Silver-catalysed trifluoromethylation of arenes at room temperature

Sangwon Seo,^{*a*} John B. Taylor^{*b*} and Michael F. Greaney^{**a*}

Supporting Information

1: Experimental Procedures	S1
II: References	S9
III: NMR Spectra of Isolated Compounds	S10

I. Experimental Procedures

General Methods:

Melting points are uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Brüker Ava400 (400 MHz) instrument and calibrated to residual solvent peaks: proton (CDCl₃: 7.26 ppm) and carbon (CDCl₃: 77.0 ppm). ¹⁹F NMR yields were determined using 4-fluoroanisole as internal standard (δ = -124.8 ppm). Data for ¹H and ¹⁹F NMR are presented as follows: chemical shift (in ppm on the δ scale), multiplicity (bs = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), the coupling constant (J, in Hertz) and integration. ¹³C data are reported as the ppm on the δ scale followed by the interpretation and multiplicity where appropriate. Gas chromatography-mass spectrometry (GC/MS) was performed using Agilent 5975C Triple Axis GCMS (EI/CI). High Resolution Mass spectra were obtained from the EPSRC mass spectrometry service at the University of Swansea or from the analytical service at Syngenta, Jealott's Hill International Research Centre, UK. The data is recorded as the method followed by the calculated and measured masses. TLC was performed on Merck $60F_{254}$ silica plates and visualised by UV light and potassium permanganate stains. The compounds were purified by flash chromatography using Aldrich silica gel (particle size 40-63 µm) under a positive pressure. The eluent is quoted as a percentage. Anhydrous DMSO used for the trifluoromethylation reaction was bought from Sigma-Aldrich and used as received.

Trifluoromethylation of electron-rich (hetero)arenes:

Scheme S1. Trifluoromethylation of electron rich (hetero)arenes.

General procedure A: An oven-dried reaction vial (5 mL) was charged with (hetero)arene **1** (0.3 mmol), (diacetoxyiodo)benzene (193.3 mg, 0.6 mmol), trimethyl(trifluoromethyl)silane (88.7 μ L, 0.6 mmol) and anhydrous DMSO (1 mL). The mixture was stirred at room temperature for 1 min and AgF (9.5 mg, 0.075 mmol) was slowly added to the stirring mixture. The vial was sealed with a septum cap and the reaction was kept stirring at the same temperature for 20 h. The resulting mixture was quenched with water (5 mL) and extracted with Et₂O (3 × 5 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The crude material was purified by column chromatography (SiO₂, using the noted solvent mixture) to yield the desired trifluoromethylated product **2**. For volatile compounds, 4-fluoroanisole (3 equiv) was added as an internal standard to the crude, and the reaction was analysed by ¹⁹F NMR spectroscopy in CDCl₃. The identity of the products was further confirmed by ¹H NMR of the crude mixture (and GC/MS analysis for unknown compounds).

Trifluoromethylation of unactivated arenes (1p, 1q and 1r):

Scheme S2. Trifluoromethylation of unactivated arenes.

reaction General procedure **B**: An oven-dried vial (5 mL) charged with was trimethyl(trifluoromethyl)silane (73.9 μ L, 0.5 mmol), arene (2.5 mmol (1r) or 5.0 mmol (1p and 1q)), (diacetoxyiodo)benzene (322.1 mg, 1.0 mmol), AgF (15.9 mg, 0.125 mmol) and anhydrous DMSO (0.5 mL). The vial was sealed with a septum cap and the reaction was heated at 70 °C for 20 h. The resulting mixture was quenched with water (5 mL) and extracted with Et₂O (3×5 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. 4-Fluoroanisole (3 equiv) was added as an internal standard to the crude, and the reaction was analysed by ¹⁹F NMR spectroscopy in CDCl₃.

1,4-Dimethoxy-2-(trifluoromethyl)benzene (2a)¹

Prepared following general procedure A using 1,4-dimethoxybenzene (41.4 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 20% DCM in pentane to afford **2a** as a colourless oil (Yield = 58%). ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, J = 3.1 Hz, 1H), 7.02 (dd, J = 9.1, 3.0 Hz, 1H), 6.94 (d, J = 9.0 Hz, 1H), 3.86

(s, 3H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.9 (C), 151.5 (C), 123.4 (q, J_{C-F} = 272.4 Hz, CF₃), 119.4 (q, J_{C-F} = 31.1 Hz, C), 118.1 (CH), 113.5 (CH), 112.8 (q, J_{C-F} = 5.5 Hz, CH), 56.5 (CH₃), 55.9 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4 (s, CF₃).

