Supporting information for:

Chirality in DNA/ π -conjugated polymer supramolecular structures: insights into self-assembly

Jenifer Rubio-Magnieto,⁺ Amandine Thomas,^{+,+} Sébastien Richeter,⁺ Ahmad Mehdi,⁺ Philippe Dubois,^{\perp} Roberto Lazzaroni,⁺ Sébastien Clément,⁺ and Mathieu Surin^{*,+}

[†] Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, Research Institute for Science and Engineering of Materials and Research Institute for Biosciences, University of Mons - UMONS, 20 Place du Parc, B-7000 Mons, Belgium.

[‡] Institut Charles Gerhardt – UMR 5253, Equipe Chimie Moléculaire et Organisation du Solide, Université de Montpellier 2 - CC1701, Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France.

¹ Laboratory for Polymeric and Composites Materials, Center for Innovation in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 20 Place du Parc, B-7000 Mons, Belgium.

Table of contents:

General experimental and synthetic procedures	P.3
¹ H NMR spectra of P3HT-Br in CDCl ₃	P.6
MALDI-TOF spectra of P3HT-Br	P.6
¹ H NMR spectra of P3HT-Im in CD ₃ OD	P.7
¹ H NMR spectra of P3HT-Py in CD ₃ OD	P.7
¹³ C{ ¹ H} NMR spectra of P3HT-Py in CD ₃ OD	P.8
¹ H NMR spectra of P3HT-NMe₃ in CD ₃ OD	P.8
¹³ C{ ¹ H} NMR spectra of P3HT-NMe₃ in CD ₃ OD	P.9
¹ H NMR spectra of P3HT-PMe₃ in CD ₃ OD	P.9
¹³ C{ ¹ H} NMR spectra of P3HT-PMe₃ in CD ₃ OD	P.10
³¹ P{ ¹ H} NMR spectra of P3HT-PMe₃ in CD ₃ OD	P.10
Absorbance properties of oligonucleotides mixed with different P3HT-R polymers	P.11
$\Delta \lambda_{max}$ as a function of the composition in P3HT-PMe₃ in ssDNAd(R) ₂₀ : P3HT-PMe₃	P.11
CD spectra of xsDNAd(X) ₂₀ : P3HT-PMe₃ 1:N	P.12
CD spectra of ssDNAd(T) ₂₀ : P3HT-PMe₃ 1:N as a function of the temperature	P.13
UV-Vis spectra of ssDNAd(T) ₂₀ : P3HT-PMe₃ 1:1as a function of the temperature	P.14

CD spectra of xsDNAd(R) ₂₀ :P3HT-PMe ₃ 1:N as a function of the temperature	P.14
CD spectra of xsDNAd(R) ₂₀ :P3HT-PMe ₃ 1:N as a function of the temperature	P.15
Melting temperature study of dsDNAd(R) ₂₀	P.16

Characterization techniques

All NMR spectra were acquired with a Bruker Avance 300 (¹H 300.13 MHz, ¹³C{¹H} 75.48 MHz and ³¹P{¹H} 121.49 MHz) using the solvent as the chemical shift standard, except for ${}^{31}P{}^{1}H{}$ NMR, where the chemical shifts are relative to 85% H₃PO₄ in D₂O. All chemical shifts and coupling constants are reported in ppm and Hz, respectively. Average molecular weight and molecular weight distribution of P3HT-Br were measured using size exclusion chromatography (SEC) on a Polymer Laboratories liquid chromatograph equipped with a PL-DG802 degasser, an isocratic HPLC pump LC 1120 (flow rate = 1 mL.min^{-1}), a Marathon autosampler (loop volume = 200μ L, solution conc. = 1 mg.mL⁻¹), a PL-DRI refractive index detector and three columns: a PL gel 10 µm guard column and two PL gel Mixed-B 10 µm columns (linear columns for separation of MWPS ranging from 500 to 10⁶ daltons). The eluent used was THF at a flow rate of 1 mL.min⁻¹ at 40°C. Polystyrene standards were used to calibrate the SEC. Matrix-assisted laser desorption ionization time-of-flight (MALDI-ToF) mass spectra were recorded using a spectrometer equipped with a nitrogen laser, operating at 337 nm with a maximum output of 500 J.m⁻² delivered to the sample in 4 ns pulses at 20 Hz repeating rate. Time-of-flight mass analyses were performed in reflection mode at a resolution of about 10000. All samples were analyzed using trans-2-[3-(4-tertbutylphenyl)-2methylprop-2-enylidene]malonitrile (DCTB). This matrix was prepared as a 20 mg.mL⁻¹ solution in CHCl₃.¹ The matrix solution (1 µL) was applied to a stainless steel target and air dried. Polymer samples were dissolved in CH₂Cl₂ to obtain 1 mg.mL⁻¹ solutions. 1 µL aliquots of these solutions were applied onto the target area already bearing the matrix crystals, and air dried. For the recording of the single-stage MS spectra, the quadrupole (rfonly mode) was set to pass ions from 500 to 10000 Th, and all ions were transmitted into the pusher region of the time-of-flight analyzer where they were mass analyzed with 1 s integration time.

