Mild Uncatalyzed Hydroamination of an Electrophilic Alkyne, Ethynylcobalticinium

Yanlan Wang,[§] Amalia Rapakousiou,[§] Camille Latouche,[£] Jean-Claude Daran,[#] Anu Singh,[§] Isabelle Ledoux-Rak,[§] Jaime Ruiz,[§] Jean-Yves Saillard[±] and Didier Astruc^{§*}

[§]ISM, UMR CNRS 5255, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France

[#]Laboratoire de Chimie de Coordination, UPR CNRS 8241, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France

^{*t*}Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes 1, 35042 Rennes Cedex, France

^{\$}Laboratoire de Photonique Quantique et Moléculaire, UMR CNRS 8537, ENS Cachan, Institut d'Alembert, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France

Supplementary Material

Table of content

General Information	1
Experimental Section	2
Synthesis of 2 , 3 , 4 , 5 , 6 , 7 , 7A , 8 , 9 , 10 , 11	2
Characterization	8
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectra of 2	8
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, Mass spectra and X-Ray structure of 3	14
Computational details of 3	24
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., Kinetics, IR, and Mass spectra of 4	26
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectra of 5	34
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectra of 6	40
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectra of 7 and 7A	46
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectra of 8	52
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectra of 9	58
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectray of 10	64
¹ H NMR, ¹³ C NMR, ³¹ P NMR, UV-vis., IR, and Mass spectra of 11	70
References	76

General Information.

Reagent-grade THF, diethyl ether, and pentane were dried over Na foil and distilled from sodium benzophenone anion under nitrogen immediately prior to use. DCM was distilled from calcium hydride and distilled under nitrogen prior to use. CH₃CN was dried over P₂O₅ and distilled under nitrogen prior to use. All other solvents and chemicals were used as received. ¹H NMR spectra were recorded at 25°C with a Bruker AC (200, 300, or 600 MHz) spectrometer. The ¹³C NMR spectra were obtained in the pulsed FT mode at 75 or 150 MHz with a Bruker AC 300 or 600 spectrometer. All the chemical shifts are reported in parts per million (δ , ppm) with reference to Me₄Si for the ¹H and ¹³C NMR spectra.³¹P stands for ³¹P (¹H) in the data, with chemical shifts

referenced to H₃PO₄. The mass spectra were recorded using an Applied Biosystems Voyager-DE STR-MALDI-TOF spectrometer. The infrared spectra were recorded on an ATI Mattson Genesis series FT-IR spectrophotometer. The elemental analyses were performed by the Center of Microanalyses of the CNRS at Lyon Villeurbanne, France. UV–vis. absorption spectra were measured with Perkin-Elmer Lambda 19 UV– vis. Spectrometer. Electrochemical measurements (CV) were recorded on a PAR 273 potentiostat under nitrogen atmosphere.

Experimental section:

Synthesis of 2

Ethynyl cobalticenium PF₆⁻ (35.8mg, 0.1mmol), **1**, was dissolved in 10mL of dry CH₃CN, then diethylamine (7.3mg, 0.1mmol, 1equiv.) was added to the solution. The mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum and the hydroamination product **2** was obtained as a deep red solid without further purification (43.0mg, yield = 99%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 1.20 (t, 6H, CH₃), 3.31 (m, 4H, CH₂), 4.89 (d, *J* = 13.44Hz, 1H,), 5.47 (s, 5H,Cp), 5.67 (t, 2H/C₅H₄), 5.68 (t, 2H/C₅H₄), 7.47 (d, *J* = 13.44Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.89 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 12.64 (CH₃), 20.13 (CH₂), 73.06 (2C/C₅H₄), 81.30 (2C/C₅H₄), 82.54 (CH), 84.30 (Cp/unsub.), 117.78 (C/C₅H₄), 146.71 (CH), 29.21, 205.34 (CD₃)₂CO). ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.14 (m, PF₆). IR (KBr): 1614 cm⁻¹ (v_{C=C}), 836 cm⁻¹ (v_{PF6}). ESI: calc. *m/z* for M⁺ (C₁₆H₂₁CoN⁺) 286.1, found 286.1. UV-vis.: $\lambda_{max 1} = 425$ nm, $\lambda_{max 2} = 500$ nm; Anal.Calcd for C₁₆H₂₁CoNPF₆:0.5H₂O: C, 43.65; H, 5.04; N, 3.18. Found: C, 43.81; H, 4.88; N, 2.81.