1,3-Dimethoxy-4-(trifluoromethyl)benzene 2b¹ and 1,3-dimethoxy-2-(trifluoromethyl)benzene (2b^{*})¹

Prepared following general procedure A using 1.3-dimethoxybenzene (41.4 mg (39.3 μ L), 0.3 mmol). The reaction mixture was purified by flash chromatography using 20% CF_3 DCM in pentane to afford **2b** as a mixture of isomers as a colourless oil (Yield = 77%). $1b:1b^* = 2:1$). 1,3-Dimethoxy-4-(trifluoromethyl)benzene: ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.6 Hz, 1H), 6.52 (s, 1H), 6.48 (d, J = 8.6 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6 (C), 158.8 (C), 128.2 (q, J_{C-F} = 5.4 Hz, CH), 124.0 (q, J_C-F) = 5.4 Hz, CH), 124.0 (q, J_C-F) = 5.4 Hz, 124.0 (q, J_C-F) $_{\rm F}$ = 271.2 Hz, CF₃), 111.6 (q, J_{C-F} = 31.3 Hz, C), 103.7 (CH), 99.3 (CH), 55.8 (CH₃), 55.5 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.3 (s, CF₃); **1,3-Dimethoxy-2-(trifluoromethyl)benzene:** ¹H NMR (400 MHz, $CDCl_3$): δ 7.38 (t, J = 8.4 Hz, 1H), 6.61 (d, J = 8.5 Hz, 2H), 3.86 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 159.3 (C), 133.0 (CH), 124.1 (q, $J_{C-F} = 274.5 \text{ Hz}, \text{CF}_3$), 107.1 (q, $J_{C-F} = 29.5 \text{ Hz}, \text{C}$), 104.8 (CH), 56.3 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -54.9 (s, CF₃).

1,2-dimethoxy-4-(trifluoromethyl)benzene (2c)¹

 CF_3 MeO. MeO

Prepared following general procedure A using 1,2-dimethoxybenzene (41.4 mg (38.2 μ L), 0.3 mmol). The reaction mixture was purified by flash chromatography using 30% DCM in pentane to afford 2c as a colourless oil (Yield = 55%). ¹H NMR (400 MHz, $CDCl_3$): δ 7.21 (ddd, J = 8.4, 2.0, 0.8 Hz, 1H), 7.07 (d, J = 2.0 Hz, 1H), 6.91 (d, J = 8.4)

Hz, 1H), 3.92 (s, 3H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.6 (C), 149.0 (C), 124.3 (q, J_{C-F} = 271.3 Hz, CF₃), 122.9 (q, J_{C-F} = 32.7 Hz, C), 118.3 (q, J_{C-F} = 4.2 Hz, CH), 110.6 (CH), 108.0 (q, J_{C-F} = 3.4 Hz, CH), 56.0 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.5 (s, CF₃).

3.4-Dimethyl-2-(trifluoromethyl)anisole (2d) and 3.4-dimethyl-6-(trifluoromethyl)anisole (2d^{*})

Prepared following general procedure A using 3,4-dimethylanisole (40.9 mg (41.9 µL), 0.3 mmol). The reaction mixture was purified by flash chromatography using 100% pentane to afford 2d and 2d^{*} as colourless oils (Yield = 45%, 2d:2d^{*} = 1:1). 3,4-Dimethyl-2-(trifluoromethyl)anisole: ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.5 Hz, 1H), 6.77 (d, J = 8.5, Hz, 1H), 3.84 (s, 3H), 2.36 (q, $J_{H,F}$ = 2.9 Hz, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.8 (C), 137.3 (q, J_{C-F} = 1.5 Hz, C), 133.5 (CH), 130.0 (C), 125.2 (q, J_{C-F} =

275.9 Hz, CF₃), 117.7 (q, $J_{C-F} = 28.1$ Hz, C), 110.0 (CH), 56.3 (CH₃), 20.3 (CH₃), 16.7 (q, $J_{C-F} = 4.6$ Hz, CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -53.5 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₁₀H₁₂O₁F₃: 205.0835, found: 205.0835; **3,4-Dimethyl-6-(trifluoromethyl)anisole:** ¹H NMR (400 MHz, CDCl₃): δ 7.30 (s, 1H), 6.79 (s, 1H), 3.87 (s, 3H), 2.30 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.4 (C), 142.1 (C), 128.0 (C), 127.8 (q, $J_{C-F} = 5.1$ Hz, CH), 123.9 (q, $J_{C-F} = 271.8$ Hz, CF₃), 115.9 (q, $J_{C-F} = 30.5$ Hz, C), 113.6 (CH), 56.0 (CH₃), 20.3 (CH₃), 18.7 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.7 (s, CF₃); HRMS (ES⁺) cald. for $(M+H)^+ C_{10}H_{12}O_1F_3$: 205.0835, found: 205.0835.

