Electronic Supplementary Information (ESI)

Facile One-pot Synthesis of Organic Dye-Complexed Microgels for Optical Detection of Glucose at Physiological pH

Yingyu Li, Shuiqin Zhou*

Department of Chemistry, College of Staten Island, and the Graduate Center, the City University of New York, Staten Island, NY 10314, USA

SI 1. Experimental Procedures

1.1 Chemicals and materials

D(+)-glucose and Bordeaux R dye sample were purchased from ACROS. 2-vinyl-4,6-diamino-1,3,5-triazine (VDT) was obtained from TCI America, and all other chemicals were purchased from Aldrich. N-isopropyl acrylamide (NIPAM) was recrystallized with a hexane-acetone mixture (v/v, 1:1) and dried in vacuum. 4-vinylphenylboronic acid (VPBA), *N*,*N*'-methylenebisacrylamide sodium dodecyl sulfate (MBAAm), (SDS). 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH), sodium L-lactate, D(+)-glucose, human serum albumin (HSA), and Bordeaux R dye sample were used as received without further purification. The water used in all experiments was deionization water.

Fig. S1. Chemical structures of the co-monomers and the Bordeaux R dye molecule.

1.2 One-pot synthesis of the poly(NIPAM-VPBA-VDT)-dye composited microgels

The strategy for fabrication of dye composited microgels is *via* free radical precipitation polymerization reaction. Firstly, Bordeaux R dye molecules and VDT were mixed in 120 mL of

water, and stirred for 30 min. VDT with amino functional groups can complex with sulfonic acid groups from Bordeaux R dye molecules, so the solubility of the VDT dramatically increased in an aqueous solution. Then, NIPAM, VPBA, and dye-complexed VDT can be copolymerized in one pot by using AAPH as an initiator. The feeding composition is shown in Table 1. Typically, a mixture of NIPAM, Bordeaux R dye-complexed VDT, VPBA (0.115 g), MBAAm (0.018 g), SDS (0.020 g) was put in a 250 mL three-neck round-bottom flask equipped with a stirrer, a nitrogen gas inlet, and a condenser. The mixture was heated to 70°C under a N₂ purge. After 30 min, 2 mL of 0.089 M AAPH was added to initiate the polymerization. The reaction was allowed to proceed for 4 h. The obtained poly(NIPAM-VPBA-VDT)-dye composite microgels were purified by centrifugation (Thermo Electron Co. SORVALL RC-6 PLUS superspeed centrifuge, 20,000 rpm, 35° C, 30 min), decantation, and then washed with water. The resultant dye-composited microgels were further purified by dialysis for 2 weeks (Spectra/Por molecularporous membrane tubing, cutoff 12,000-14,000) against frequently changed water at room temperature (~ 22°C) until the dialyzed water became colorless. The dye composited microgels with different feeding amount of VDT are coded as PTB-1 (1 mol%), PTB-5 (5 mol%), and PTB-10 (10 mol%), respectively.

Sample	NIPAM	VPBA	VDT	Bordeaux	MBAAm	SDS
	(g)	(g)	(g)	(g)	(g)	(g)
PTB-1	0.708	0.115	0.011	0.033	0.018	0.020
PTB-5	0.719	0.115	0.053	0.167	0.018	0.020
PTB-10	0.675	0.115	0.106	0.334	0.018	0.020

Table S1. Feeding composition for synthesis of poly(NIPAM-VPBA-VDT)-dye composite microgels

2. Characterization

The transmission electron microscopy (TEM) images were taken on a FEI TECNAI transmission electron microscope at an accelerating voltage of 120 kV. Approximately 30 μ L of the dye composite microgel dispersion was air-dried on a carbon-coated copper grid for the TEM measurements.

Dynamic light scattering (DLS) was performed on a standard laser light scattering spectrometer (BI-200SM) equipped with a BI-9000 AT digital time correlator (Brookhaven Instruments, Inc.). A He-Ne laser (35 mW, 633 nm) was used as the light source. All dye composite microgels were passed through Millipore Millex-HV filters with a pore size of 0.80 μ m to remove dust before the measurements. All measurements were made at ~37°C. In DLS, the Laplace inversion of each measured intensity-intensity time correlated function can result in a characteristic line width distribution $G(\Gamma)$. For a purely diffusive relaxation, Γ is related to the

translational diffusion coefficient *D* by $(\Gamma/q^2)_{c\to 0,q\to 0}=D$, where $q=(4\pi n/\lambda)\sin(\theta/2)$, with *n*, λ , and θ being the solvent refractive index, the wavelength of the incident light in vacuo, and the scattering angle, respectively. $G(\Gamma)$ can be further converted to a hydrodynamic radius (R_h) distribution by using the Stokes-Einstein equation, $R_h=(K_B T/6\pi \eta)D^{-1}$, where *T*, K_B , and η are the absolute temperature, the Boltzmann constant, and the solvent viscosity, respectively.