Alternatively, the same amount of 1 was dissolved in 10mL of diethylamine, then the color immediately changed from yellow to red and the reaction mixture was further stirred for one hour at 35° C. The remaining (excess) amine was removed under vacuum. The yield was quantitative, and the product was checked by ¹H NMR indicating the absence of starting material.

Synthesis of 3

Ethynyl cobalticinium PF_6 (35.8mg, 0.1mmol) was dissolved in 10mL of dry CH_3CN , then diisopropylamine (10.1mg, 0.1mmol, 1equiv.) was added to the solution. The mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product **3** was obtained as a deep red solid without further purification (45.8mg, yield = 99%). Crystals of **3** were

obtained using the vaporization method: compound **3** was dissolved in 5mL of CH₃CN in a small container. Place this receptacle inside a larger one that contains 30ml of Et₂O and seal the outer vessel well. The crystals were collected from the inside wall of the inside container after 24h. ¹H NMR (600 MHz, CDCl₃), δ_{ppm} : 1.26 (d, 12H, CH₃), 3.74 (m, 1H), 4.83 (d, *J* = 13.50Hz, 1H), 5.34 (s, 5H,Cp), 5.50 (t, 2H/C₅H₄), 5.60 (t, 2H/C₅H₄), 7.21 (d, *J* = 13.50Hz, 1H), 7.28 (s, CDCl₃), 1.64 (s, H₂O). ¹³C NMR (150 MHz, CDCl₃), δ_{ppm} : 21.36 (CH₃), 48.28 (CH), 72.61 (2C/C₅H₄), 81.06 (2C/C₅H₄), 84.17 (CH), 84.96 (Cp/unsub.), 118.12 (C/C₅H₄), 142.59 (CH), 76.80, 77.02, 77.23 (CDCl₃). ³¹P NMR (121 MHz, CDCl₃), δ_{ppm} : -144.11 (m, PF₆⁻). IR (KBr): 1608 cm⁻¹ (v_{C=C}), 839 cm⁻¹ (v_{PF6}⁻). ESI: calc. *m/z* for M⁺ (C₁₈H₂₅CoN⁺) 314.33, found 314.1. UV-vis.: $\lambda_{max 1} = 420$ nm, $\lambda_{max 2} = 505$ nm; Anal.Calcd for C₁₈H₂₅CoNPF₆: C, 47.7; H, 5.49; N, 3.05. Found: C, 47.5; H, 5.82; N, 2.99. Alternatively, the reaction was conveniently conducted without solvent and yielding a quantitative yield of product as indicated in the synthesis of compound **2**.

Synthesis of 4

Ethynyl cobaltocenium PF₆⁻ (35.8mg, 0.1mmol), **1**, was dissolved in 10mL of dry CH₃CN, then dibutylamine (12.9mg, 0.1mmol, 1equiv.) was added to the solution. The mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product **4** was obtained as a deep red solid without further purification (48.5mg, yield = 99%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 0.96 (t, 6H, CH₃), 1.35 (m, 4H, CH₂), 1.60 (m, 4H, CH₂), 3.24 (t, 4H, CH₂), 4.89 (d, *J* = 13.44Hz, 1H), 5.44 (s, 5H, Cp), 5.66 (t, 2H/C₅H₄), 5.79 (t, 2H/C₅H₄), 7.49 (d, *J* = 13.44Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.92 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 13.21 (CH₃), 19.73 (CH₂), 73.04 (2C/C₅H₄), 81.32 (2C/C₅H₄), 82.46 (CH), 84.28 (Cp/unsub.), 117.20 (C/C₅H₄), 147.84 (CH), 29.50, 205.42 (CD₃)₂CO). ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.11 (m, PF₆⁻). IR (KBr): 1614 cm⁻¹ (v_{C=C}), 835 cm⁻¹ (v_{PF6}⁻). ESI: calc. *m/z* for M⁺ (C₂₀H₂₉CoN) 342.3, found 342.2, UV-vis:: $\lambda_{max 1} = 415m$, $\lambda_{max 2} = 496nm$, k = 8.45× 10⁻³ s⁻¹; Anal.Calcd for C₂₀H₂₉CoNPF₆: C, 49.29; H, 2.87; N, 6.00. Found: C, 48.75; H, 2.85; N, 6.25. Alternatively, the reaction was conveniently conducted without solvent and yielding a quantitative yield of product as indicated in the synthesis of compound **2**.