General procedure for the synthesis of regioregular head-to-tail poly[3-(n-bromoalkyl)thiophene-2,5-diyl] (P3HT-Br). P3HT-Br was prepared by using a Kumada Catalyst-transfer polycondensation according to literature method.² P3HT-Br: Yield: 73 %, ¹H NMR (CDCl₃): $\delta = 1.48$ (m, 4H, CH₂), 1.73 (m, 2H, CH₂), 1.89 (m, 2H, CH₂), 2.83 (t, 2H, CH₂, ³J_{H-H} = 6 Hz), 3.43 (t, 2H, CH₂, ³J_{H-H} = 6 Hz), 6.98 (s, 1H, Th) ppm, UV-visible

¹ J. De Winter, G. Deshayes, F. Boon, O. Coulembier, P. Dubois, P. Gerbaux, J. Mass Spectrom. 2011, 46, 237-246.

² S. Clément, A. Tizit, S. Desbief, A. Mehdi, J. De Winter, P. Gerbaux, R. Lazzaroni, B. Boury, *J. Mater. Chem.* **2011**, *21*, 2733-2739.

(CHCl₃): $\lambda_{max} = 448$ nm, SEC (THF, polystyrene standard) $M_n = 13500$ g.mol⁻¹; polydispersity = 1.27.

General procedure for the synthesis of P3HT-Im and P3HT-Py.

Poly[3-(6-bromohexyl)thiophene] (**P3HT-Br**) (1 mmol of monomer units) was allowed to react with 1-methylimidazole (8 mmol)² or pyridine (10 mmol) in refluxing CHCl₃ (20 mL) for 2 d. After cooling to room temperature, the main part of the solvent mixture was evaporated and the concentrated solution (ca. 5 mL) was poured to Et_2O to precipitate polyelectrolyte **P3HT-Im** and **P3HT-Py**. The crude polymers obtained were repeatedly washed with diethyl ether to remove residues of 1-methylimidazole or pyridine, dried under vacuum at 40°C. The solid polymers **P3HT-Im** and **P3HT-Py** were further purified with refluxing diethyl ether by using a Soxhlet apparatus and finally, dried under vacuum at 40°C.

P3HT-Im.² Yield : 79 %, ¹H NMR (CD₃OD) : δ = 1.48 (m, 4H, CH₂), 1.75 (m, 2H, CH₂), 1.95 (m, 2H, CH₂), 2.87 (m, 2H, CH₂), 3.97 (s, 3H, N–CH₃), 4.26 (t, 2H, CH₂, ³*J*_{H-H} = 7 Hz), 7.15 (s, 1H, Th), 7.60 (s, 1H, H_{ar.}), 7.70 (s, 1H, H_{ar.}), 9.10 (s, 1H, NCHN) ppm. Anal. calcd.: N/S 2.00 Found 2.09.

P3HT-Py. Yield : 71 %, ¹H NMR (CD₃OD) : $\delta = 1,52$ (m, 4H, CH₂), 1,74 (m, 2H, CH₂), 2,08 (m, 2H, CH₂), 2,87 (s, 2H, CH₂-Th), 4,71 (t, 2H, CH₂-N, ³*J*_{H-H} = 6 Hz), 7,11 (s, 1H, Th), 8,12 (m, 2H, H_{ar.}), 8,59 (m, 1H, H_{ar.}), 9,10 (m, 2H, H_{ar.}) ppm, ¹³C{¹H} NMR (CD₃OD): $\delta = 27.6$, 30.5, 30.7, 31.9, 33.0 (CH₂), 62.9 (CH₂-N), 129.9, 130.6, 132.6, 135.1, 141.8, 146.4, 147.2 ppm. Anal. calcd.: N/S 1.00 Found 0.97.

General procedure for the synthesis of P3HT-NMe₃ and P3HT-PMe₃.

Poly[3-(6-bromohexyl)thiophene] (**P3HT-Br**) (1 mmol of monomer units) was introduced into a 100 mL two necked flask equipped for stirring. 12 mL of a solution of trimethylamine³ or trimethylphosphine (1.0 M in THF) were added and the mixture was stirred at 30°C for 24h. The observed precipitate was redissolved by adding H₂O (2 mL) and additional trimethylamine or trimethylphosphine (~3 mL) was added. The mixture was stirred at 30°C for 24 h. After removal of the solvent, the residue was dissolved in the mínimum amount of methanol and poured into Et₂O to precipitate polymers **P3HT-NMe₃** or **P3HT-PMe₃**. The crude polymers obtained were repeatedly washed with diethyl ether and dried under vacuum at 40°C. The polyelectrolytes **P3HT-NMe₃** and **P3HT-PMe₃** were further purified with refluxing diethyl ether by using a Soxhlet apparatus and finally, dried under vacuum at 40°C.

