Electronic Supporting Information for

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Takayuki Nakajima,* Miyuki Sakamoto, Sachi Kurai, Bunsho Kure, Tomoaki Tanase*

Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-higashi-machi, Nara 630-8506, Japan.

Fax: +81 742 203847; Tel: +81 742 203399; E-mail: tanase@cc.nara-wu.ac.jp

Experimental and spectral data for complexes 1a-c and 2a-d

Table S1. Crystallographic Data of Complexes **1a**·3CH₂Cl₂, **1b**·2Me₂CO, **2c**·4MeCN and **2d**·CH₂Cl₂

Table S2. Structural Parameters of 1a, 1b, 2c and 2d.

Figure S1. ORTEP diagram for 1b with the atomic numbering scheme.

Figure S2. ORTEP diagram for 2c with the atomic numbering scheme.

Figure S3. ESI-TOF-MS spectra of 1a in CH₂Cl₂.

Figure S4. ESI-TOF-MS spectra of 1b in CH₂Cl₂.

Figure S5. ESI-TOF-MS spectra of 1c in CH₂Cl₂.

Figure S6. ESI-TOF-MS spectra of 2a in CH₂Cl₂.

Figure S7. ESI-TOF-MS spectra of 2b in CH₂Cl₂.

Figure S8. ESI-TOF-MS spectra of 2c in CH₂Cl₂.

Figure S9. ESI-TOF-MS spectra of 2d in CH₂Cl₂.

Figure S10. ESI-TOF-MS spectra of 3a in CH₂Cl₂.

Figure S11. $^{31}P\{^{1}H\}$ NMR spectrum of 3a in CD₂Cl₂.

Figure S12. DFT full-optimized structures of (a) **1a** and (d) **2d** by B3LYP methods with lanl2dz.

Figure S13. Representative MO diagrams for the DFT optimized structure of (a) **1a** and (b) **2d** by B3LYP methods with lanl2dz.

Figure S14. Natural population analyses, natural charge and Wiberg bond indices, for the DFT optimized structures of (a) **1a** and (b) **2d** by B3LYP methods with lanl2dz.

Experimental and spectral data for complexes 1a-c and 2a-d General procedure for the synthesis of 1a-c

To a solution of dpmppp in dichloromethane (10 mL) was added 1 eq. of [RhCl(cod)]₂ and 1 eq. of RNC, and the reaction mixture was stirred at room temperature for 12 h. The solvent was removed under reduced pressure to dryness and the residue was washed with Et_2O (5 mL \times 3) and acetone (3 mL \times 1) and extracted with 10 mL of dichloromethane. The extract was concentrated to ca. 3 mL. After addition of diethyl ether, the solution was allowed to stand at room temperature to afford pale orange crystals of **1a–c**.

[Rh₂Cl₂(dpmppp)(XylNC)]-Et₂O·0.5CH₂Cl₂ (1a). Yield: 180 mg, 74% from dpmppp (0.169 mmol). Anal. Calcd for C_{55.5}H₆₂Cl₅NOP₄Rh₂: C, 52.65; H, 4.94; N, 1.10. Found: C, 52.83; H, 5.05; N, 1.37. IR (KBr): v = 2058 (s), 1434 (s), 1098 (s), 743 (m), 718 (m), 694 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z = 1028.02 ($z = 1, [Rh₂Cl(dpmppp)(XylNC)]^+$ (1028.06)). ¹H NMR (CD₂Cl₂): $\delta = 1.1$ (m, 1H, CH₂), 1.67 (s, 6H, o-Me (Xyl)), 2.0 (m, 1H, CH₂), 2.28 (brs, 4H, CH₂), 3.41 (m, 2H, CH₂), 4.72 (m, 2H, CH₂), 6.78-8.04 (m, 33H, Ph). ³¹P{¹H} NMR (CD₂Cl₂): $\delta = 15.6$ (dt, 2P, 1 $J_{PRh} = 134$ Hz, $^2J_{PP} = 38$ Hz, P_{out}), 21.0 (dt, 2P, $^1J_{PRh} = 143$ Hz, $^2J_{PP} = 35$ Hz, P_{in}).