1.3.5-Trimethoxy-4-(trifluoromethyl)benzene (2e)

Prepared following general procedure A using 1,3,5-trimethoxybenzene (50.5 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 20% Et₂O in pentane to afford **2e** as a white solid (Yield = 89%). Mp = 52 - 54 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.13 (s, 2H), 3.84 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 163.5 (C), 160.4 (C), 124.3 (q, J_{C-F} = 273.4 Hz, CF₃), 100.3 (q, J_{C-F} = 30.0 Hz, C), 91.2 (CH), 56.2 (CH₃), 55.3 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -54.1 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₁₀H₁₂O₃F₃: 237.0733, found: 237.0736.

1-Chloro-3,5-dimethoxy-2-(trifluoromethyl)benzene (2f) 1-chloro-3.5-dimethoxy-4and (trifluoromethyl)benzene (2f^{*})

Prepared following general procedure A using 1-chloro-3,5-dimethoxybenzene (51.8 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 10% DCM in pentane to afford **2f** (major) as a colourless oil and $2f^*$ as a white solid (Yield = 83%, 2f:2f^{*} = 2:1). 1-Chloro-3,5-dimethoxy-2-(trifluoromethyl)benzene: ¹H NMR (400 MHz, CDCl₃): δ 6.57 (d, J = 2.4 Hz, 1H), 6.41 (d, J = 2.0, Hz, 1H), 3.85 (s, 3H),

3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3 (C), 160.5 (C), 134.8 (q, J_{C-F} = 1.8 Hz, C), 123.5 (q, J_{C-F}) $= 273.9 \text{ Hz}, \text{ CF}_3$, 109.8 (q, $J_{CF} = 30.5 \text{ Hz}, \text{ C}$), 108.2 (CH), 98.4 (CH), 56.4 (CH₃), 55.6 (CH₃); ¹⁹F NMR

(376 MHz, CDCl₃): δ -54.5 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₉H₉O₂Cl₁F₃: 241.0238, found: 241.0242; **1-Chloro-3,5-dimethoxy-4-(trifluoromethyl)benzene:** Mp = 70 – 72 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.61 (s, 2H), 3.85 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6 (C), 139.1 (C), 123.7 (q, J_{C-F} = 274.7 Hz, CF₃), 105.8 (q, J_{C-F} = 30.0 Hz, C), 105.6 (CH), 56.5 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -55.1 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₉H₉O₂Cl₁F₃: 241.0238, found: 241.0242.

1-Bromo-2,4-dimethoxy-5-(trifluoromethyl)benzene (2g)

Prepared following general procedure A using 1-bromo-2,4-dimethoxybenzene (65.1 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 50% Et₂O in iso-hexane to afford **2g** as a white solid (Yield = 40%). Mp = 130 – 133 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1H), 6.51 (s, 1H), 3.94 (s, 3H), 3.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.4 (C), 158.3 (q, J_{C-F} = 2.3 Hz, C), 131.3 (q, J_{C-F} = 5.4 Hz, CH), 123.0 (q, J_{C-F} = 271.5 Hz, CF₃), 112.2 (q, J_{C-F} = 32.0 Hz, C), 101.1 (C), 96.7 56.2 (CH); ¹⁹E NMR (276 MHz, CDCl₃): δ 61.5 (g, CF) HPMS (ES⁺) cold for (M+H)⁺

(CH), 56.4 (CH₃), 56.2 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.5 (s, CF₃). HRMS (ES⁺) cald. for (M+H)⁺ C₉H₉O₂Br₁F₃: 284.9733, found: 284.9741.

1-Bromo-3,4,5-trimethoxy-2-(trifluoromethyl)benzene (2h)

Prepared following general procedure A using 1-bromo-3,4,5-trimethoxybenzene (74.1 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 40% DCM in pentane to afford **2h** as a yellow oil (Yield = 55%). ¹H NMR (400 MHz, CDCl₃): δ 6.98 (s, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.8 (C), 154.3 (C), 142.6 (C), 122.9 (q, J_{C-F} = 274.6 Hz, CF₃), 116.9 (q, J_{C-F} = 29.8 Hz, C), 114.2 (CH), 114.1 (q, J_{C-F} = 2.1 Hz, C), 62.1 (CH₃), 60.8 (CH₃), 56.2

(CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -55.5 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₁₀H₁₁O₃Br₁F₃: 314.9838, found: 314.9837.