Synthesis of 5

Ethynyl cobalticinium PF_6^- (35.8mg, 0.1mmol), **1**, was dissolved in 10mL of dry CH_3CN , diallylamine (9.7mg, 0.1mmol, 1equiv.) was added to the solution. The mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the

stirring. Then the solvent was removed under vacuum, and the hydroamination product was obtained as a deep red solid without further purification (45.0mg, yield = 99%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 3.88 (t, 4H), 4.93 (d, *J* = 13.50Hz, 2H), 5.21 (m, 4H), 5.48 (s, 5H, Cp), 5.67 (t, 2H/C₅H₄), 5.81 (t, 2H/C₅H₄), 5.92 (m, 2H), 7.51 (d, *J* = 13.50Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.90 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 53.34 (CH₂), 73.98 (2C/C₅H₄), 81.66 (2C/C₅H₄), 84.42 (CH), 84.55 (Cp/unsub.), 116.00 (C/C₅H₄), 116.96 (2C), 132.92 (2C), 146.88 (CH), 29.25, 205.42 (CD₃)₂CO). ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.11 (m, PF₆⁻). IR (KBr): 1615 cm⁻¹ (v_{C=C}), 836 cm⁻¹ (v_{PF6}⁻); ESI: calc. *m/z* for M⁺ (C₁₈H₂₁CoN) 310.1, found 310.1. UV-vis.: $\lambda_{max 1} = 417$ nm, $\lambda_{max 2} = 495$ nm. Anal.Calcd for C₁₈H₂₁CoNPF₆ 0.8 pentane: C, 51.51; H, 6.01; N, 2.73. Found: C, 51.49; H, 5.64; N, 3.03. Alternatively, the reaction was conveniently conducted without solvent and yielding a quantitative yield of product as indicated in the synthesis of compound **2**.

Synthesis of 6

Ethynyl cobalticinium PF₆⁻ (35.8mg, 0.1mmol) was dissolved in 10mL of dry CH₃CN, then butylamine (7.3mg, 0.1mmol, 1equiv.) was added to the solution. The mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture was changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product **6** was given as a deep red solid without further purification (42.6mg, yield = 99%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 0.94 (t, 3H, CH₃), 1.40 (m, 2H, CH₂), 1.60 (m, 2H, CH₂), 3.11 (t, 2H, CH₂), 4.97 (d, *J* = 13.50Hz, 1H), 5.47 (s, 5H, Cp), 5.66 (t, 2H/C₅H₄), 5.76 (t, 2H/C₅H₄), 7.43 (m, *J* = 13.56Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.96 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 13.17 (CH₃), 19.84 (CH₂), 30.76 (CH₂), 43.63 (CH₂), 73.59 (2C/C₅H₄), 81.45 (2C/C₅H₄), 83.00 (CH), 84.41 (Cp/unsub.), 116.96 (C/C₅H₄), 145.33 (CH), 29.02, 205.61 (CD₃)₂CO). ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.11 (m, PF₆⁻). IR (KBr): 1623 cm⁻¹ (v_{C=C}), 834 cm⁻¹ (v_{PF6}⁻), 3434 cm⁻¹ (v_N-H). ESI: calc. *m/z* for M⁺ (C₁₆H₂₁CoN) 286.1, found 286.1. UV-vis.: $\lambda_{max 1} = 410$ nm, $\lambda_{max2} = 485$ nm. Anal. Calcd for C₁₆H₂₁CoNPF₆0.5CH₂Cl₂: C, 41.84; H, 4.68; N, 2.96. Found: C, 41.57; H, 4.35; N, 2.67. Alternatively, the reaction was conveniently conducted without solvent and yielding a quantitative yield of product as indicated in the synthesis of compound **2**.

