Electronic Supplementary Information for

Photo-patternable electroluminescence based on one-way photoisomerization reaction of tetraoxidized triangle terarylenes[†]

Maki Taguchi,^{+a} Tetsuya Nakagawa,^{+b} Takuya Nakashima,^a Chihaya Adachi,^b and Tsuyoshi Kawai^{*a}

^a Graduate School of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

^b Center for Organic Photonics and Electronics Research, OPERA, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan E-mail: tkawai@ms.naist.jp; Fax: +81-743-72-6179; Tel: +81-743-72-6170

Table of contents

- 1. General information of the experiment
- 2. Quantum chemical calculations for compounds 1 and 2 by Gaussian 09
- 3. Syntheses of oxidized compounds 1a and 2a, and precursor terarylene compounds P1a and P2a
- 4. NMR spectra for compounds 1a and 2a, and their precursors P1a and P2a
- 5. Crystallographic data for precursor compound P2a
- 6. Glass transition temperatures of 1a and 1b
- 7. The thickness of the film of compound 1 estimated by an atomic force microscope
- 8. Absorption spectral changes for precursor compounds P1 and P2 in hexane solutions
- 9. Absorption and PL spectra for oxidized compounds 1 and 2 in dichloromethane solutions
- 10. Photochemical properties for oxidized compounds 1, 2 and precursor compounds P1, P2
- 11. Changes of absorbance for compounds 1 and 2 in amorphous films as a time-function of UV light irradiation ($\lambda_{irr} = 313 \text{ nm}, 0.16 \text{ mW cm}^{-2}$)
- 12. Relative PL intensities for compounds **1b**, **2b**, and reference compound Alq₃ in amorphous films as a time-function of continuous excitation ($\lambda_{ex} = 425 \text{ nm}, 0.37 \text{ mW cm}^{-2}$)
- 13. The PL pattern from the amorphous films for compound 1 and 2
- 14. EQE (external quantum efficiency)-voltage characteristic of devices for compound 1b
- 15. The EL pattern from the device using compound 1

1. General information of the experiment

¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a JEOL JNM-AL-300 spectrometer. Mass spectra were measured with mass spectrometers (for: JEOL JMS-700, JEOL AccuTOF JMS-T100LC and PE biosystems Voyarge DE-STR, for FAB, ESI and MALDI-TOF MS, respectively). Elemental analyses were performed with an elemental analyzer (Perkin Elmer, 2400II CHNS/O). ATR-IR spectra were recorded on a JASCO FT/IR-4200 spectrometer with ATR PRO410-S. Separative HPLC was performed on a HPLC system (HITACHI, LaChrom ELITE, L-2400 for detector, L-2130 for pump, D-2500 for chromate-integrator) with a packed column (Nacalai Tesque, COSMOSIL 55L-II, 20 × 250 mm). Absorption spectra were studied with a spectrophotometer (JASCO V-670). Photoluminescence spectra were studied with a spectrofluorometer (JASCO FP-6500). PL quantum yields were evaluated by using an absolute PL quantum yield measurement system with an integration sphere (HAMAMATSU Co., C9920-02, PMA-12) for solutions and films. Crystal structures were determined by using an X-ray crystal structural analyzer (Rigaku VariMAX-RAPID). DSC measurements were carried out using a differential scanning calorimeter (Seiko, EXSTAR6000 DSC6200) with a liquid nitrogen cooling system. The heating rate was 5 °C min⁻¹. Thickness measurements of films were determined by using an atomic force microscope (SII nanotechnology, SPA400, SPI3800N). Optical microscope (Olympus, BX51) was used for visible observation and photo-coloration of the amorphous films. Photo-irradiation was carried out with an ultra high-pressure Hg lamp (Ushio, BA-H501, 1 kW) and a Xe short-arc lamp (Ushio, BA-X500, 500 W) as the exciting light sources. Light with appropriate wavelength was obtained through optical filters and/or a monochromator (Shimadzu, SPG-120S, 120 mm, f = 3.5). Quantum yields of ring-cyclization reactions in solution were determined by using 1,2-bis(2-methylbenzo[b]thiophene-3-yl)perhexafluorocyclopentene (in hexane) as a reference whose value is 0.35 under UV light irradiation ($\lambda = 313$ nm) in hexane. Quantum yields of ring-cycloreversion reactions were determined by using 1,2-bis(3-methylthiophen-2-yl) perhexafluorocyclopentene (in 3-methylpentane) and 1,2-bis(2,4-dimethyl-5-phenylthiophen-3-yl) perhexafluorocyclopentene (in hexane) as reference compounds, whose values are 0.37 at 432 nm in 3-methylpentane and 0.15 at 546 nm, respectively. The current density-voltage-luminance (J-V-L) characteristics were measured using a sorce meter (KEITHLEY 2400) with a photonic multi-channel analyzer (HAMAMATSU Co., PMA-12). OLED patterning was carried out using a halogen lighting system (MORITEX, MHAB-150W) through a color filter Y-42.