[Rh₂Cl₂(dpmppp)(DipNC)]·0.5CH₂Cl₂ (1b). Yield: 54.2 mg, 64% from dpmppp (0.075 mmol). Anal. Calcd for C_{54.5}H₅₈Cl₃NP₄Rh₂: C, 56.28; H, 5.03; N, 1.20. Found: C, 56.24; H, 4.71; N, 1.25. IR (KBr): v 2051 (s), 1434 (s), 1097 (s), 742 (m), 717 (m), 693 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z 1084.09 (z1, [Rh₂Cl(dpmppp)(DipNC)]⁺ (1084.12)). ¹H NMR (CD₂Cl₂): δ 0.71 (d, 12H, Me (ⁱPr), J = 7 Hz), 1.10 (m, 1H, CH₂), 2.00 (m, 1H, CH₂), 2.22 (brs, 4H, CH₂), 2.53 (7, 2H, CH (iPr)), 3.44 (m, 2H, CH₂), 4.71 (m, 2H, CH₂), 6.85-8.03 (m, 33H, Ph). ³¹P{¹H} NMR (CD₂Cl₂): δ 15.6 (dt, 2P, ¹J_{PRh} = 131 Hz, ²J_{PP} = 36 Hz, P_{out}), 21.0 (dt, 2P, ¹J_{PRh} = 143 Hz, ²J_{PP} = 36 Hz, P_{in}).

[Rh₂Cl₂(dpmppp)(MesNC)]·CH₂Cl₂ (1c). Yield: 98.3 mg, 61% from dpmppp (0.091 mmol). Anal. Calcd for $C_{52}H_{53}Cl_4NP_4Rh_2$: C, 53.68; H, 4.59; N, 1.20. Found: C, 53.50; H, 4.82; N, 1.10. IR (KBr): v 2043 (s), 1433 (s), 1099 (s), 740 (m), 722 (m), 693 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z 1042.15 (z1, [Rh₂Cl(dpmppp)(MesNC)]⁺ (1042.08)). ¹H NMR (CD₂Cl₂): δ 1.10 (m, 1H, CH₂), 1.62 (s, 6H, o-Me (Mes)), 2.0 (m, 1H, CH₂), 2.12 (s, 4H, p-Me (Mes)), 2.27 (s, 4H, CH₂), 3.39 (m, 2H, CH₂), 4.71 (m, 2H, CH₂), 6.60-8.04 (m, 32H, Ph). ³¹P{¹H} NMR (CD₂Cl₂): δ 15.5 (dt, 2P, ¹ J_{PRh} = 133 Hz, ² J_{PP} = 40, 35 Hz, P_{out}), 21.1 (dt, 2P, ¹ J_{PRh} = 143 Hz, ² J_{PP} = 38, 35Hz, P_{in}).

General procedure for the synthesis of 2a-c

The solution of $\mathbf{1a-c}$ in CD_2Cl_2 (0.4 mL) was placed at -15 °C and reaction progress was monitored by $^{31}P\{^{1}H\}$ NMR. After 24 h, $\mathbf{2a-c}$ were formed in quantitative yields. Solvent was removed under reduced pressure to dryness to give the mixture of $\mathbf{2}$ and $\mathbf{1}$ with the ration of ca 9 : 1, which were used for IR measurements.

$[Rh_2Cl_2(O_2)(dpmppp)(XylNC)]$ (2a).

IR (KBr): v 2136 (s), 1434 (s), 1096 (m), 803 (m), 742 (m), 719 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z 1060.08 (z1, [Rh₂Cl(O₂)(dpmppp)(XylNC)]⁺ (1060.05)). ¹H NMR (CD₂Cl₂): δ 1.20-1.32 (m, 1H, CH₂), 1.98 (s, 6H, o-Me (Xyl)), 2.00 (m, 1H, CH₂), 2.45 (m, 2H, CH₂), 2.94 (m, 2H, CH₂), 3.48 (m, 2H, CH₂), 4.71 (m, 2H, CH₂), 6.95-8.14 (m, 33H, Ph). ³¹P{¹H} NMR (CD₂Cl₂): δ 9.6 (dt, 2P, ¹ J_{PRh} = 96 Hz, ² J_{PP} = 32 Hz, P_{out}), 27.6 (dt, 2P, ¹ J_{PRh} = 136 Hz, ² J_{PP} = 32 Hz, P_{in}).