Synthesis of 7 and 7A

Ethynyl cobalticinium PF₆ (35.8mg, 0.1mmol) was dissolved in 10mL of dry aniline. The solution was stirred for 48h under N₂ at 80°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product was obtained as a red solid that was a mixture of enamine 7 (50%) and the imine 7A (50%) (45.0mg, yield = 99%) without further purification. ¹H NMR of 7 (300 MHz, (CD₃)₂CO), δ_{ppm} : 5.58 (d, J = 13.35Hz, 1H), 5.64 (s, 5H, Cp), 5.81 (t, 2H/C₅H₄), 6.06 (t, 2H/C₅H₄), 6.98 (t, 2H/Ph), 7.15 (d , 1H/Ph), 7.38 (t , 2H/Ph), 8.06 (m, J = 13.45Hz, 1H), 8.74 (d, 1H/NH), 2.07 (m, $(CD_3)_2CO$, 2.96 (s, H₂O). ¹H NMR of 7A (300 MHz, $(CD_3)_2CO$), δ_{ppm} : 6.06 (s, 5H, Cp), 6.61 (t, 2H/C₅H₄), 6.52 (t, 2H/C₅H₄), 7.34 (m, 2H/Ph), 7.44 (m, 3H/Ph), 7.78 (d, 2H/CH₂), 9.78 (m, 1H), 2.07 (m, (CD₃)₂CO), 2.96 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 76.06, 82.35, 84.40, 84.78, 84.84, 84.88, 85.53, 86.12 86.46 (Cp/sub.), 91.20 (CH), 114.80 (CH), 120.43 (CH), 121.43, 124.78, 128.83, 129.52, 137.33, 138.20 (Ph), 34.39, 210.85 (CD₃)₂CO. ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.12 (m, PF₆). IR (KBr): 1642 cm⁻¹ (v_{C=C}), 1600 cm⁻¹ (v_{C=N}), 837 cm⁻¹ (v_{PF6}) , 3125 cm⁻¹ (v_{N-H}) , 3398 cm⁻¹ (v_{N-H}) . ESI: calc. *m/z* for M⁺ $(C_{18}H_{17}CoN)$ 306.1, found 306.1; UV-vis.: $\lambda_{max1} = 360$ nm, $\lambda_{max2} = 495$ nm. Anal.Calcd for C₁₈H₁₇CoNPF₆·H₂O: C, 46.07; H, 4.08; N, 2.98. Found: C, 45.97; H, 4.12; N, 2.99.

Synthesis of 8

Ethynyl cobalticinium PF₆⁻ (35.8mg, 0.1mmol) was dissolved in 10mL of dry CH₃CN, then benzylamine (10.7mg, 0.1mmol, 1equiv.) was added to the solution. The mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product **8** was given as a deep red solid without further purification (45.8mg, yield = 99%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 4.37 (d, 2H), 5.00 (d, *J* = 13.62Hz, 1H), 5.43 (s, 5H, Cp), 5.66 (t, 2H/C₅H₄), 5.77 (t, 2H/C₅H₄), 6.79 (m, 1H/NH), 7.41 (m, 5H/Ph), 7.53 (m, *J* = 13.67Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.94 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 52.89 (CH₂), 79.60 (2C/C₅H₄), 87.09 (2C/C₅H₄), 89.91 (Cp/unsub.), 92.05 (CH), 120.96 (C/C₅H₄), 144.00 (CH), 132.59, 132.80, 133.91, 150.08 (6C/Ph), 34.39, 210.85 (CD₃)₂CO. ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.12 (m, PF₆⁻). IR (KBr): 1622 cm⁻¹ (v_{C=C}), 832 cm⁻¹ (v_{PF6}⁻), 3122 cm⁻¹ (v_{N-H}), 3444 cm⁻¹ (v_{N-H}); ESI: calc. *m/z* for M⁺ (C₁₉H₁₉CoN) 320.3, found 320.1. UV-vis.: $\lambda_{max 1} = 410$ nm, $\lambda_{max 2} = 480$ nm ; Anal.Calcd for C₁₉H₂₉CoNPF₆0.5H₂O: C, 48.12; H, 4.25; N, 2.95. Found: C, 48.14; H, 3.94; N, 2.60. Alternatively, the reaction was conveniently conducted without solvent and yielding a quantitative yield of product as indicated in the synthesis of compound **2**.

Synthesis of ferrocenylmethylamine^[S11]

Formylferrocene (1.0g, 4.67mmol), sodium hydride NaOH (1.10g, 27.5mmol) and hydroxylamine chlorhydrate (0.65g, 9.3mmol) were added in EtOH. The mixture was stirred at reflux for 3h. After cooling, the mixture was hydrolysed and extracted by CH₂Cl₂ three times. The organic phase was dried over anhydrous Na₂SO₄, and the solvent was removed by vacuum to give ferrocenylcarboxaldehyde oxime as an orange solid (0.93g, 92%). ¹H NMR (300 MHz, CDCl₃), δ ppm: 7.98 (1H, s, CH=N), 4.53 (2H, m, Cp), 4.37 (2H, m, Cp), 4.22 (5H, m, Cp⁻) 7.26 (CDCl₃).