2. Quantum chemical calculations for compounds 1, 2 by Gaussian 09 at B3LYP/6-31G(d) level

Fig. S1 Electron density distributions of (bottom) HOMOs and (top) LUMOs for compounds (a, b)1a, (c, d) 1b, (e, f) 2a and (g, h) 2b which were calculated by TD-DFT (B3LYP/6-31G(d))

Table 51	HOWIO dild L	Civic levels and	inst transition bands of compounds 1 and 2			
compound	HOMO [eV]	DMO [eV] LUMO [eV] first transition band [nm] (oscillator s				
1a	-6.231	-2.442	374.35 $(f=0.0594)$			
1b	-5.573	-2.870	506.55 $(f=0.3388)$			
2b	-6.095	-2.465	399.23 (f = 0.0398)			
2b	-5.563	-2.917	508.58 $(f=0.4869)$			

Table S1HOMO and LUMO levels and first transition bands of compounds 1 and 2

3. Syntheses of oxidized compounds 1a and 2a, and their precursor compounds P1a and P2a

Scheme S1 Synthetic scheme for oxidized compounds 1a, 2a and their precursors P1a and P2a

s N ester s Br mmol)

4-bromo-5-(2,4-dimethyl-5-phenylthiophen-3-yl)-2-phenylthiazole. To a mixture containing (2,4-dimethyl-5-phenylthiophen-3-yl)boronic acid pinacol ester (1.13 g, 3.59 mmol), 4,5-dibromo-2-phenylthiazole (0.521 g, 1.63 mmol), PPh₃ (0.054 g, 0.21 mmol) and 2.0 M K₃PO₄ aq. (10 ml, 20 mmol) in 1,4-dioxane (70 ml) after N₂ bubbling for 30 min, was added Pd(PPh₃)₄ (0.11

g, 0.099 mmol). The mixture was refluxed for 36 h under N₂ atmosphere. The resulting solution was quenched with water and neutralized with HCl aq. The organic layer was extracted with ethyl acetate and dried with MgSO₄. The crude solution was evaporated under vacuo and purified by a silicagel column chromatography to afford 0.400 g (0.938 mmol) of solid. ¹H NMR (300 MHz, CDCl₃/TMS): d (ppm) = 7.95-7.98 (2H, m), 7.40-7.49 (7H, m), 7.33 (1H, t), 2.39 (3H, s), 2.15 (3H, s). MALDI-TOF MS (m/z) [M]⁺ Calcd. for C₂₁H₁₆BrNS₂⁺: 425; Found: 425.

5-(2,4-dimethyl-5-phenylthiophen-3-yl)-4-(2-methylbenzo[b]thiophen-3-yl)-2-phenylthiazole (P1a). To a mixture containing 4-bromo-5-(2,4-dimethyl-5-phenylthiophen-3-yl)-2-phenylthiazole (0.400 g, 0.938 mmol), (2-methyl benzo[b]thiophen-3-yl)boronic acid pinacol ester (0.283 g, 1.03 mmol), PPh₃ (0.062 g, 0.236 mmol) and 2.0 M K₃PO₄ aq. (20 ml, 40 mmol) in

1,4-dioxane (20 ml) after N_2 bubbling for 60 min, was added Pd(PPh₃)₄ (0.064 g, 0.055 mmol). The mixture was refluxed for 48 h under N_2 atmosphere. The resulting solution was quenched with water and neutralized with HCl aq.. The organic layer was extracted with diethylether and dried with