$[Rh_2Cl_2(O_2)(dpmppp)(DipNC)]$ (2b).

IR (KBr): v 2137 (s), 1438 (s), 1098 (m), 741 (m), 715 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z 1116.20 (z1, [Rh₂Cl(O₂)(dpmppp)(DipNC)]⁺ (1116.11)). ¹H NMR (CD₂Cl₂): δ 0.97 (s, 12H, Me (i Pr)), 1.20-1.32 (m, 1H, CH₂), 2.02 (m, 1H, CH₂), 2.46 (m, 2H, CH₂), 2.95 (m, 2H, CH₂), 3.36 (m, 2H, CH (i Pr)), 3.46 (m, 2H, CH₂), 4.56 (m, 2H, CH₂), 6.80-8.40 (m, 33H, Ph). ³¹P{¹H} NMR (CD₂Cl₂): δ 11.3 (dt, 2P, ¹J_{PRh} = 97 Hz, ²J_{PP} = 32 Hz, P_{out}), 27.5 (dt, 2P, ¹J_{PRh} = 136 Hz, ²J_{PP} = 33 Hz, P_{in}).

$[Rh_2Cl_2(O_2)(dpmppp)(MesNC)]\ (2c).$

IR (KBr): v 2137 (s), 1435 (m), 1098 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z 1074.17 (z1, [Rh₂Cl(O₂)(dpmppp)(MesNC)]⁺ (1074.07)). ¹H NMR (CD₂Cl₂): δ 1.20-1.32 (m, 1H, CH₂), 1.94 (s, 6H, o-Me (Mes)), 2.01 (m, 1H, CH₂), 2.27 (s, 3H, p-Me (Mes)), 2.46 (m, 2H, CH₂), 2.95 (m, 2H, CH₂), 3.47 (m, 2H, CH₂), 4.72 (m, 2H, CH₂), 6.70-8.10 (m, 32H, Ph). ³¹P{¹H} NMR (CD₂Cl₂): δ 9.4 (dt, 2P, ¹ J_{PRh} = 97 Hz, ² J_{PP} = 34 Hz, P_{out}), 27.5 (dt, 2P, ¹ J_{PRh} = 136 Hz, ² J_{PP} = 35 Hz, P_{ip}).

Crystals of 2c suitable for X-ray analysis was obtained by recrystallization from CH₃CN / Et₂O.

$[Rh_2Cl_2(O_2)(dpmppp)(^tBuNC)]$ (2d).

To a solution of [Rh₃Cl₃(dpmppp)(CO)₂] (17.0 mg, 0.015 mmol) in CH₂Cl₂ (10 mL) was added ^tBuNC. The mixture was concentrated to ca. 3mL. After addition of Et₂O, the solution was stored at -15 °C to afford red precipitates, which was removed by

filtration. The filtrate was allowed to stand at room temperature under air to give red crystals of **2d**. Yield: 5 mg, 29%. Anal. Calcd for $C_{54}H_{68}Cl_6NO_{3.5}P_4Rh_2$: C, 48.78; H, 5.16; N, 1.05. Found: C, 48.73; H, 5.06; N, 1.05. IR (KBr): v 2182 (s), 1434 (s), 1099 (s), 861 (w), 742 (m), 721 (m), 694 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z 1012.45 (z1, [Rh₂Cl(dpmppp)(t BuNC)]⁺ (1012.05)). 1 H NMR (CD₂Cl₂): δ 0.83 (s, 9H, Me (t Bu)), 1.30 (m, 1H, CH₂), 2.15 (m, 1H, CH₂), 2.51 (m, 2H, CH₂), 2.96 (m, 2H, CH₂), 3.33 (m, 2H, CH₂), 5.07 (m, 2H, CH₂), 7.20-8.14 (m, 30H, Ph). 31 P{ 1 H} NMR (CD₂Cl₂): δ 5.8 (dt, 2P, 1 J_{PRh} = 97 Hz, 2 J_{PP} = 33 Hz, P_{out}), 27.3 (dt, 2P, 1 J_{PRh} = 143 Hz, 2 J_{PP} = 35 Hz, P_{in}).

Reaction of 2a with HCl in the presence of PPh₃.

