Supporting Information for:

"Exploring the reactivity of white phosphorus with electrophilic carbenes: synthesis of a P4 cage and P8 clusters"

Caleb D. Martin,^{*a*} Cory M. Weinstein,^{*a*} Curtis E. Moore,^{*b*} Arnold L. Rheingold,^{*b*} and Guy Bertrand^{**a*}

^aJoint CNRS-UCSD Research Laboratory (UMI 3555), Department of Chemistry and

Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla,

California 92093-0358

^b X-ray Crystallography Facility UCSD

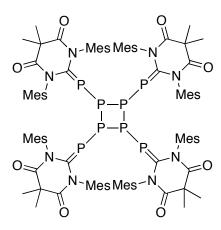
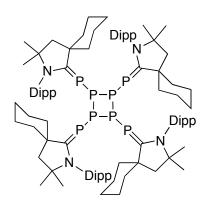

guybertrand@ucsd.edu

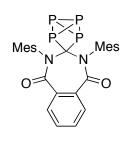
Table of Contents					
Experimental					
Figure S-1:	Crude ${}^{31}P{}^{1}H$ NMR spectrum for the reaction of 1f with P ₄ .	5			
Figure S-2:	$^{31}P{^{1}H}$ NMR spectrum of 2 .	6			
Figure S-3:	$^{31}P{^{1}H}$ NMR spectrum of 3 .	7			
Figure S-4:	$^{31}P{^{1}H}$ NMR spectrum of 4.	8			
Table S-1:	X-ray details for 2-4 .	9			
References:		10			

General Considerations:

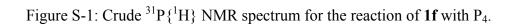
All manipulations were performed under an inert atmosphere in an argon filled MBraun glove box or using standard Schlenk techniques. The carbenes **1c**, **1f** and **1g** were prepared via the literature procedures.¹⁻³ White phosphorus was sublimed and stored under argon in the dark. Toluene, benzene and hexane were freshly distilled over sodium metal. CDCl₃ used for ¹H NMR spectroscopy was purchased from Cambridge Isotope Laboratories and dried over CaH₂. Multinuclear NMR data are listed in ppm, relative to Me₄Si (¹³C and ¹H) and H₃PO₄ (³¹P), coupling constants are in Hertz and all NMR spectra were recorded on a Varian VX 500 MHz or JEOL 500 MHz spectrometer. Single crystal X-ray diffraction data were collected on a Bruker Apex II-CCD detector using Mo-K, radiation ($\lambda = 0.71073$ Å). Crystals were selected under oil, mounted on nylon loops then immediately placed in a cold stream of N₂. Structures were solved and refined using SHELXTL. Melting points were measured with a Büchi melting point apparatus.

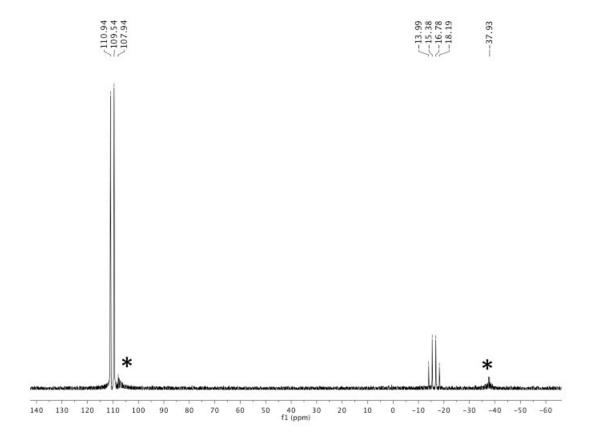

CAUTION: P_4 is extremely pyrophoric and the proper safety procedures should be followed when handling.

2: A solution of **1f** in benzene (0.500 g, 1.33 mmol; 40 mL) was cannula transferred dropwise to a solution of P₄ in toluene (0.330 g, 2.66 mmol; 20 mL) in the dark. The colorless solution immediately began acquiring an orange color, which then became red. After stirring for 2 hours, the solvent was removed *in vacuo*. The solids


were washed with benzene (10 mL), then hexanes $(2 \times 15 \text{ mL})$ and dried *in vacuo* to give

a red powder. Yield: 0.582 g, 66%; Single crystals of **2** for X-ray diffraction studies were grown by slow evaporation of a benzene solution. m.p. 160-162°C; ${}^{31}P{}^{1}H{}$ (CDCl₃) $\delta =$ 107.9 (4P, m), -37.9 (4P, m); ESI-MS *m/z* C₉₆H₁₁₂O₈N₈P₈Na [MNa⁺] Calc: 1775.6373 Found: 1775.6396.