1-Iodo-3,4,5-trimethoxy-2-(trifluoromethyl)benzene (2i)

Prepared following general procedure A using 1-iodo-3,4,5-trimethoxybenzene (88.2 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 40% DCM in pentane to afford **2i** (as a mixture with a small amount of an inseparable impurity) as a yellow oil (Yield = 51%). ¹H NMR (400 MHz, CDCl₃): δ 7.31 (s, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.8 (C), 154.2 (C), 143.5 (C), 122.1 (q, J_{C-F} = 275.0 Hz, CF₃), 121.5 (CH), 120.3 (q, J_{C-F} = 29.8 25 Hz - C). (22.1 (CH) = 50.8 (CH) = 55.7

Hz, C), 82.7 (q, $J_{C-F} = 2.5$ Hz, C), 62.1 (CH₃), 60.8 (CH₃), 56.3 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -55.7 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₁₀H₁₁O₃F₃I₁: 362.9699, found: 362.9698.

2-(Trifluoromethyl)-3,4,5-trimethoxybenzaldehyde (2j)

Prepared following general procedure A using 3,4,5-trimethoxybenzaldehyde (58.9 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 40% DCM in pentane to afford **2j** as a yellow oil (Yield = 63%). ¹H NMR (400 MHz, CDCl₃): δ 10.32 (q, J_{H-F} = 2.4 Hz, 1H), 7.34 (s, 1H), 3.95 (s, 6H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.2 (q, J_{C-F} = 6.0 Hz, CO), 155.8 (C), 152.8 (q, J_{C-F} = 2.5 Hz, C), 147.3 (C), 130.8 (C), 124.1 (q, J_{C-F} = 275.1 Hz, CF₃), 117.9 (q, J_{C-F} = 31.2 Hz, (CH₃), 61.0 (CH₃), 56.2 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -51.1 (s, CF₃); HRMS

C), 107.2 (CH), 62.0 (CH₃), 61.0 (CH₃), 56.2 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -51.1 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₁₁H₁₂O₄F₃: 265.0682, found: 265.0682.

2'-(Trifluoromethyl)-3',4',5'-trimethoxyacetophenone (2k)

Prepared following general procedure A using 3',4',5'-trimethoxyacetophenone (63.1 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 100% DCM to afford **2k** as a yellow oil (Yield = 61%). ¹H NMR (400 MHz, CDCl₃): δ 6.47 (s, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 2.45 (q, J_{H-F} = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.4 (CO), 156.2 (C), 152.7 (q, J_{C-F} = 1.9 Hz, C), 143.4 (C), 137.6 (q, J_{C-F} = 2.6 Hz, C), 123.4 (q, J_{C-F} = 273.1 Hz, CF₃), 112.8 (q, J_{C-F} = 31.0

OMe (C), 137.6 (q, $J_{C-F} = 2.6$ Hz, C), 123.4 (q, $J_{C-F} = 273.1$ Hz, CF₃), 112.8 (q, $J_{C-F} = 31.0$ Hz, C), 104.4 (CH), 61.7 (CH₃), 60.8 (CH₃), 56.2 (CH₃), 31.3 (q, $J_{C-F} = 3.1$ Hz, CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -55.0 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₁₂H₁₄O₄F₃: 279.0839, found: 279.0839.

Methyl 2-(trifluoromethyl)-3,4,5-trimethoxybenzoate (2l)

Prepared following general procedure A using methyl 3,4,5-trimethoxybenzoate (67.9 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 100% DCM to afford **2l** as a yellow oil (Yield = 54%). ¹H NMR (400 MHz, CDCl₃): δ 6.74 (s, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.4 (CO), 155.9 (C), 152.9 (q, J_{C-F} = 1.7 Hz, C), 144.1 (C), 128.4 (q, J_{C-F} = 2.9 Hz, C), 123.0 (q, J_{C-F} = 273.0 Hz, CF₃), 114.5 (q, J_{C-F} = 30.9 Hz, C), 106.8 (CH), L) 56.2 (CH₂): ¹⁹E NMR (376 MHz, CDCl₃): δ =56.9 (s, CE₃): HBMS (ES⁺)

61.8 (CH₃), 60.8 (CH₃), 56.2 (CH₃), 52.9 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -56.9 (s, CF₃); HRMS (ES⁺) cald. for (M) $C_{12}H_{13}O_5F_3$: 294.0710, found: 294.0709.