After a solution of **1a** (8.2 mg, 7.7 μ mol) in CD₂Cl₂ (0.4 ml) was kept for 24 h at -15 °C under air, **2a** was formed quantitatively, which was confirmed by ³¹P{¹H} NMR. To the solution, HCl in Et₂O (1.0 M, 23.1 μ l, 23.1 μ mol) and PPh₃ (2.0 mg, 7.6 μ mol) were added successively at room temperature to form [Rh₂Cl₄(dpmppp)(XylNC)] (**3a**) and Ph₃P=O in 95 and 75% yields, respectively.

3a: IR (KBr): v 2167 (s), 1435 (s), 1098 (s), 739 (m), 691 (m) cm⁻¹. ESI-MS (CH₂Cl₂): m/z 1098.02 (z1, [Rh₂Cl₃(dpmppp)(XylNC)]⁺ (1098.00)), 966.95 (z1, [Rh₂Cl₃(dpmppp)]⁺ (966.93)). ¹H NMR (CD₂Cl₂): δ 1.33 (m, 2H, CH₂), 2.01 (m, 2H, CH₂), 3.70 (m, 4H, CH₂), 4.60 (m, 2H, CH₂), 6.93-8.07 (m, 33H, Ph). ³¹P{¹H} NMR (CD₂Cl₂): δ 4.6 (dt, 2P, ¹ J_{PRh} = 90 Hz, ² J_{PP} = 32 Hz, P_{out}), 32.1 (dt, 2P, ¹ J_{PRh} = 135 Hz, $^2J_{PP}$ = 31 Hz, P_{in}).

Crystallography. X-ray The crystals of $1a \cdot 3CH_2Cl_2$ $1b \cdot 2Me_2CO$, 2c·4MeNC·0.5H₂O and 2d·CH₂Cl₂ suitable for X-ray analyses were quickly coated with Paratone N oil and mounted on top of a loop fiber at room temperature. Crystal and experimental data are summarized in Tables S1-2. All data were collected at -120 °C Rigaku AFC8R/Mercury **CCD** diffractometer equipped with on graphite-monochromated Mo K\alpha radiation using a rotating-anode X-ray generator (50 kV, 180 mA) and a Rigaku VariMax Mo/Saturn CCD diffractometer equipped with graphite-monochromated Mo Kα radiation using a rotating-anode X-ray generator RA-Micro7 (50 kV, 24 mA). A total of 1440 for 1a, 1b, 2c and 2160 for 2d oscillation images, covering a whole sphere of $6^{\circ} < 2\theta < 55^{\circ}$ were corrected by ω -scan method. The crystal-to-detector (70×70 mm) distance was set at 45 or 60 mm. The data were processed using the Crystal Clear 1.3.5 program (Rigaku/MSC)¹ and corrected for

Lorentz–polarization and absorption effects.² The structures of complexes were solved by direct methods with SHELXS-97³ (**2d**) and SIR-92⁴ (**1a**, **1b**, **2c**), and were refined on F^2 with full-matrix least-squares techniques with SHELXL-97³ using *Crystal Structure* 4.0 package.⁵ All non-hydrogen atoms were refined with anisotropic thermal parameters, and the C-H hydrogen atoms were calculated at ideal positions and refined with riding models. All calculations were carried out on a Windows PC with *Crystal Structure* 4.0 package.⁵

In the structure of 1a, the solvated two CH_2Cl_2 molecules are distorted with two sites for each molecule and the populations were refined as C52/C53 = C17/C16 = 0.53/0.47 and C54/C55 = C19/C110 = 0.58/0.42. The distorted molecules were refined anisotropically with constrained and fvar techniques. In 2c, the SQUEEZE program of the PLATON suite found a void of 146 Å^3 at (0, 0, 0.5) and removed 17 e^- , corresponding to a MeCN/cell. This molecule could not be located owing to disorder. However, this molecule is included in the empirical formula and calculations based on it.