3: A solution of **1c** in benzene (0.500 g, 1.54 mmol; 40 mL) was cannula transferred dropwise to a solution of P₄ (0.382 g, 3.08 mmol; 25 mL) in toluene in the dark. The colorless solution immediately began acquiring a green color, which then became red. After stirring for 2 hours, the toluene was removed *in vacuo* to produce an orange


powder. The product was extracted with THF and the solvent removed *in vacuo*. The solids were washed with cold pentane (2 × 15 mL) and dried *in vacuo* to give an orange powder. Yield 0.351 g, 40%; Single crystals of **3** for X-ray diffraction studies were grown by vapor diffusion of hexane into a saturated benzene solution. m.p. 204-206°C; ¹H NMR (CDCl₃) δ = 7.28 (4H, t, ³*J* = 7.5 Hz), 7.14 (8H, d, ³*J* = 7.5 Hz), 3.03-2.90 (8H, m), 2.80 (16H, sept, ³*J* = 7.0 Hz), 2.01 (8H, s), 1.55-1.35 (32H, m), 1.29 (24H, d, ³*J* = 7.0 Hz), 1.27-1.13 (8H, m), 1.18 (24H, d, ³*J* = 7.0 Hz); ¹³C{¹H} (CDCl₃) δ = 212.3 (br d, *J* = 84 Hz), 148.1 (d, *J* = 3 Hz), 134.6 (d, *J* = 3 Hz), 128.3, 124.9, 68.2 (d, *J* = 1 Hz), 56.1 (d, *J* = 11 Hz), 50.5, 29.7, 29.0, 27.7, 27.6, 25.1, 24.5, 23.5; ³¹P{¹H} (CDCl₃) δ = 66.4 (4P, m), -44.5 (4P, m); HRMS *m/z* calc 1549.9052, found 1549.9033 [MH⁺].

4: Carbene 1g (0.090 g, 0.220 mmol) was added to an NMR tube with P_4 (0.027 g, 0.220 mmol). C_6D_6 was then added to the mixture of solids. Upon dissolving of the solids, the solution turned a red-orange color and over time a yellow precipitate formed which was primarily

4 (See Fig S-4 for ³¹P{¹H} NMR spectrum). Although we could not obtain a pure bulk sample, the reaction proceeded in >50% yield. Single crystals of **4** for X-ray diffraction studies were grown by vapor diffusion of hexane into a saturated CDCl₃ solution. ³¹P{¹H} (CDCl₃) δ = -10.5 (1P, td, ¹*J*_{P-P} = 85 Hz and ²*J*_{P-P} 19 Hz), -14.5 (1P, td, ¹*J*_{P-P} = 85 Hz and ²*J*_{P-P} 19 Hz), -326 (2P, dd, ¹*J*_{P-P} = 89 Hz and ²*J*_{P-P} 85 Hz).

Asterisks denote P₈ product.

Figure S-2: ${}^{31}P{}^{1}H$ NMR spectrum of **2**.

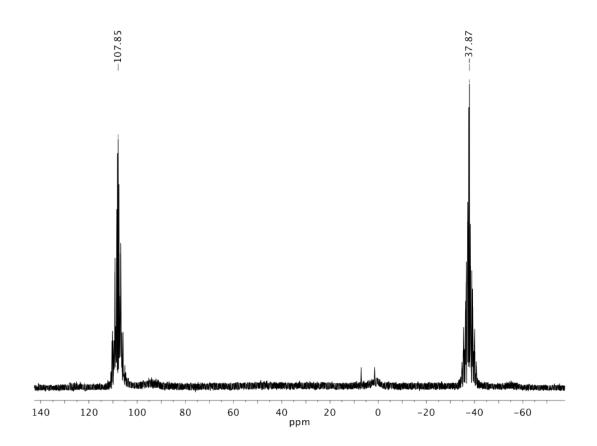


Figure S-3: ${}^{31}P{}^{1}H$ NMR spectrum of **3**.