N,*N*-Dimethyl-2-(trifluoromethyl)aniline (2m) and *N*,*N*-Dimethyl-4-(trifluoromethyl)aniline (2m^{*})²

Prepared following general procedure A using *N*,*N*-dimethylaniline (53.2 mg (58.4 μ L), 0.3 mmol). The reaction mixture was purified by flash chromatography using 100% pentane to afford a mixture of **2m** and **2m**^{*} as a colourless oil (Yield = 75%, **2l**:**2l**^{*} = 2:1). *N*,*N*-Dimethyl-**2-(trifluoromethyl)aniline (2m):** ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 2.76 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 153.8 (C), 132.6 (CH), 127.3 (q, J_{C-F} = 5.5 Hz, CH), 125.6 (q,

 $J_{C-F} = 28.9 \text{ Hz}$, C), 123.6 (CH), 124.2 (q, $J_{C-F} = 273.0 \text{ Hz}$, CF₃), 122.7 (CH), 45.8 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -60.1 (s, CF₃); *N*,*N*-Dimethyl-4-(trifluoromethyl)aniline (2m^{*}): ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.6 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 3.02 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.3 (C), 126.3 (q, $J_{C-F} = 3.8 \text{ Hz}$, CH), 125.2 (q, $J_{C-F} = 270.2 \text{ Hz}$, CF₃), 117.4 (q, $J_{C-F} = 32.8 \text{ Hz}$, C), 111.1 (CH), 40.0 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -60.8 (s, CF₃).

4-Bromo-*N*,*N*-dimethyl-2-(trifluoromethyl)aniline (2n)

Prepared following general procedure A using 4-bromo-*N*,*N*-dimethylaniline (60.0 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 100% pentane to afford **2n** (as a mixture with a small amount of an inseparable impurity) as a yellow oil (Yield = 64%). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 2.4 Hz, 1H), 7.58 (dd, J = 8.8, 2.4 Hz, 1H), 7.19 (d, J = 8.8 Hz, 1H), 2.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7 (C), 135.5 (CH), 130.5 (q, J_{C-F} = 5.8 Hz, CH), 127.1 (q, J_{C-F} = 29.7 Hz, C), 124.4 (CH), 123.2 (q, J_{C-F} = 273.6

Hz, CF₃), 116.0 (C), 45.5 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -60.3 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₉H₁₀N₁Br₁F₃: 267.9943, found: 267.9942.

2-(Trifluoromethyl)acetanilide (20°) , 3-(trifluoromethyl)acetanilide $(20^{m})^{3}$ and 4-(trifluoromethyl)acetanilide $(20^{\circ})^{4}$

Prepared following general procedure A using acetanilide (40.6 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 10% Et₂O in pentane to afford **20**^o and an inseparable mixture of **20**^m and **20**^p, each as off-white solids (Yield = 48%, o:m:p = 3:1:4.3). **2-** (**Trifluoromethyl)acetanilide:** Mp = 72 – 74 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.42 (bs, NH), 7.23 (t, J = 7.5 Hz, 1H),

2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.4 (CO), 135.2 (C), 132.8 (CH), 126.0 (q, J_{C-F} = 3.5 Hz, CH), 124.7 (CH), 124.5 (CH), 24.6 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -60.6 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₉H₉O₁N₁F₃: 204.0631, found: 204.0632. **3-(Trifluoromethyl)acetanilide:** ¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.63 (bs, NH), 7.42 (t, J = 7.9, 1H), 7.35 (t, J = 7.7 Hz, 1H), 2.20 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.8 (s, CF₃). **4-(Trifluoromethyl)acetanilide:** ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.5 Hz, 2H), 7.63 (bs, NH), 7.55 (d, J = 8.6 Hz, 2H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.7 (CO), 140.9 (C), 126.2 (q, J_{C-F} = 3.7 Hz, CH), 125.9 (C), 124.1 (q, J_{C-F} = 271.4 Hz, CF₃), 119.3 (CH), 24.7 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.1 (s, CF₃).

1,1,1-Trifluorotoluene (2p)

Prepared following general procedure B using benzene (390.6 mg (447 μL), 5.0 mmol). The reaction mixture was analysed directly by ¹⁹F NMR (Yield = 60%). ¹⁹F NMR (376 MHz, CDCl₃): δ -62.8 (s, CF₃).

1,4-Dimethyl-2-(trifluoromethyl)benzene (2q)

Me

Prepared following general procedure B using p-xylene (530.9 mg (617 µL), 5.0 mmol). The reaction mixture was analysed directly by 19 F NMR (Yield = 67%). 19 F NMR (376 MHz, CDCl₃): δ -61.8 (s, CF₃).

1,3,5-Trimethyl-2-(trifluoromethyl)benzene (2r)

Prepared following general procedure B using mesitylene (300.5 mg (348 µL), 2.5 mmol). The reaction mixture was analysed directly by 19 F NMR (Yield = 71%). 19 F NMR (376 MHz, CDCl₃): δ -53.8 (s, CF₃).

N-Methyl-2-(trifluoromethyl)pyrrole (2s)⁵

Prepared following general procedure A using *N*-methylpyrrole (24.3 mg (26.6 µL), 0.3 mmol). The reaction mixture was analysed directly by ¹H and ¹⁹F NMR (Yield = 94%). ¹H NMR (400 MHz, CDCl₃): δ 6.70 (t, J = 2.1 Hz, 1H), 6.56 – 6.54 (m, 1H), 6.10 (t, J = 3.2 Hz, 1H), 3.72 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -58.8 (s, CF₃).