The UV-vis absorption spectra and absorbance values of the dye-composited microgel dispersions were obtained on a Thermo Electron Co. Helios β UV-vis Spectroscopy. The PL spectra of the composite microgel dispersions at various glucose concentrations were obtained on a JOBIN YVON Co. FluoroMax-3 spectrofluorometer equipped with a Hamamatsu R928P photomultiplier tube and a calibrated photodiode for excitation reference correction from 200 to 800 nm, with an integration time of 1 s.

Fig. S2. UV-Vis absorption curves of (a) the Bordeaux R dye solution in 5 mM PBS buffer of pH = 7.47 and (b-d) the poly(NIPAM-VPBA-VDT)-dye composite microgels dispersed in 5 mM PBS buffer of pH = 7.47: PTB-1 (b), PTB-5 (c), and PTB-10 (d).

Fig. S3. The size distribution in terms of R_h of the poly(NIPAM-VPBA-VDT)-dye composite microgel particles with a very narrow size distribution: PTB-1 (->), PTB-5 (-<-), and PTB-10 (--) in the presence of 13 mM glucose, measured at 37°C, pH = 7.47, and a scattering angle θ =45°.

3. Stability

Fig. S4. PL quenching and recovery cycles upon the repeated addition (30.0 mM) and dialysis removal of glucose (0 mM) in the dispersion medium of poly(NIPAM-VPBA-VDT)-dye composite microgel (PTB-10) at pH = 7.47.

4. Interferences

The glucose sensing of the microgels is based on the reversible binding of cis-diols of glucose to the phenyl boronic acids (PBA) on the microgel network chains, thus other cis-diol metabolites presented in blood can potentially interfere the glucose detection of the PBA-based microgels. The typical concentration of pyruvate, galactose and fructose in blood is < 0.1mM,^{S1} thus it is unlikely that these compounds will interfere significantly with the glucose sensing of our microgels. The major potential interferents for PBA-based microgel sensor are lactate and human serum albumin (HSA) because of their relatively high concentrations in blood. Considering the typical lactate concentration of 0.36-0.75 mM in a resting healthy adult^{S2,S3} and typical HSA concentration of 44 g/L in serum,^{S3} we have studied the impact of 1 mM lactate and 44 g/L HSA on the glucose sensing response of the prepared microgels (**Fig. S5**). The results show that our dye-composited microgel glucose sensors should be free from significant interferences of lactate, as there was only about 1 – 5% decrease in glucose-induced PL quenching in the presence of 1.0 mM lactate at glucose concentrations below 25 mM. On the other hand, the presence of 44 g/L HSA increases

the glucose-induced PL quenching, resulting in a plausibly slight increase in the glucose responsive sensitivity. At low glucose concentrations (≤ 15 mM), the HSA-induced increase in the glucose-responsive PL quenching is not significant (< 6%). At higher glucose concentrations, however, the glucose-responsive PL quenching does not reach a plateau as it does in the absence of HSA, which can be attributed to the competitive binding of HSA to boronic acids. As the HSA is a relatively large molecule compared to glucose, the binding of HSA to the PBA sites of microgels can cause a larger swelling degree, thus lead to a larger PL quenching. Based on our results, we expect that the sensitivity change of the microgels to glucose will be less than 5% in real matrices at glucose concentrations below 15 mM. At higher glucose concentrations (>15 mM), the sensitivity change of the microgels to glucose should be less than 10% in real matrices

Fig. S5. Glucose response of the p(NIPAM-VPBA-VDT)-dye composite microgels (PTB-10) in the presence of *L*-lactate (- \blacktriangleleft -: 0 mM; - \bullet -: 1 mM) and HSA (- \blacktriangleleft -: 0 mM; - \blacksquare -: 44 g/L) in the PBS solutions at pH = 7.47.

References:

S1. T. D. James, K. Sandanayake, S. Shinkai, Angew. Chem. Int. Ed. Engl. 1994, 33, 2207.

S2. M. M. Muscatello, L. E. Stunja, S. A. Asher, Anal. Chem. 2009, 81, 4978.

S3. C. A. Burtis, E. R Ashwood (Eds), Tietz Textbook of Clinical Chemistry 1999, 3rd ed. W. B.

Saunders, Philadelphia, PA.