MgSO₄, then was concentrated under vacuo. The crude was purified by a silicagel column chromatography and an HPLC to afford 0.238 g (0.483 mmol) of colorless amorphous solid. ¹H NMR (300 MHz, CDCl₃/TMS): d (ppm) = 8.06-8.09 (2H, m), 7.73-7.76 (2H, m), 7.22-7.49 (10H, m), 2.16 (3H, s), 2.07 (3H, s), 2.00 (3H, s). ESI HRMS (m/z) [M+H]⁺ Calcd. for C₃₀H₂₄NS₃⁺: 494.10; Found: 494.11. Element Anal. Calcd. for C₃₀H₂₃NS₃: C, 72.98; H, 4.70; N, 2.84; Found: C, 73.04; H, 4.44; N, 2.83.

4-bromo-5-(2-methylbenzo[b]thiophen-3-yl)-2-phenylthiazole. To a mixture containing (2-methylbenzo[b]thiophen-3-yl)boronic acid pinacol ester (0.774 g, 2.82 mmol), 4,5-dibromo-2-phenylthiazole (1.17 g, 3.67 mmol), PPh₃ (0.185 g, 0.705 mmol) and 2.0 M K₃PO₄ aq. (20 ml, 40 mmol) in 1,4-dioxane (20 ml) after N₂ bubbling for 60 min, was added Pd(PPh₃)₄ (0.163 g, 0.141

mmol). The mixture was refluxed for 36 h under N₂ atmosphere. The resulting solution was quenched with water and neutralized with HCl aq.. The organic layer was extracted with ethyl acetate and dried with MgSO₄, then was evaporated under vacuo. The crude was purified by a silicagel column chromatography and a GPC to afford 0.353 g (0.914 mmol) of solid. ¹H NMR (300 MHz, CDCl₃/TMS): d (ppm) = 7.97-8.00 (2H, d), 7.80-7.82 (7H, m), 7.46-7.52 (1H, t), 7.31-7.39 (3H, s), 2.56 (3H, s). MALDI-TOF MS (m/z) [M]⁺ Calcd. for C₁₈H₁₂BrNS₂⁺: 385; Found: 385.

4-(2,4-dimethyl-5-phenylthiophen-3-yl)-5-(2-methylbenzo[b]thiophen-3-yl)-2-phenylthiazole (P2a). To a mixture containing 4-bromo-5-(2-methyl benzo[b]thiophen-3-yl)-2-phenylthiazole (0.353 g, 0.914 mmol), (2,4-dimethyl-5-phenylthiophen-3-yl)boronic acid pinacol ester (0.302 g, 0.961 mmol), PPh₃ (0.060 g, 0.228 mmol) and 2.0 M K₃PO₄ aq. (10 ml, 20 mmol) in

1,4-dioxane (10 ml) after N₂ bubbling for 60 min, was added Pd(PPh₃)₄ (0.064 g, 0.055 mmol). The mixture was refluxed for 24 h under N₂ atmosphere. The resulting solution was quenched with water and neutralized with HCl aq.. The organic layer was extracted with diethylether and dried with MgSO₄, then was concentrated under vacuo. The crude was purified by a silicagel column chromatography and an HPLC to afford 0.242 g (0.491 mmol) of colorless amorphous solid. ¹H NMR (300 MHz, CDCl₃/TMS, 50 ° C): d (ppm) = 8.05-8.08 (2H, m), 7.69-7.76 (2H, m), 7.44-7.47 (3H, m), 7.25-7.36 (7H, m), 2.20 (3H, s), 2.09 (3H, s), 2.00 (3H, s). ESI HRMS (*m/z*) [M+H]⁺ Calcd. for C₃₀H₂₄NS₃⁺: 494.10; Found: 494.11. Element Anal. Calcd. for C₃₀H₂₃NS₃: C, 72.98; H, 4.70; N, 2.84; Found: C, 72.46; H, 4.57; N, 2.76. *Crystallographic Data : CCDC 933134*.