³ J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Hang, Y. Sao, U. Scherf, A. J. Heeger, G. C. Bazan, *J. Am. Chem. Soc.* **2011**, *133*, 8416.

P3HT-NMe₃. Yield : 75 %, ¹H NMR (CD₃OD) : δ = 1,51 (m, 4H, CH₂), 1,80 (m, 4H, CH₂), 2,87 (m, 2H, CH₂-Th), 3,15 (s, 9H, N-CH₃), 3,41 (m, 2H, CH₂-N), 7,13 (s, 1H, Th) ppm, ¹³C{¹H} NMR (CD₃OD): δ = 24.0, 27.2, 30.2, 30.3, 31.4 (CH₂), 53.7 (N-CH₃), 67.8 (CH₂-N), 131.7, 132.8, 136.3, 144.5 ppm. Anal. calcd.: N/S 1.00 Found 0.98.

P3HT-PMe₃ : Yield : 77 %, ¹H NMR (CD₃OD) : δ = 1,38-1.80 (m, 8H, CH₂), 1,90 (m, 9H, CH₃-P), 2,29 (s, 2H, CH₂-P), 2,88 (s, 2H, CH₂-Th), 7,13 (s, 1H, Th) ppm, ¹³C{¹H} NMR (CD₃OD): δ = 7.38 (d, ¹*J*_{P-C} = 55 Hz), 21.5, 22.7, 23.8, 29.2, 30.5, 30.9 (CH₂), 129.0, 130.7, 133.9, 140.2 ppm, ³¹P{¹H} RMN (CD₃OD) : δ = 27,1 (s, 1P) ppm.

Preparation of the oligonucleotides (ODN).

The buffer was prepared by using tris(hydroxymethyl)aminomethane ((HOCH₂)₃CNH₂), EDTA and Milli-Q water. All compounds were purchased from commercial suppliers (Aldrich) in HPLC grade. The oligonucleotides (ODN) were purchased from Eurogentec (Belgium) as HPLC-RP purification in dried format, and the purity of the ODN sequences was checked with MALDI-TOF. The oligonucleotides were dissolved in a volume of TE buffer at a concentration of 100 μ M. The solution obtained was centrifuged during 2 minutes at 2000 rpm. 20 μ L of this solution were used in order to prepare different aliquots. A solution of 280 μ L of TE buffer was added to each aliquot in order to obtain a final volume of 300 μ L and the final diluted solution was mixed using a vortex.

Preparation of the DNA – π -conjugated polymers supramolecular structures.

The concentration of the aliquot of DNA in the buffer solution was determined by UV-Vis at 25 °C using the specific extinction coefficients (ϵ_{260}) of each DNA, which are 162600 L.mol⁻¹.cm⁻¹, 196100 L.mol⁻¹.cm⁻¹ and 391800 L.mol⁻¹.cm⁻¹ respectively for ssDNAd(T)₂₀, ssDNAd(R)₂₀ and dsDNAd(R)₂₀, respectively. The P3HT-Rs samples were also dissolved in TE buffer (pH 7.4, 20 mM Trisbuffer and 1 mM EDTA) and the molar ratios between polymers and DNA were adjusted using the calculated molar concentrations of DNA (around 6.67 μ M). The P3HT-R solution was added to the DNA solution and both compounds were stirred using the vortex at vigorous speed during 2 minutes and allowed to equilibrate for at least 30 minutes. After that, UV-Vis and CD spectra were recorded, subtracting the corresponding baseline of the buffer solution.

UV-Vis and CD spectroscopy: The UV-Vis and circular dichroism (CD) measurements were carried out using a ChirascanTM Plus CD Spectrometer from Applied Photophysics. The measurements were done using 0.1 cm quartz cells. The spectra were recorded between 210

and 650 nm, bandwidth 1 nm, time per point 1 s and 2 repetitions. As baselines, the solvent reference spectra were used and were automatically subtracted from the CD spectra of the samples. The variable temperature experiments were made using a TC 125 Temperature Controller from Quantum Northwestern simultaneously with the ChirascanTM Plus CD Spectrometer, and the temperatures were varied from 0 °C to 80 °C. The temperature in the quartz cells was determined using a temperature probe.

Figure S1. ¹H NMR spectrum of P3HT-Br in CDCl₃.

Figure S5. $^{13}C{^{1}H}$ NMR spectra of P3HT-Py in CD₃OD.

Figure S7.¹³C $\{^{1}H\}$ NMR spectra of P3HT-PMe₃ in CD₃OD.