References

- 1) Crystal Clear, version 1.3.5; Operating software for the CCD detector system, Rigaku and Molecular Structure Corp., Tokyo, Japan and The Woodlands, Texas, 2003.
- 2) Jacobson, R. *REQAB*; Molecular Structure Corporation: The Woodlands, Texas, USA, 1998.
- 3) Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structures. University of Göttingen, Göttingen, Germany, 1996.
- 4) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Cryst. 1994, 27, 435-436.
- 5) CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

 $Table~S1.~Crystallographic~Data~of~Complexes~1a\cdot 3CH_2Cl_2,~1b\cdot 2Me_2CO,~2c\cdot 4.5MeNC~and~2d\cdot CH_2Cl_2$

Compound	$1a \cdot 3CH_2Cl_2$	$1b \cdot 2Me_2CO$	2c ·4.5MeNC	$2d \cdot CH_2Cl_2$
formula	C ₅₃ H ₅₅ Cl ₈ NP ₄ Rh ₂	$C_{60}H_{69}NO_2P_4Rh_2$	$C_{60}H_{64.5}Cl_2N_{5.5}$	C ₄₇ H ₅₁ Cl ₄ NO ₂
			$O_2P_4Rh_2$	P_4Rh_2
formula wt	1319.35	1236.82	1295.32	1133.44
cryst. syst	monoclinic	monoclinic	triclinic	orthorhombic
space group	$P2_1/n$	$P2_1/n$	P1-	$Pna2_1$
a, Å	13.404(7)	13.687(5)	12.604(6)	29.706(15)
b, Å	14.372(8)	14.485(6)	12.861(5)	14.423(7)
c, Å	30.132(12)	29.226(11)	20.226(9)	11.405(6)
α , deg			73.940(7)	
β , deg	95.9511(12)	91.683(6)	80.980(6)	
γ, deg			74.474(7)	
V, Å ³	5773(5)	5792(4)	3023(3)	4887(4)
Z	4	4	2	4
temp, °C	-120	-120	-120	-120
$D_{ m calcd}$, g cm $^{ ext{-}1}$	1.518	1.418	1.423	1.541
$\mu,mm^{\text{-}1}(Mo\;K\alpha)$	1.086	0.813	0.784	1.061
F(000)	2664	2544	1326	2296
2θ range, deg	6–55	6–55	6–55	6–55
$R_{\rm int}$	0.050	0.052	0.051	0.065
no. of reflns collected	54025	66152	35608	42551
no. of unique reflns	13226	13179	13775	10915
no. of obsd reflns	11658	10861	10071	9275
$(I > 2\sigma(I))$				
no. of variables	651	648	674	542
$R1^a$	0.056	0.059	0.064	0.067
$wR2^b$	0.147	0.155	0.193	0.183
GOF	1.086	1.159	1.069	1.067
Flack Parameter				0.08(4)
CCDC number	CCDC 928791	CCDC 928792	CCDC 928793	CCDC 928794

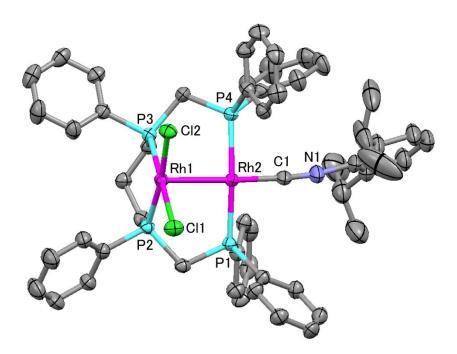

 $aR1 = \Sigma ||F_o|| - |F_c||/\Sigma |F_o||$ (for obsd. refs with $I > 2\sigma(I)$). $aR2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}$ (for all refs).

Table S2. Structural Parameters of 1a, 1b, 2c and 2d.^a

	1a	1b	2c	2d
Rh1-Rh2	2.6873(10)	2.6949(10)	2.7455(10)	2.7637(7)
Rh1-Cl1	2.3845(14)	2.4179(14)	2.4016(17)	2.4278(19)
Rh1-Cl2	2.4030(15)	2.3864(13)	2.4121(16)	2.412(2)
Rh1-P2	2.2034(15)	2.1993(12)	2.1928(16)	2.2259(19)
Rh1-P3	2.2027(14)	2.2074(13)	2.2026(16)	2.2112(19)
Rh2-P1	2.3095(14)	2.3002(13)	2.3472(14)	2.363(2)
Rh2-P4	2.2951(15)	2.3061(12)	2.3649(14)	2.3650(19)
Rh2-C1	1.844(4)	1.864(5)	1.927(6)	1.950(8)
Rh2-O1			2.016(5)	2.039(5)
Rh2-O2			2.026(4)	2.021(5)
C1-N1	1.169(6)	1.164(6)	1.158(7)	1.189(10)
O1–O2			1.436(4)	1.449(7)
Rh1-Rh2-O1			114.83(9)	118.64(14)
Rh1-Rh2-O2			156.41(10)	160.44(15)
O1-Rh1-O2			41.63(13)	41.8(2)
Rh1-Rh2-C1	172.79(13)	167.97(14)	83.14(13)	79.7(2)
Cl1-Rh1-Cl2	89.50(5)	89.91(4)	89.52(5)	88.96(6)
P2-Rh1-P3	95.10(5)	94.41(5)	94.46(6)	93.59(6)
P1-Rh2-P4	170.89(4)	167.19(4)	170.41(6)	172.40(7)