5-(2,4-dimethyl-5-phenylthiophen-S,S-dioxide-3-yl)-4-(2-methylbenzo[b]thio phen-3-yl)-2-phenylthiazole (1a). To a solution of 5-(2,4-dimethyl -5-phenylthiophen-3-yl)-4-(2-methylbenzo[b]thiophen-3-yl) -2-phenylthiazole (30 mg, 0.061 mmol) in CH₂Cl₂ (20 ml) was added 70wt% 3-chloroperbenzoic acid (*m*-CPBA) (0.170 g, 0.687 mmol). The solution was

stirred at r.t. in the dark for 48 h. The resulting solution was quenched with Na₂S₂O₃ aq.. The organic layer was extracted with CH₂Cl₂ and dried with MgSO₄, then was concentrated under vacuo. The residue was purified by an HPLC (hexane/ethyl acetate 3 : 1) to afford 20 mg (0.036 mmol) of white solid. ¹H NMR (300 MHz, CDCl₃/TMS): d (ppm) = 8.02-8.05 (2H, m), 7.84-7.86 (1H, m), 7.52-7.62 (7H, m), 7.43-7.46 (4H, m), 2.16 (3H, s), 2.09 (3H, s), 1.86 (3H, s). ¹³C NMR (75MHz; CDCl₃): d (ppm) =170.47, 145.86, 138.94, 136.82, 135.85, 133.87, 133.72, 132.12, 131.87, 131.59, 130.48, 129.93, 129.75, 129.38, 129.16, 129.06, 126.76, 124.27, 121.70, 14.10, 9.11, 8.46. ESI HRMS (*m/z*) [M+Na]⁺ Calcd. for C₃₀H₂₃NO₄S₃Na⁺: 580.07; Found: 580.07. Element Anal. Calcd. for C₃₀H₂₃NO₄S₃: C, 64.61; H, 4.16; N, 2.51; Found: C, 64.79; H, 4.07; N, 2.33.

4-(2,4-dimethyl-5-phenylthiophen-S,S-dioxide-3-yl)-5-(2-methylbenzo[b]thio phen-3-yl)-2-phenylthiazole (2a). To a solution of 4-(2,4-dimethyl -5-phenylthiophen-3-yl)-5-(2-methylbenzo[b]thiophen-3-yl) -2-phenylthiazole (0.100 g, 0.203 mmol) in CH_2Cl_2 (200 ml) was added 70wt% 3-chloroperbenzoic acid (m-CPBA) (0.480 g, 1.97 mmol). The solution was

stirred at r.t. in the dark for 48 h. The resulting solution was quenched with Na₂S₂O₃ aq.. The organic layer was extracted with CH₂Cl₂ and dried with MgSO₄, then was concentrated under vacuo. The residue was purified by an HPLC (hexane/ethyl acetate 3 : 1) to afford 0.080 g (0.143 mmol) of white solid. ¹H NMR (300 MHz, CDCl₃/TMS): *d* (ppm) = 8.02-8.05 (2H, m), 7.85-7.88 (1H, m), 7.53-7.62 (7H, m), 7.45-7.47 (4H, d), 2.16 (6H, s), 1.92 (3H, s). ¹³C NMR (75MHz; CDCl₃): d (ppm) = 170.32, 146.94, 136.32, 135.84, 134.78, 133.74, 132.19, 131.63, 130.30, 129.69, 129.40, 129.21, 129.01, 127.88, 127.17, 126.77, 126.71, 122.71, 122.21, 14.58, 8.80, 8.55. ESI HRMS (*m/z*) [M+Na]⁺ Calcd. for C₃₀H₂₃NO₄S₃Na⁺: 580.07; Found: 580.07. Element Anal. Calcd. for C₃₀H₂₃NO₄S₃: C, 64.61; H, 4.16; N, 2.51; Found: C, 64.84; H, 4.38; N, 2.34.

4. NMR spectra for compounds 1a and 2a, and their precursors P1a and P2a

¹H NMR (300MHz; CDCl₃, TMS) for compound P1a

¹H NMR (300MHz; CDCl₃, TMS) for compound **2b**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

5. Crystallographic data for compound P2a

Fig. S2 ORTEP drawings of **P2a** in crystal (crystallographic data number: CCDC 933134), showing 50 % probability displacement ellipsoids.

cry	stallographic str	ructure.
atoms		distance [nm]
C(14)	C(20)	3.835
S (1)	H(9)	2.779
S(1)	H(16)	3.034

H(5)

H(30A)

2.595

2.530

N(1)