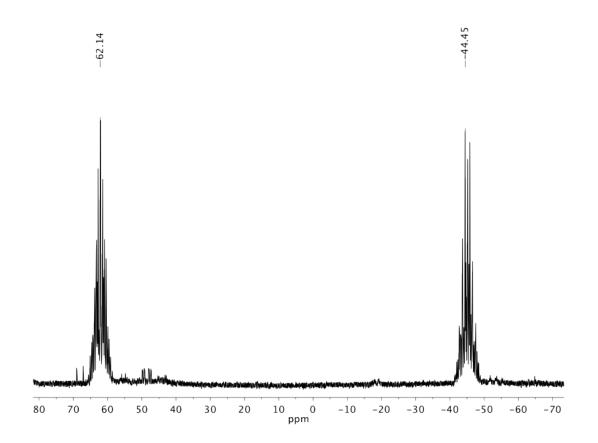


Figure S-4: ${}^{31}P{}^{1}H$ NMR spectrum of 4.

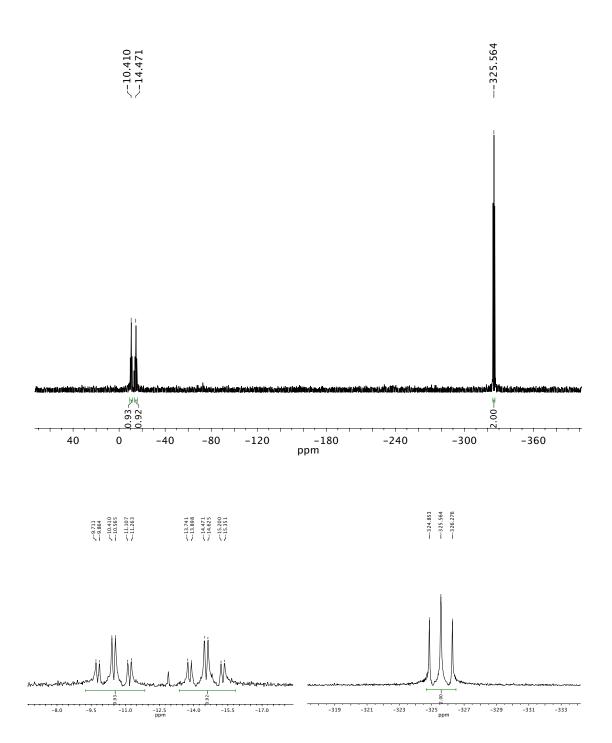


Table S1: X-ray details for 2-4.

Compound	2	3	4
Empirical formula	$C_{120}H_{136}N_8O_8P_8\\$	$C_{98}H_{146}N_4P_8$	$C_{27.33}H_{26.33}ClN_2O_2P_4$
CCDC	930071	930072	930073
FW (g/mol)	2066.12	1628.0482	534.38
Crystal system	Monoclinic	Orthorhombic	Trigonal
Space group	P2/c	Fddd	<i>R</i> -3
<i>a</i> (Å)	12.600(4)	12.0923(12)	34.4341(10)
<i>b</i> (Å)	16.320(5)	29.578(3)	34.4341(10)
<i>c</i> (Å)	26.808(9)	53.934(5)	11.4555(4)
α (deg)	90	90	90
β (deg)	92.213(11)	90	90
γ (deg)	90	90	120
$V(\text{\AA}^3)$	5508(3)	19290(3)	11763.1
Ζ	2	8	18
D_c (Mg m ⁻³)	1.246	1.121	1.459
radiation, λ (Å)	.71073	.71073	.71073
temp (K)	100(2)	100(2)	100(2)
$R1[I>2\sigma I]^a$	0.0625	0.0432	0.0645
$wR2(F^2)^a$	0.1766	0.1067	0.1495
$\operatorname{GOF}(S)^a$	1.009	1.008	1.077

^{*a*} $R1(F[I > 2(I)]) = \sum ||F_o| - |F_c|| / \sum |F_o|; wR2(F^2 \text{ [all data]}) = [w(F_o^2 - F_c^2)^2]^{1/2}; S(\text{all data}) = [w(F_o^2 - F_c^2)^2 / (n - p)]^{1/2}$ (*n* = no. of data; *p* = no. of parameters varied; $w = 1/[{}^2(F_o^2) + (aP)^2 + bP]$ where $P = (F_o^2 + 2F_c^2)/3$ and *a* and *b* are constants suggested by the refinement program.

References:

1. T. W. Hudnall, J. P. Moerdyk and C. W. Bielawski, Chem. Commun., 2010, 46, 4288.

2. R. Jazzar, R. D. Dewhurst, J.-B. Bourg, B. Donnadieu, Y. Canac and G. Bertrand, *Angew. Chem.*, *Int. Ed.*, 2007, **46**, 2899.

3. T. W. Hudnall, A. G. Tennyson and C. W. Bielawski, *Organometallics*, 2010, **29**, 4569.