^a The atomic numbering schemes are shown in Figures 1, 4, S1 and S2.

Figure S1. ORTEP diagram for **1b** with the atomic numbering scheme. The thermal ellipsoids are drawn at the 40% probability level, and the hydrogen atoms are omitted for clarity.

Figure S2. ORTEP diagram for **2c** with the atomic numbering scheme. The thermal ellipsoids are drawn at the 40% probability level, and the hydrogen atoms are omitted for clarity.

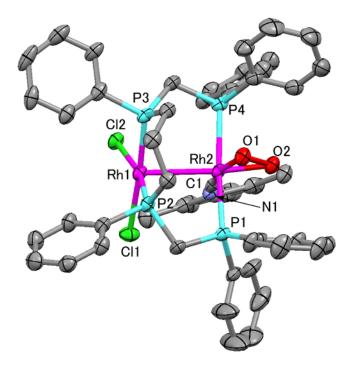


Figure S3. ESI-TOF-MS spectra of 1a in CH₂Cl₂.

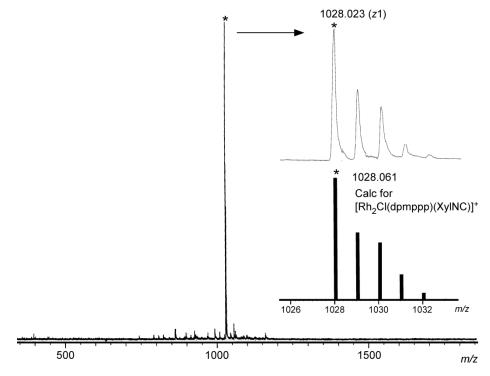


Figure S4. ESI-TOF-MS spectra of 1b in CH_2Cl_2 .

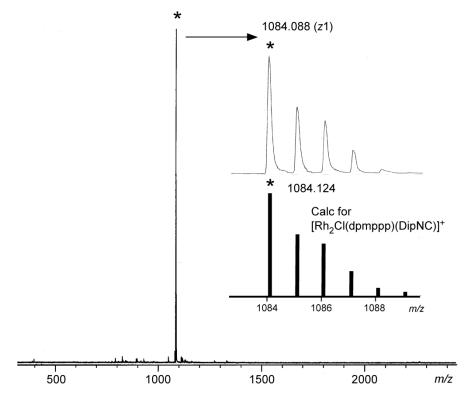


Figure S5. ESI-TOF-MS spectra of 1c in CH₂Cl₂.

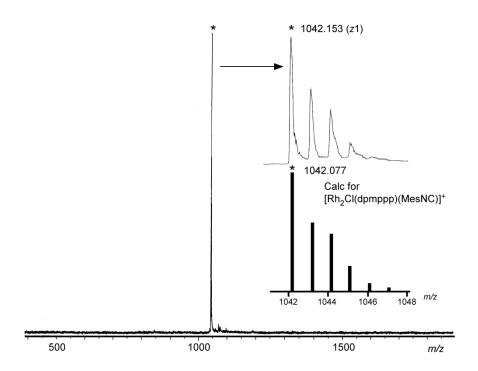


Figure S6. ESI-TOF-MS spectra of 2a in CH₂Cl₂.