Synthesis of ferrocenylmethylamine

Ferrocenylcarboxaldehyde oxime (1.60g, 7mmol) was dissolved in dry THF 40mL and then added portionwise to a 100ml flask with LiAlH₄ (1.40g, 37mmol). The mixture was stirred under reflux for 6h. After cooling, the mixture was hydrolysed and extracted by ether three times. The organic phase was dried over anhydrous Na₂SO₄, and the solvent was evaporated under reduced pressure to give the ferrocenylmethylamine^[SII] as orange oil (1.16g, 73%). The crude product was purified chromatography CH₃OH-NH₄OH column silica using bv (95:5) as eluent. on Ferrocenylmethylamine: ¹H NMR (300 MHz, CD₃)₂CO), δ_{ppm} : 1.88 (2H, s, NH₂), 4.07 (2H, t, Cp), 4.13 (5H, s, Cp[,]). 4.17 (2H, s, CH₂), 4.20 (2H, t, Cp).

Synthesis of 9

Ethynyl cobalticinium PF₆⁻ (35.8mg, 0.1mmol), **1**, was dissolved in 10mL of dry CH₃CN, then ferrocenylmethylamine (21.5mg, 0.1mmol, 1equiv.) was added to the solution. The solution was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product **9** was obtained as a type of deep red solid without further purification (57.3mg, yield = 95%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 4.08 (d, 2H), 4.16 (t, 2H/C₅H₄), 4.22 (s, 5H, Cp), 4.31 (t, 2H/C₅H₄), 5.08 (d, *J* = 13.59Hz, 1H), 5.48 (s, 5H, Cp), 5.67 (t, 2H/C₅H₄), 5.79 (t, 2H/C₅H₄), 7.47 (d, *J* = 13.59Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.94 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 13.42 (CH₂), 67.90 (2C/C₅H₄), 83.69 (CH), 84.49(Cp/unsub.), 116.50 (C/C₅H₄), 140.30 (CH), 29.27, 205.48 (CD₃)₂CO. ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.12 (m, PF₆⁻). IR (KBr): 1621 cm⁻¹ (v_{C=C}), 836 cm⁻¹ (v_{PF6}⁻), 3117 cm⁻¹ (v_{N-H}), 3429 cm⁻¹ (v_{N-H}). ESI: calc. *m/z* for M⁺ (C₂₃H₂₃CoFeN) 428.1, found 428.1. UV-vis.: $\lambda_{max1} = 410$ nm, $\lambda_{max 2} = 490$ nm. Anal.Calcd for C₁₃H₂₃CoFeNPF₆⁻0.8 ether: C, 49.75; H, 4.94; N, 2.21. Found: C, 49.87; H, 4.70; N, 2.39.

Synthesis of 10

Ethynyl cobalticinium PF₆⁻ (35.8mg, 0.1mmol), **1**, was dissolved in 10mL of dry CH₃CN, then 4butylaminomethylphenol (17.9mg, 0.1mmol, 1equiv.) was added to the solution. The mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product **10** was obtained as a deep red solid without further purification (53mg, yield = 99%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 0.85 (t, 3H, CH₃), 1.29 (m, 2H/CH₂), 1.53 (m, 2H/CH₂), 3.18 (t, 2H/CH₂), 4.36 (s, 2H/PhCH₂), 4.89 (d, *J* = 13.32Hz, 1H), 5.40 (s, 5H,Cp), 5.64 (t, 2H/C₅H₄), 5.78 (t, 2H/C₅H₄), 6.82 (d, 2H/Ph), 7.14 (d, 2H/Ph), 7.62 (d, *J* = 13.58Hz, 1H), 8.43 (broad, 1H/OH), 2.03 (m, (CD₃)₂CO), 2.87 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 13.18 (CH₃), 19.75(CH₂), 73.48 (2C/C₅H₄/Fc), 81.48 (2C/C₅H₄/Fc), 83.56 (C/C₅H₄/Fc), 84.38 (Cp/unsub.), 115.38 (2C/Ph), 116.96 (CH), 127.83 (CH), 128.84 (2C/Ph), 147.65 (C/Ph), 156.98 (C/Ph), 29.65, 205.37 (CD₃)₂CO. δ_{ppm} : -144.12 (m, PF₆⁻). IR (KBr): 1614 cm⁻¹ (v_{C=C}), 837 cm⁻¹ (v_{PF6}⁻), 3442 cm⁻¹ (OH⁻). ESI: calc. *m/z* for M⁺ (C₂₃H₂₇CoF₆NOP) 392.4, found 392.1. UV-vis.: $\lambda_{max 1} = 410$ nm, $\lambda_{max 2} = 495$ nm. Anal.Calcd for C₂₃H₂₇CoNOPF₆:1.5 H₂O: C, 48.95; H, 5.36; N, 2.48. Found: C, 48.93; H, 5.55; N, 2.48.