Figure S9.¹³C $\{^{1}H\}$ NMR spectra of P3HT-PMe₃ in CD₃OD.

Figure S10. ${}^{31}P{}^{1}H$ NMR spectra of P3HT-PMe₃ in CD₃OD.

Oligonucleotide	Polymer ^a	Near-UV band		Vis band	
		$\lambda_{abs.max} (nm)$	$\Delta\lambda_{\mathrm{abs.max}}^{\qquad b}$	$\lambda_{abs.max} (nm)$	$\Delta \lambda_{abs.max}^{c}$
ssDNAd(T) ₂₀	P3HT-Im	270	+4	473	+28
ssDNAd(T) ₂₀	P3HT-Py	260,266	-6,0	476	+12
ssDNAd(T) ₂₀	P3HT-NMe ₃	269	+3	473	+24
ssDNAd(T) ₂₀	P3HT-PMe ₃	268	+2	466	+16
ssDNAd(R) ₂₀	P3HT-Py	260	-6	490	+26
ssDNAd(R) ₂₀	P3HT-PMe ₃	261	-5	486	+36
dsDNAd(R) ₂₀	P3HT-Py	260	-6	466	+2
dsDNAd(R) ₂₀	P3HT-PMe ₃	262	-4	493	+43

Table S1. Absorption properties of $ssDNAd(T)_{20}$, $ssDNAd(R)_{20}$ and $dsDNAd(R)_{20}$ mixed with different **P3HT-R** polymers.

^aMeasured at 20 °C in TE buffer (pH 7.4) at 1:1 molar ratio, ([ssDNAd(T)₂₀] and [xsDNAd(R)₂₀]) = 6.67 μ M. ^bConsidering $\lambda_{abs.max}(ssDNAd(T)_{20} and xsDNAd(R)_{20}) = 266 nm.$ ^cConsidering $\lambda_{abs.max}(P3HT-Im) = 445 nm$, $\lambda_{abs.max}(P3HT-Py) = 464 nm$, $\lambda_{abs.max}(P3HT-NMe_3) = 449 nm$ and $\lambda_{abs.max}(P3HT-PMe_3) = 450 nm$.

Figure S11. Shift of the absorption maximum $\Delta \lambda_{max}$ of the PT band as a function of the composition in ssDNAd(R)₂₀:P3HT-PMe₃ mixtures.

Figure S12. a) CD spectra showing the effect of the sequence, ssDNAd(T)₂₀:**P3HT-PMe₃** at 1:1 (black line) and 1:3 (red line) and CD spectra of ssDNAd(R)₂₀:**P3HT-PMe₃** at 1:1 (green line) and 1:3 (blue line). b) CD spectra showing the effect of the topology: ssDNAd(R)₂₀:**P3HT-PMe₃** at 1:1 (black line) and 1:3 (red line) and CD spectra of dsDNAd(R)₂₀:**P3HT-PMe₃** at 1:1 (green line) and 1:3 (blue line). All the measurements were done in TE buffer, pH 7.4 at 20 °C. [xsDNAd(X)₂₀] ~ 6.7 μ M in all spectra.

Figure S13. CD spectra of ssDNAd(T)₂₀:**P3HT-PMe**₃ at a) 1 : 2 and b) 1:3 and c) 1 : N. the measurements were done in TE buffer, pH 7.4 at different temperatures for a) an b) and at 20 °C for c). [ssDNAd(T)₂₀] ~ 6.7 μ M in all spectra.

Figure S14. UV-Vis spectra of ssDNAd(T)₂₀:**P3HT-PMe₃** at 1:1. The measurements were done in TE buffer, pH 7.4 at different temperatures. [ssDNAd(T)₂₀] ~ 6.7 μ M in all spectra.

Figure S15. CD spectra of a) and c) ssDNAd(R)₂₀:**P3HT-PMe₃** at 1:3 and b) and d) dsDNAd(R)₂₀:**P3HT-PMe₃** at 1:1. The measurements were done in TE buffer, pH 7.4 at different temperatures. [xsDNAd(R)₂₀] ~ 6.7μ M in all spectra.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Figure S16. VT-CD spectra of a) and c) ssDNAd(R)₂₀:**P3HT-PMe₃** at 1:1 ratio. b) and d): dsDNAd(R)₂₀:**P3HT-PMe₃** at 1:3 ratio. For all spectra, [xsDNAd(R)₂₀] ~ 6.7 μ M in TE buffer, pH 7.4.

Figure S17. a) UV-Vis spectra of dsDNAd(R)₂₀. b) Thermal melting curves of dsDNAd(R)₂₀ at 260 nm. The measurements were done in TE buffer, pH 7.4 at 20 °C to 80 °C. [dsDNAd(R)₂₀] ~ 6.7 μ M in all spectra.