2-Acetyl-*N*-methyl-5-(trifluoromethyl)pyrrole (2t)⁶

Prepared following general procedure A using N-methyl-2-acetylpyrrole (36.9 mg (35.5 μ L), 0.3 mmol). The reaction mixture was analysed directly by ¹H and ¹⁹F NMR (Yield = 93%). ¹H NMR (400 MHz, CDCl₃): δ 6.88 (d, J = 4.3 Hz, 1H), 6.54 (d, J = 4.3 Hz, 1H), 4.00 (s, 3H), 2.47 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -59.8 (s, CF₃).

N-Boc-2-(trifluoromethyl)pyrrole (2u)⁵

Prepared following general procedure A using N-Boc-pyrrole (50.2 mg (50.2 µL), 0.3 mmol). The reaction mixture was analysed directly by ¹H and ¹⁹F NMR (Yield = 50%). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (dd, J = 3.3, 1.9 Hz, 1H), 6.74 – 6.72 (m, 1H), 6.19 (t, J = 3.4 Hz, 1H), 1.61 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -58.3 (s, CF₃).

2-Methyl-5-(trifluoromethyl)furan (2v)⁵

Prepared following general procedure A using 2-methylfuran (24.6 mg (27.1 µL), 0.3 mmol). The reaction mixture was analysed directly by ¹H and ¹⁹F NMR (Yield = 51%). ¹H NMR (400 MHz, CDCl₃): δ 6.64 (d, J = 1.8 Hz, 1H), 6.03 (d, J = 3.3 Hz, 1H), 2.32 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.9 (s, CF₃).

2-Methyl-5-(trifluoromethyl)thiophene (2w)⁵

Prepared following general procedure A using 2-methylthiophene (29.5 mg (29.0 µL), 0.3 mmol). The reaction mixture was analysed directly by ¹H and ¹⁹F NMR (Yield = 42%). ¹H NMR (400 MHz, CDCl₃): δ 7.20 (dd, J = 3.6, 1.1 Hz, 1H), 6.68 (m, 1H), 2.48 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -55.1 (s, CF₃).

2-Methoxy-5-(trifluoromethyl)thiophene (2x)

Prepared following general procedure A using 2-methoxythiophene (34.3 mg (30.2 µL)). 0.3 mmol). The reaction mixture was analysed directly by ¹H and ¹⁹F NMR and the CF₃ identity of the product was further confirmed by GC/MS (Yield = 76%). ¹H NMR (400 MHz, CDCl₃): δ 7.06 – 7.04 (m, 1H), 6.11 (dd, J = 4.1, 0.7 Hz, 1H), 3.87 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -55.3 (s, CF₃); GC/MS: M(C₆H₅OSF₃) = 182.0, found = 182.0.

1,2-Dimethyl-3-(trifluoromethyl)indole (2v)⁷

Prepared following general procedure A using 1,2-dimethylindole (43.6 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 10% DCM in pentane to afford 2v as a yellow solid (Yield = 46%). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.0 Hz, 1H), 7.27 - 7.16 (m, 3H), 3.62 (s, 3H), 2.50 (q, $J_{H-F} = 1.3$ Hz, 3H); ¹³C NMR (100 **S**6 MHz, CDCl₃): δ 137.3 (C), 136.1 (C), 125.5 (q, J_{C-F} = 266.7 Hz, CF₃), 124.4 (q, J_{C-F} = 1.6 Hz, C), 121.9 (CH), 121.0 (CH), 119.0 (CH), 109.2 (CH), 102.5 (q, J_{C-F} = 35.1 Hz, C), 29.4 (CH₃), 10.9 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -53.6 (s, CF₃).

7-Methoxy-4-(trifluoromethyl)-1,2-benzisothiazole (2z) and 7-methoxy-3-(trifluoromethyl)-1,2-benzisothiazole (2 z^*)

CF₃ N OMe

Prepared following general procedure A using 7-methoxy-1,2-benzisothiazole (49.5 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 20% DCM in isohexane to afford a mixture of **2w** and **2w**^{*} as a white solid (Yield = 41%, **2w**:**2w**^{*} = 5:1). 7-**Methoxy-4-(trifluoromethyl)-1,2-benzisothiazole (2w):** ¹H NMR (400 MHz, CDCl₃): δ 9.04 (q, J_{H-F} = 1.6 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 4.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.4 (C), 152.9 (q, J_{C-F} = 2.1 Hz, CH), 144.0 (C), 133.6 (q, J_{C-F} =

1.3 Hz, C), 125.5 (q, $J_{C-F} = 5.1$ Hz, CH), 124.1 (q, $J_{C-F} = 271.5$ Hz, CF₃), 118.0 (q, $J_{C-F} = 34.1$ Hz, C), 105.0 (CH), 56.2 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -59.9 (s, CF₃); **7-Methoxy-3-(trifluoromethyl)-1,2-benzisothiazole (2w**^{*}): ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.2 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 6.93 (d, J = 7.7 Hz, 1H), 4.02 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.6 (s, CF₃); HRMS (ES⁺) cald. for (M+H)⁺ C₉H₇O₁N₁F₃S₁: 234.0195, found: 234.0194.