N(1)

 Table S2
 List of characteristic atomic distances in compound P2a evaluated by the X-ray crystallographic structure.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₃₀ H ₂₃ NS ₃			
Formula Weight	493.70			
Crystal Color, Habit	colorless, block			
Crystal Dimensions	0.190 X 0.110 X 0.070 mm			
Crystal System	monoclinic			
Lattice Type	Primitive			
Lattice Parameters	a = 14.4429(2) Å b = 19.7021(3) Å c = 8.7116(1) Å $\beta = 96.2127 \text{ o}$ $V = 2464.38(6) \text{ Å}^3$			
Space Group	P2 ₁ /c (#14)			
Z value	4			
D _{calc}	1.331 g/cm ³			
F000	1032.00			
μ(ΜοΚα)	3.204 cm ⁻¹			

B. Intensity Measurements

Diffractometer	R-AXIS RAPID
Radiation Voltage, Current	MoKα (λ = 0.71075 Å) 50kV, 24mA
Temperature	-150.0°C
Detector Aperture	280 x 256 mm
Data Images	111 exposures
$ω$ oscillation Range (χ =45.0, ϕ =0.0)	130.0 - 190.00
Exposure Rate	30.0 sec./0
ω oscillation Range (χ =45.0, ϕ =180.0)	0.0 - 162.0 ^o
Exposure Rate	30.0 sec./0
Detector Position	127.40 mm
Pixel Size	0.100 mm
20 _{max}	55.00
No. of Reflections Measured	Total: 24279 Unique: 5636 (R _{int} = 0.0245)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.854 - 0.978)

C. Structure Solution and Refinement

Structure Solution	Direct Methods
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \le (Fo^2 - Fc^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2) + (0.0521 \cdot P)^2$ + 0.7430 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
2θ _{max} cutoff	55.00
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	5636
No. Variables	310
Reflection/Parameter Ratio	18.18
Residuals: R1 (I>2.00σ(I))	0.0355
Residuals: R (All reflections)	0.0379
Residuals: wR2 (All reflections)	0.0928
Goodness of Fit Indicator	1.135
Max Shift/Error in Final Cycle	0.002
Maximum peak in Final Diff. Map	0.64 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.29 e ⁻ /Å ³

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Fig. S3 DSC curves for compounds 1a and 1b.

7. The thickness of the film of compound 1 estimated by an atomic force microscope

Fig. S4 AFM image of an amorphous film of compound 1 The thickness of the film was estimated to be ca.40 nm from difference in height at the scratched mark.

8. Absorption spectral changes for precursor compounds P1 and P2 in hexane solutions

Fig. S5 Absorption spectral changes for precursor compounds, (a) P1 and (b) P2 in hexane; open-forms (blue dashed lines), closed-forms (red bold solid lines) and P.S.S. (photostationary state) under irradiation with 313 nm (green dotted lines). Photoisomerization reaction schemes for (c) P1 and (d) P2.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

9. Absorption and PL spectra for oxidized compounds 1 and 2 in dichloromethane solutions

Fig. S6 Absorption and PL spectra for oxidized compounds, (a) 1 and (b) 2 in dichloromethane; open-forms (blue dashed lines), closed-forms (red bold solid lines) and PL spectra of closed-forms (black dot-dashed lines). Photoisomerization reaction schemes for (c) 1 and (d) 2.