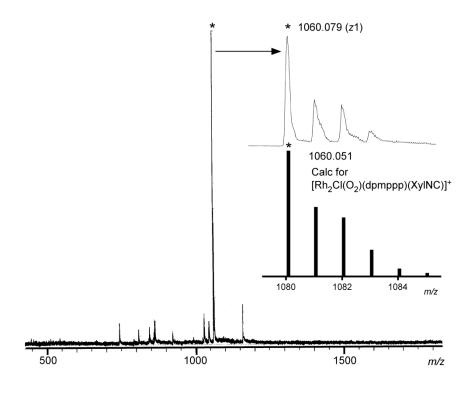


Figure S7. ESI-TOF-MS spectra of 2b in CH₂Cl₂.

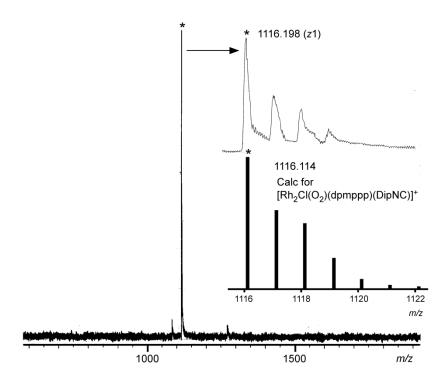


Figure S8. ESI-TOF-MS spectra of 2c in CH₂Cl₂.

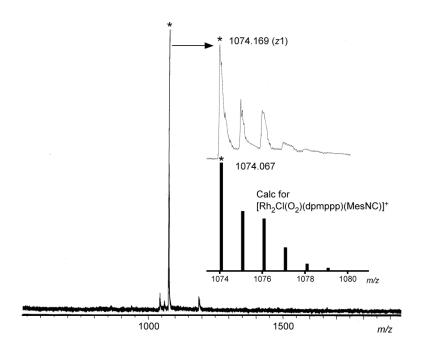


Figure S9. ESI-TOF-MS spectra of 2d in CH₂Cl₂.

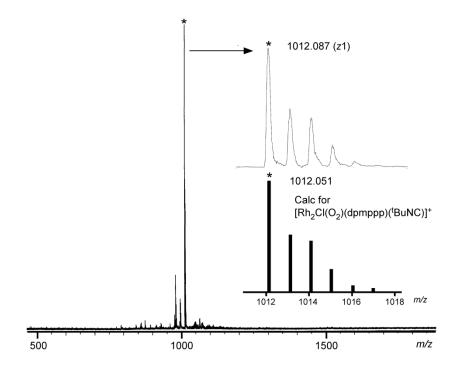


Figure S10. ESI-TOF-MS spectra of 3a in CH_2Cl_2 .