2,6-dimethoxy-3-(trifluoromethyl)pyridine (2aa)

Pyriftalid-CF₃ (3)

Prepared following general procedure A using (±)-pyriftalid (95.5 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 70% DCM in iso-hexane to afford **3** as a white solid (Yield = 42%). Mp = 154 – 156 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 5.53 (q, J = 6.7 Hz, 1H), 3.76 (s, 6H), 1.64 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.7 (C), 167.9 (C), 167.3 (C), 152.7 (C), 136.3 (CH), 133.9 (CH), 129.5 (C), 127.2 (C), 123.1 (q, J_{C-F} = 272.4 Hz, CF₃), 122.6 (CH), 91.6 (q, J_{C-F} = 34.3 Hz, C), 76.2 (CH), 54.8 (CH₃), 20.5 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -56.3 (s, CF₃). HRMS (ES⁺) cald. for (M+H)⁺

 $C_{16}H_{14}O_4N_2F_3S_1$: 387.0621, found: 387.0620.

Napropamide-CF₃ (4)

Prepared following general procedure A using (±)-napropamide (81.4 mg, 0.3 mmol). The reaction mixture was purified by flash chromatography using 20% EtOAc in isohexane to afford **4** as a white solid (Yield = 51%). Mp = 77 – 81 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, J = 9.0 Hz, 1H), 8.12 (d, J = 8.7 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.63 (ddd, J = 8.5, 6.8, 1.5 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 5.17 (q, J = 6.7 Hz, 1H), 3.59 – 3.34 (m, 4H), 1.76 (d, J = 6.7 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.4 (CO), 156.2 (C), 130.2 (C), 128.1 (CH), 126.0 (CH), 125.9 (C), 125.5 (q, J_{CF})

= 6.1 Hz, CH), 124.9 (q, J_{C-F} = 272.3 Hz, CF₃), 124.0 (q, J_{C-F} = 2.4 Hz, CH), 122.7 (CH), 118.9 (q, J_{C-F} = 30.3 Hz, C), 103.3 (CH), 74.3 (CH), 41.1 (CH₂), 40.4 (CH₂), 17.9 (CH₃), 14.1 (CH₃), 12.6 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ -59.1 (s, CF₃). HRMS (ES⁺) cald. for (M+H)⁺ C₁₈H₂₁O₂N₁F₃: 340.1519, found: 340.1518.

Trifluoromethylation in the presence of radical scavengers:

Scheme S3. Reaction with radical scavengers

To an oven-dried reaction vial (5 mL) charged with 1,4-dimethoxybenzene (41.4 mg, 0.3 mmol), (diacetoxyiodo)benzene (193.3 mg, 0.6 mmol), а radical scavenger (0.6)mmol) and trimethyl(trifluoromethyl)silane (88.7 µL, 0.6 mmol) in anhydrous DMSO (1 mL) was slowly added AgF (9.5 mg, 0.075 mmol). The vial was sealed with a septum cap and the reaction was stirred at room temperature for 20 h. The resulting mixture was quenched with water (5 mL) and extracted with Et₂O (3×5 mL). The combined organic layers were dried over $MgSO_4$, filtered and concentrated under reduced pressure. The crude material was analysed by ¹⁹F NMR spectroscopy (4-fluoroanisole as the internal standard) in CDCl₃ With TEMPO, a characteristic TEMPO-CF₃ peak⁸ was obtained at ¹⁹F NMR: δ -55.6 (89% NMR yield). No trifluoromethylation product was formed with either TEMPO or galvinoxyl.

II. References

- 1 Y. Ye, S. H. Lee and M. S. Sanford, Org. Lett., 2011, 13, 5464.
- 2 T. Knauber, F. Arikan, G. -V. Roschenthaler and L. J. Goossen, *Chem. Eur. J.*, 2011, **17**, 2689.
- 3 T. Liu and Q. Shen, *Org. Lett.*, 2011, **13**, 2342.
- 4 H. Morimoto, T. Tsubogo, N. D. Litvinas and J. F. Hartwig, *Angew. Chem. Int. Ed.*, 2011, **50**, 3793.
- 5 D. A. Nagib and D. W. C. MacMillan, *Nature*, 2011, **480**, 224.
- 6 T. Kino, Y. Nagase, Y. Ohtsuka, K. Yamamoto, D. Uraguchi, K. Tokuhisa and T. Yamakawa, *J. Fluor. Chem.*, 2010, **131**, 98.
- 7 X. Mu, S. Chen, X. Zhen and G. Liu, *Chem. Eur. J.*, 2011, **17**, 6039.
- 8 X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2011, **133**, 16410.