10. Photochemical properties for oxidized compounds 1, 2 and precursor compounds P1, P2

sample	solvent	$\frac{\lambda/\text{nm}}{(\varepsilon/10^4 \text{M}^{-1} \text{cm}^{-1})}$	$\alpha_{\rm pss}^{a}$	${{{{{{ \! \! \ }}}\!$	$\Phi_{ba}{}^c$	$\lambda_{\rm em}/\rm nm$ ($\lambda_{\rm ex}/\rm nm$)	Фет	τ _{em} /ns	$k_{\rm r}/10^7 {\rm s}^{-1}$	$k_{\rm nr}/10^8 {\rm s}^{-1}$
1a	CH ₂ Cl ₂	306 (2.25)	> 0.99	0.18	-	n.d. ^f				
				(± 0.01)						
1b	CH2Cl2	324 (3.28)	-	-	$1.8 \times 10^{-4 d}$	560 (470)	0.28	3.3	8.4	2.2
		470(1.90)								
		493 (1.90)				0				
2a	CH2Cl2	292 (2.00)	>0.99	0.24	-	n.d. ^f				
				(± 0.02)						
2b	CH2Cl2	320 (3.86)	-	-	$< 1 \times 10^{-5 d}$	567 (470)	0.31	3.3	9.3	2.1
		486 (2.30)				0				
P1a	hexane	279 (3.19)	0.84	0.58	-	n.d. ^f				
		325(1.43)		(± 0.01)		0				
P1b	hexane	289 (2.71)	-	-	0.12^{e}	n.d. ^f				
		407(1.12)								
		569 (0.943)				C				
P2a	hexane	259 (3.30)	0.83	0.66	-	$n.d.^{J}$				
		328 (1.45)		(± 0.01)		C				
P2b	hexane	306 (2.46)	-	-	0.069 ^e	n.d. ⁷				
		402(1.05)								
		577 (1.33)								

 Table S3
 Absorption and emission and photochromic properties of terarylenes in solutions

^{*a*} α_{pss} : the coloration conversion ratio at P.S.S. with the irradiation at 313 nm light. ^{*b*} Φ_{ab} : ring-closing reaction quantum yield from a-form to b-form at 313 nm. ^{*c*} Φ_{ba} : ring-opening reaction quantum yield from b-form to a-form. ^{*d*} At 432 nm. ^{*e*} At 546 nm. ^{*f*} Fluorescence was unobserved at room temperature.

11. Changes of absorbance for compounds 1 and 2 in amorphous films as a time-function of UV light irradiation ($\lambda_{irr} = 313 \text{ nm}, 0.16 \text{ mW cm}^{-2}$)

Fig. S7 Absorbance changes (a) at 501 nm for compound 1 and (b) at 500 nm for compound 2 in amorphous films (thickness = 4×10^1 nm) as a time-function of UV light irradiation (λ_{irr} = 313 nm, 0.16 mW cm⁻²).

12. Relative PL intensities for compounds 1b, 2b, and reference compound Alq₃ in amorphous films as time-function of continuous excitation in the air ($\lambda_{ex} = 425 \text{ nm}, 0.37 \text{ mW cm}^{-2}$).

Fig. S8 Relative PL intensities at 583 nm for compound 1 (yellow trigona), at 596 nm for compound 2 (orange squares) and at 530 nm for Alq₃ (green rhombi) in amorphous films as a time-function of irradiation time (λ_{ex} = 425 nm, 0.37 mW cm⁻²).

Fig. S9 (a) The photo-coloration process by irradiating with UV-vis light (380-700 nm) through an optical mask (nega-type) using a tungsten lamp composing an optical microscope (Olympus, BX-51). Weak UV component from the tangusten lamp induced the coloration. Because of extremely slow bleaching reactivity, visible light component showed no marked influence on the coloration behaviour. (b) Normal and (c) PL pattern photographs of a transparent amorphous film of compound 1 (thickness = 4×10¹ nm) and (d) PL pattern photograph of a transparent amorphous film of compound 2 (thickness = 4×10¹ nm) on the glass substrate (20×20 mm², thickness = 1 mm). (e) A scheme of photoisomerization reaction from 2a to 2b.

14. EQE (external quantum efficiency)-voltage characteristic of the device for compound 1b

Fig. S10 (a) EQE (external quantum efficiency)-voltage characteristic of a device as glass/ITO/PEDOT:PSS (8 nm)/6wt% of compound 1: mCP (18 nm)/BCP (40 nm)/LiF (0.8 nm)/Al (64 nm); maximum EQE was estimated to be 0.20%. (b) Photograph of clear yellow EL from the device (a pixel size is 2×2 mm²).

15. The EL pattern from the device using compound 1

Fig. S11 (a) The photo-bleaching process by irradiating with green light (53 mW cm⁻²) through a colour filter glass Y-42 and an optical mask (posi-type) by using a halogen lighting system, MORITEX. (b) EL pattern photograph of the device as glass/ITO/PEDOT:PSS (8 nm)/6wt% of compound 1: mCP (18 nm)/BCP (40 nm)/LiF (0.8 nm)/Al (64 nm).