Synthesis of 11

Ethynyl cobalticinium PF₆⁻ (35.8mg, 0.1mmol), **1**, was dissolved in 10mL of dry Et₃N, then the mixture was stirred for 16h under N₂ at 35°C. The colour of the mixture changed from yellow to deep red during the stirring. Then the solvent was removed under vacuum, and the hydroamination product was obtained as a dark grey solid without further purification (47.0mg, yield = 99%). ¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 1.44 (t, 9H), 3.82 (m, 6H), 5.95 (s, 5H,Cp), 6.06 (t, 2H/C₅H₄), 6.29 (t, 2H/C₅H₄), 7.09 (d, *J* = 14.64Hz, 1H), 7.29 (d, *J* = 14.64Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.93 (s, H₂O). ¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} :7.63 (CH₃), 55.28 (CH₂), 83.20 (2C/C₅H₄), 85.86 (2C/C₅H₄), 86.27 (Cp/unsub.), 96.90 (C/C₅H₄), 123.07 (CH), 136.97 (CH), 29.16, 205.57 (CD₃)₂CO). ³¹P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.11 (m, PF₆). IR (KBr): 1615 cm⁻¹ (v_{C=C}), 835 cm⁻¹ (v_{PF6}), 3651 cm⁻¹ (v_{OH}). ESI: calc. *m/z* for M⁺ (C₁₈H₂₆CoNPF₆) 460.3, found 460.1. UV-vis.: $\lambda_{max 1}$ = 410nm, $\lambda_{max 2}$ = 505nm; Anal.Calcd for C₁₈H₂₇CoNOPF₆:1.2CHCl₃:1.2 Me₂CO: C, 39.29; H, 5.08; N, 2.06. Found: C, 39.44; H, 4.21; N, 1.89.

Characterization:

UV-vis. of **2**:
$$\lambda_{max 1} = 425$$
 nm, $\lambda_{max 2} = 500$ nm

¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 1.20 (t, 6H, CH₃), 3.31 (m, 4H, CH₂), 4.89 (d, *J* = 13.44Hz, 1H), 5.47 (s, 5H, Cp), 5.67(t, 2H/C₅H₄), 5.68 (t, 2H/C₅H₄), 7.47 (d, *J* = 13.44Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.89 (s, H₂O).

³¹P NMR of **2** (121 MHz, CD₃COCD₃), δ_{ppm} : -144.14 (m, PF₆).

¹³C NMR (75 MHz, (CD₃)₂CO), $δ_{ppm}$: 12.64 (CH₃), 20.13 (CH₂), 73.06 (2C/C₅H₄), 81.30 (2C/C₅H₄), 82.54 (CH), 84.30 (Cp/unsub.), 117.78 (C/C₅H₄), 146.71 (CH), 29.21, 205.34 (CD₃)₂CO).

IR (KBr) of **2**: 1614 cm⁻¹ ($v_{C=C}$), 836 cm⁻¹ (v_{PF6})

2

Date: mercredi 24 octobre 20

ESI: of **2**:calc. m/z for M⁺ (C₁₆H₂₁CoN⁺) 286.1, found 286.1.

The IR spectrum of **3:** IR (KBr): 1608 cm⁻¹ ($v_{C=C}$), 839 cm⁻¹ (v_{PF6})

3

Date: mercredi 24 octobre 20

ESI of **3**: calc. m/z for M⁺ (C₁₈H₂₅CoN) 314.3, found 314.1.

3

¹H NMR (600 MHz, CDCl₃), δ_{ppm} : 1.26 (d, 12H, CH₃), 3.74 (m, 1H), 4.83 (d, *J* = 13.50Hz, 1H), 5.34 (s, 5H, Cp), 5.50 (t, 2H/C₅H₄), 5.60 (t, 2H/C₅H₄), 7.21 (d, *J* = 13.50Hz, 1H), 7.28 (s, CDCl₃), 1.64 (s, H₂O).

