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SI 1. Experimental Procedures 

1.1 Chemicals and materials 

    D(+)-glucose and Bordeaux R dye sample were purchased from ACROS, 

2-vinyl-4,6-diamino-1,3,5-triazine (VDT) was obtained from TCI America, and all other chemicals 

were purchased from Aldrich. N-isopropyl acrylamide (NIPAM) was recrystallized with a 

hexane-acetone mixture (v/v, 1:1) and dried in vacuum. 4-vinylphenylboronic acid (VPBA), 

N,N’-methylenebisacrylamide (MBAAm), sodium dodecyl sulfate (SDS), 

2,2’-azobis(2-methylpropionamidine) dihydrochloride (AAPH), sodium L-lactate, D(+)-glucose, 

human serum albumin (HSA), and Bordeaux R dye sample were used as received without further 

purification. The water used in all experiments was deionization water.  

 

Fig. S1. Chemical structures of the co-monomers and the Bordeaux R dye molecule. 

1.2 One-pot synthesis of the poly(NIPAM-VPBA-VDT)-dye composited microgels 

The strategy for fabrication of dye composited microgels is via free radical precipitation 

polymerization reaction. Firstly, Bordeaux R dye molecules and VDT were mixed in 120 mL of 
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water, and stirred for 30 min. VDT with amino functional groups can complex with sulfonic acid 

groups from Bordeaux R dye molecules, so the solubility of the VDT dramatically increased in an 

aqueous solution. Then, NIPAM, VPBA, and dye-complexed VDT can be copolymerized in one 

pot by using AAPH as an initiator. The feeding composition is shown in Table 1. Typically, a 

mixture of NIPAM, Bordeaux R dye-complexed VDT, VPBA (0.115 g), MBAAm (0.018 g), SDS 

(0.020 g) was put in a 250 mL three-neck round-bottom flask equipped with a stirrer, a nitrogen 

gas inlet, and a condenser. The mixture was heated to 70
o
C under a N2 purge. After 30 min, 2 mL 

of 0.089 M AAPH was added to initiate the polymerization. The reaction was allowed to proceed 

for 4 h. The obtained poly(NIPAM-VPBA-VDT)-dye composite microgels were purified by 

centrifugation (Thermo Electron Co. SORVALL RC-6 PLUS superspeed centrifuge, 20,000 rpm, 

35
o
C, 30 min), decantation, and then washed with water. The resultant dye-composited microgels 

were further purified by dialysis for 2 weeks (Spectra/Por molecularporous membrane tubing, 

cutoff 12,000-14,000) against frequently changed water at room temperature (∼ 22
o
C) until the 

dialyzed water became colorless. The dye composited microgels with different feeding amount of 

VDT are coded as PTB-1 (1 mol%), PTB-5 (5 mol%), and PTB-10 (10 mol%), respectively. 

Table S1. Feeding composition for synthesis of poly(NIPAM-VPBA-VDT)-dye composite microgels 

 

2. Characterization 

The transmission electron microscopy (TEM) images were taken on a FEI TECNAI 

transmission electron microscope at an accelerating voltage of 120 kV. Approximately 30 μL of 

the dye composite microgel dispersion was air-dried on a carbon-coated copper grid for the TEM 

measurements.  

Dynamic light scattering (DLS) was performed on a standard laser light scattering 

spectrometer (BI-200SM) equipped with a BI-9000 AT digital time correlator (Brookhaven 

Instruments, Inc.). A He-Ne laser (35 mW, 633 nm) was used as the light source. All dye 

composite microgels were passed through Millipore Millex-HV filters with a pore size of 0.80 μm 

to remove dust before the measurements. All measurements were made at ~37
o
C. In DLS, the 

Laplace inversion of each measured intensity-intensity time correlated function can result in a 

characteristic line width distribution G(Г). For a purely diffusive relaxation, Г is related to the 
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translational diffusion coefficient D by (Г/q
2
)c→0,q→0=D, where q=(4πn/λ)sin(θ/2), with n, λ, and θ 

being the solvent refractive index, the wavelength of the incident light in vacuo, and the scattering 

angle, respectively. G(Г) can be further converted to a hydrodynamic radius (Rh) distribution by 

using the Stokes-Einstein equation, Rh=(КBT/6πη)D
-1

, where T, КB, and η are the absolute 

temperature, the Boltzmann constant, and the solvent viscosity, respectively. 

