatan cryoholder.

Synthesis: All starting materials and solvents were purchased from Aldrich, Acros Organics or Beijing Chemicals and used as received unless otherwise stated. Milli-Q water (18.2M Ω cm) was used in all cases. The bolaamphiphile, N,N-eicosanedioyl-di-L-histidine methyl esters (**BolaHis**) was synthesized by the amidation of L-histidine methyl ester with eicosanedioic acid. Yield=61%. ¹H NMR (400MHz, [D₆]-DMSO, 25°C, TMS): 1.23(s, 30H; CH₂), 1.41-1.44(m, 4H; CH₂), 2.04-2.08(t, ³J(H,H)=7.2 Hz, 4H), 2.79-2.92(m, 4H; CH₂), 3.58(s, 6H; CH₃), 4.43-4.48(q, ³J(H,H)=7 Hz, 2H; CH), 6.77(s, 2H; NH), 7.51(s, 2H; imi-C(4)H), 8.14 (s, 2H; imi-C(2)H), 11.80(s, 2H; imi-NH). MALDI-TOF-MS: m/z (%): 645.7 [M+H]⁺, 667.7 [M+Na]⁺, 683.7 [M+K]⁺. Elemental Analysis calcd(%) for C₃₄H₅₆N₆O₆: C 63.33, H 8.75, N 13.03; found: C 63.18, H 8.84, N 12.69.

Procedures: For the TEM and SEM measurements, a small amount of hydrogels were placed onto carbon coated copper grid (unstained) or single-crystal silicon plate (Pt coated) respectively after vacuum-dried for 12 hours. In the case of preparing samples for XRD measurements, gels were cast onto glass plates and dried in vacuum. Platelets made from the mixture of vacuum-dried xerogels with KBr powder and hydrogel sample nipped by CaF_2 platelets were used for FT-IR spectral measurements.

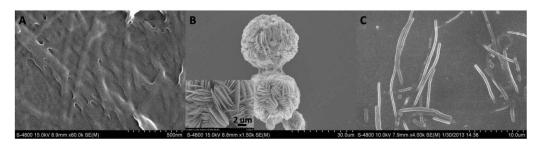


Figure S1: SEM images of self-assembled nanostructures (precipitates) formed by **BolaHis** with CoCl₂ (A), NiCl₂ (B), and ZnCl₂ (C).

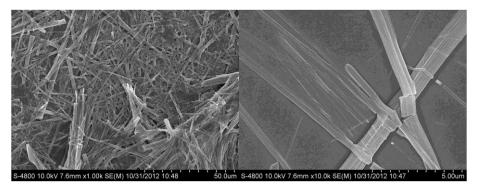


Figure S2: SEM images of hydrogel formed by **BolaHis** in 6M HCl solution.

Figure S3: The photographs of transition process from **BolaHis**/ Cu^{2+} hydrogel to **BolaHis**/ H^+ hydrogel.