III. NMR Spectra of Isolated Compounds

12xxx90113.1.1.1r 12xxx90113 Sangwon Seo SS528-1A1 HOLDER: 38 sF19 Chloroform /home/nmrsu/data opacc 38 Current Data Parameters NAME 12xo901f3 EXPNO 1 PROCNO 1
 PROCND 1

 F2 - Acquisition Parameters

 Date_20121004

 Time 5.13

 INSTRUM spect

 PROBHD 5 mm PABBO BB/ PULPROC zg30fkgn

 SOLVENT Chloroform

 NS 256

 SWH 89285.711 Hz

 AQ 0.7340032 sec

 TE 298.7 K

 D1 2.29999995 sec

 TD0 1
.CF₃ `OMe MeO оМе 2i ======= CHANNEL f1 ====== SF01 376.1878710 MHz NUC1 19F P1 12.70 usec PLW1 28.97299957 W F2 - Processing parameters SF 376.2254940 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 6 -5 -10 -15 -20 -25 -30 - 45 -50 - 55 -65 - 70 - 75 -{ -35 - 40 -60 f1 (ppm) 12xp430h1.1.1.1r 12xp430h1 Sangwon Seo SS536-1A2 HOLDER: 38 sPROTONfast Chloroform /home/nmrsu/data opacc 38 Current Data Parameters NAME 12xp430h1 EXPNO 1 PROCNO 1 СНО PHOCMO 1 F2 - Acquisition Parameters Date_20121008 Time 19.11 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg SOLVENT Chloroform NS 1 SWH 8012.820 Hz AO 2 0447233 sec. CF₃ MeO OMe ÓМе 2j AQ 2.0447233 sec TE 297.2 K D1 15.00000000 sec TD0 1 PLOT SF01 399.8424692 MHz NUC1 1H P1 3.33 usec PLW1 16.98200035 W F2 - Processing parameters SF 399.8400021 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 6.5 6.0 f1 (ppm) 12.0 11.5 11.0 10.5 10.0 9.5 9,0 8.5 8.0 7.5 7.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Ο.

12xp072c3.1.1.1r 12xp072c3 Sangvon Seo SS526-1A1 HOLDER: 22 sCARBON Chloroform /home/nmrsu/data op	-152.25 -152.28	135.54 135.55 130.55 130.55 130.55 130.55 130.55 122.55 123.55 122.55 123.55 12	1121.87 119.14 115.98		-45.53	
Current Data Parameters NAME 12xp072c3 EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date_20121004 Time 19.48 NSTRUM spect PROBHD 5 mm PABBO Bb/ PULPROG zgpg30 SOLVENT Chioroform NS 256 SWH 24038.461 Hz A0 1.3831488 sec TE 298.0 K D1 2.00000000 sec D10.0 3000000 sec D10.0 300000 sec D10.0 30000000000000000000000000000000000	е2 _CF3			in - 4 marta affante fer yn writer fan gangaraa		Markine for the former for the forme
210 200 190 180	170 160 150	140 130 120	10 100 90 80) 70 60 5	0 40 30	20 10
12xp072t2.1.1r 12xp072t2 Sangvon Seo SS526-1A1 HOLDER: 22 sF 19 Chloroform /home/nmrsu/data opacc 22 Current Data Parameters NAME 12xp072t2 EXRNO 1 PROCNO 1 F2 - Acquisition Parameters Date, 20121004 Time 16.46 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30fgn SOLVENT Chloroform NS 8 SWH 89285.711 Hz AQ 0.7340032 sec TE 297.4 K D1 2.2999995 sec TD0 1 ======= CHANNEL f1 ====== SF01 376.1378710 MHz NUC1 19F P1 12.70 usec PLW1 28.97299957 W F2 - Processing parameters SF 376.2254940 MHz WDW EM SSB 0 LB 0.30 Hz GB 0	2 Me ₂ CF ₃ 3r n		(ppm)	60.33		
5 -5 -10 -	15 -20 -	25 -30 -35	-40 -45 -50) -55 -60	-65	-70 -75

SF02 400.1316005 MHz SI 32768 SF 100.6127690 MHz WDW EM SSB 0

PC 1.40

120 110 f1 (ppm)

aliais in print in the second of the second second