The UV-vis absorption spectra and absorbance values of the dye-composited microgel 

dispersions were obtained on a Thermo Electron Co. Helios β UV-vis Spectroscopy. The PL 

spectra of the composite microgel dispersions at various glucose concentrations were obtained on 

a JOBIN YVON Co. FluoroMax-3 spectrofluorometer equipped with a Hamamatsu R928P 

photomultiplier tube and a calibrated photodiode for excitation reference correction from 200 to 

800 nm, with an integration time of 1 s. 

                 

Fig. S2.  UV-Vis absorption curves of (a) the Bordeaux R dye solution in 5 mM PBS buffer of pH = 7.47 and (b-d) 

the poly(NIPAM-VPBA-VDT)-dye composite microgels dispersed in 5 mM PBS buffer of pH = 7.47: PTB-1 (b), 

PTB-5 (c), and PTB-10 (d). 

 

Fig. S3. The size distribution in terms of Rh of the poly(NIPAM-VPBA-VDT)-dye composite microgel particles with a 

very narrow size distribution: PTB-1 (--), PTB-5 (--), and PTB-10 (--) in the presence of 13 mM glucose, 

measured at 37
o
C, pH = 7.47, and a scattering angle θ=45

o
. 
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3. Stability 

 

Fig. S4. PL quenching and recovery cycles upon the repeated addition (30.0 mM) and dialysis removal of glucose (0 

mM) in the dispersion medium of poly(NIPAM-VPBA-VDT)-dye composite microgel (PTB-10) at pH = 7.47. 

 

4. Interferences 

   The glucose sensing of the microgels is based on the reversible binding of cis-diols of glucose 

to the phenyl boronic acids (PBA) on the microgel network chains, thus other cis-diol metabolites 

presented in blood can potentially interfere the glucose detection of the PBA-based microgels. The 

typical concentration of pyruvate, galactose and fructose in blood is < 0.1mM,
S1

 thus it is unlikely 

that these compounds will interfere significantly with the glucose sensing of our microgels. The 

major potential interferents for PBA-based microgel sensor are lactate and human serum albumin 

(HSA) because of their relatively high concentrations in blood. Considering the typical lactate 

concentration of 0.36-0.75 mM in a resting healthy adult
S2,S3

 and typical HSA concentration of 44 

g/L in serum,
S3

 we have studied the impact of 1 mM lactate and 44 g/L HSA on the glucose 

sensing response of the prepared microgels (Fig. S5). The results show that our dye-composited 

microgel glucose sensors should be free from significant interferences of lactate, as there was only 

about 1–5% decrease in glucose-induced PL quenching in the presence of 1.0 mM lactate at 

glucose concentrations below 25 mM. On the other hand, the presence of 44 g/L HSA increases 
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the glucose-induced PL quenching, resulting in a plausibly slight increase in the glucose 

responsive sensitivity. At low glucose concentrations (≤15 mM), the HSA-induced increase in the 

glucose-responsive PL quenching is not significant (< 6%). At higher glucose concentrations, 

however, the glucose-responsive PL quenching does not reach a plateau as it does in the absence 

of HSA, which can be attributed to the competitive binding of HSA to boronic acids. As the HSA 

is a relatively large molecule compared to glucose, the binding of HSA to the PBA sites of 

microgels can cause a larger swelling degree, thus lead to a larger PL quenching. Based on our 

results, we expect that the sensitivity change of the microgels to glucose will be less than 5% in 

real matrices at glucose concentrations below 15 mM. At higher glucose concentrations (>15 mM), 

the sensitivity change of the microgels to glucose should be less than 10% in real matrices 

 

Fig. S5. Glucose response of the p(NIPAM-VPBA-VDT)-dye composite microgels (PTB-10) in the presence of 

L-lactate (--: 0 mM; --: 1 mM) and HSA (--: 0 mM; --: 44 g/L) in the PBS solutions at pH = 7.47. 
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