¹³C NMR (150 MHz, CDCl₃), δ_{ppm}: 21.36 (CH₃), 48.28 (CH), 72.61 (2C/C₅H₄), 81.06 (2C/C₅H₄), 84.17 (CH), 84.96 (Cp/unsub.), 118.12 (C/C₅H₄), 142.59 (CH), 76.80, 77.02, 77.23 (CDCl₃).

³¹P NMR of **3**: PF_6^- Co Н 3

 31 P NMR (121 MHz, CD₃COCD₃), δ_{ppm} : -144.11 (m, PF₆).

E 1 2 5	57.1	21 40	266	9456	625	5982	
φ. N	R		:	ą	5	5	
č	÷	ĥ	Ň	İ	Ī	Ī	

The X-Ray of **3**:

Table 1. Crystal data and structure refinement for **3**.

Identification code	DA16	
Empirical formula	$(C_{18}H_{25}CoN)$, (PF_6)	
Formula weight	459.29	
Temperature	180(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$Pca2_1$	
Unit cell dimensions	a = 27.2309(4) Å	a= 90°.
	b = 11.3692(2) Å	b= 90°.
	c = 13.2763(2) Å	g = 90°.

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.48° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole

4110.26(11) Å³ 8 1.484 Mg/m^3 0.968 mm⁻¹ 1888 0.38 x 0.24 x 0.10 mm³ 2.99 to 27.48°. -35<=h<=35, -14<=k<=14, -17<=l<=17 85626 9384 [R(int) = 0.0364] 99.8 % Semi-empirical from equivalents 1.00000 and 0.62834 Full-matrix least-squares on F^2 9384 / 1 / 495 1.058 R1 = 0.0316, wR2 = 0.0681R1 = 0.0376, wR2 = 0.0712-0.014(9)0.325 and -0.273 e.Å⁻³

Molecule I		Ма	Molecule II		
Co(1)-Ct(1)	1.6434(11)	Co(2)-Ct(3)	1.6421(10)		
Co(1)-Ct(2)	1.6456(12)	Co(2)-Ct(4)	1.6461(17)		
C(11)-C(111)	1.429(3)	C(21)-C(211)	1.435(3)		
C(11)-C(12)	1.436(3)	C(21)-C(25)	1.434(3)		
C(11)-C(15)	1.444(3)	C(21)-C(22)	1.443(3)		
C(12)-C(13)	1.421(4)	C(22)-C(23)	1.417(3)		
C(13)-C(14)	1.423(4)	C(23)-C(24)	1.425(3)		
C(14)-C(15)	1.411(4)	C(24)-C(25)	1.421(3)		
C(16)-C(20)	1.406(4)	C(26)-C(27)	1.390(6)		
C(16)-C(17)	1.410(4)	C(26)-C(30)	1.395(6)		
C(17)-C(18)	1.417(4)	C(27)-C(28)	1.373(6)		
C(18)-C(19)	1.409(4)	C(28)-C(29)	1.343(5)		
C(19)-C(20)	1.423(4)	C(29)-C(30)	1.358(5)		
C(111)-C(112)	1.367(3)	C(211)-C(212)	1.360(3)		
C(112)-N(1)	1.338(3)	C(212)-N(2)	1.344(3)		
N(1)-C(116)	1.478(4)	N(2)-C(216)	1.477(4)		
N(1)-C(113)	1.484(3)	N(2)-C(213)	1.480(3)		
C(113)-C(114)	1.506(4)	C(213)-C(214)	1.508(4)		
C(113)-C(115)	1.521(4)	C(213)-C(215)	1.511(4)		
C(116)-C(118)	1.512(5)	C(216)-C(218)	1.495(5)		
C(116)-C(117)	1.520(5)	C(216)-C(217)	1.521(5)		
P(1)-F(12)	1.564(2)	P(2)-F(23)	1.5781(18)		
P(1)-F(11)	1.575(2)	P(2)-F(25)	1.5936(16)		
P(1)-F(13)	1.581(2)	P(2)-F(22)	1.5949(18)		
P(1)-F(15)	1.5937(18)	P(2)-F(21)	1.5958(18)		
P(1)-F(16)	1.5955(17)	P(2)-F(24)	1.5992(18)		
P(1)-F(14)	1.602(2)	P(2)-F(26)	1.6031(16)		

Table 2. Bond lengths [Å] and angles [°] for **3**.