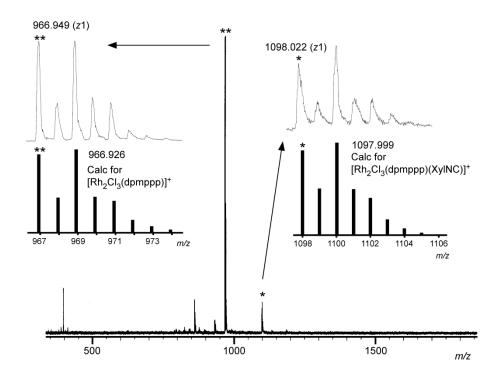
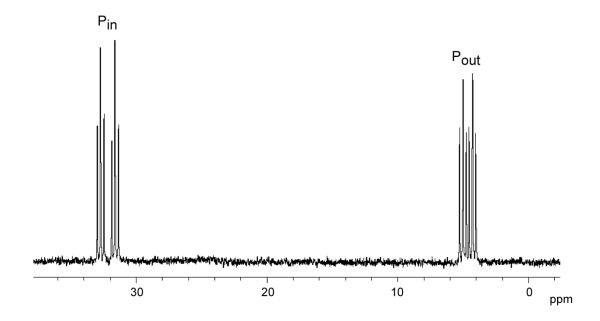
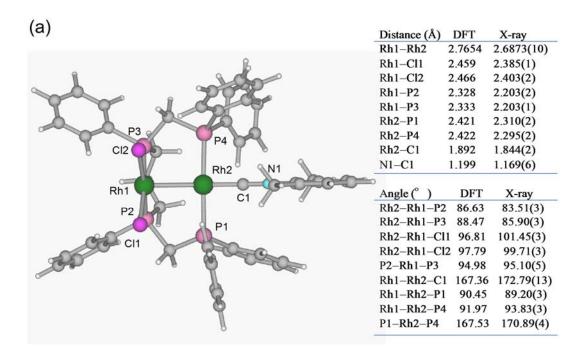
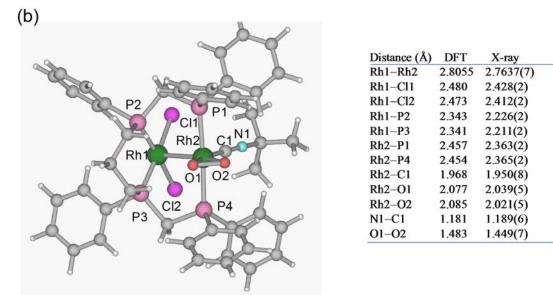
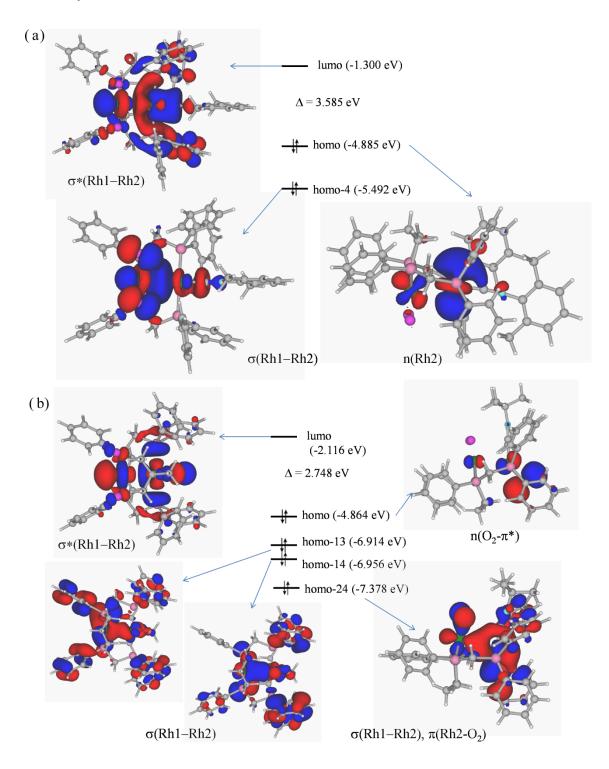
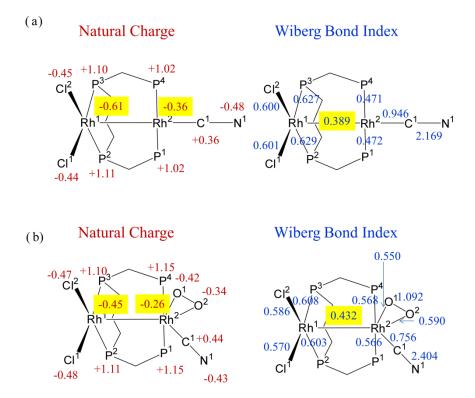





Figure S11. ³¹P{¹H} NMR spectrum of 3a in CD₂Cl₂.


Figure S12. DFT full-optimized structures of (a) **1a** and (d) **2d** by B3LYP methods with lanl2dz.



Angle (°)	DFT	X-ray	Angle (°)	DFT	X-ray
Rh2-Rh1-P2	85.23	84.73(4)	Rh1-Rh2-C1	83.74	79.7(2)
Rh2-Rh1-P3	85.07	83.33(5)	Rh1-Rh2-O1	113.29	118.64(14)
Rh2-Rh1-Cl1	99.35	103.88(5)	Rh1-Rh2-O2	155.03	160.44(15)
Rh2-Rh1-Cl2	100.31	100.45(5)	Rh1-Rh2-P1	91.82	92.04(5)
P2-Rh1-P3	93.78	93.59(6)	Rh1-Rh2-P4	91.88	90.23(4)
			P1-Rh2-P4	168.97	172.40(7)
			O1-Rh2-O2	41.74	41.8(2)

Figure S13. Representative MO diagrams for the DFT optimized structure of (a) **1a** and (b) **2d** by B3LYP methods with lanl2dz.

Figure S14. Natural population analyses, natural charge and Wiberg bond indices, for the DFT optimized structures of (a) **1a** and (b) **2d** by B3LYP methods with lanl2dz.