Ct(1)-Co(1)-Ct(2)	178.73(7)	Ct(3)-Co(2)-Ct(4)	179.81(7)	
C(111)-C(11)-C(12)	130.0(2)	C(211)-C(21)-C(22)	129.1(2)	
C(111)-C(11)-C(15)	124.5(2)	C(25)-C(21)-C(211)	125.2(2)	
C(12)-C(11)-C(15)	105.6(2)	C(25)-C(21)-C(22)	105.7(2)	

C(13)-C(12)-C(11)	109.2(3)	C(23)-C(22)-C(21)	108.9(2)
C(12)-C(13)-C(14)	107.7(2)	C(22)-C(23)-C(24)	108.3(2)
C(15)-C(14)-C(13)	108.1(2)	C(25)-C(24)-C(23)	107.3(2)
C(14)-C(15)-C(11)	109.2(2)	C(24)-C(25)-C(21)	109.6(2)
C(20)-C(16)-C(17)	108.1(3)	C(27)-C(26)-C(30)	106.5(3)
C(16)-C(17)-C(18)	108.3(3)	C(28)-C(27)-C(26)	107.4(3)
C(19)-C(18)-C(17)	107.7(2)	C(29)-C(28)-C(27)	109.1(3)
C(18)-C(19)-C(20)	108.0(2)	C(28)-C(29)-C(30)	108.9(4)
C(16)-C(20)-C(19)	107.9(2)	C(29)-C(30)-C(26)	108.1(3)
C(112)-C(111)-C(11)	122.6(2)	C(212)-C(211)-C(21)	122.8(2)
N(1)-C(112)-C(111)	128.5(2)	N(2)-C(212)-C(211)	128.8(2)
C(112)-N(1)-C(116)	121.6(2)	C(212)-N(2)-C(216)	121.2(2)
C(112)-N(1)-C(113)	120.0(2)	C(212)-N(2)-C(213)	120.5(2)
C(116)-N(1)-C(113)	117.6(2)	C(216)-N(2)-C(213)	117.9(2)
N(1)-C(113)-C(114)	111.3(2)	N(2)-C(213)-C(214)	112.3(2)
N(1)-C(113)-C(115)	112.0(2)	N(2)-C(213)-C(215)	111.3(2)
C(114)-C(113)-C(115)	111.5(2)	C(214)-C(213)-C(215)	111.6(3)
N(1)-C(116)-C(118)	111.4(3)	N(2)-C(216)-C(218)	110.3(3)
N(1)-C(116)-C(117)	111.4(3)	N(2)-C(216)-C(217)	112.5(3)
C(118)-C(116)-C(117)	112.8(3)	C(218)-C(216)-C(217)	113.2(3)
F(12)-P(1)-F(11)	91.25(16)	F(23)-P(2)-F(25)	89.87(11)
F(12)-P(1)-F(13)	91.51(15)	F(25)-P(2)-F(22)	90.17(10)
F(11)-P(1)-F(13)	177.23(15)	F(23)-P(2)-F(21)	179.54(13)
F(12)-P(1)-F(15)	90.68(12)	F(23)-P(2)-F(22)	90.58(12)
F(11)-P(1)-F(15)	89.68(12)	F(25)-P(2)-F(21)	89.97(11)
F(13)-P(1)-F(15)	90.31(12)	F(22)-P(2)-F(21)	89.85(11)
F(12)-P(1)-F(16)	91.18(12)	F(23)-P(2)-F(24)	90.67(12)
F(11)-P(1)-F(16)	90.05(12)	F(25)-P(2)-F(24)	90.17(10)
F(13)-P(1)-F(16)	89.87(12)	F(21)-P(2)-F(24)	88.90(11)
F(15)-P(1)-F(16)	178.12(12)	F(22)-P(2)-F(24)	178.71(12)
F(12)-P(1)-F(14)	179.29(16)	F(25)-P(2)-F(26)	179.28(11)
F(11)-P(1)-F(14)	89.41(15)	F(23)-P(2)-F(26)	90.84(10)
F(13)-P(1)-F(14)	87.83(14)	F(22)-P(2)-F(26)	89.94(9)
F(15)-P(1)-F(14)	89.07(12)	F(21)-P(2)-F(26)	89.32(10)
F(16)-P(1)-F(14)	89.07(13)	F(24)-P(2)-F(26)	89.71(9)

Computational details of 3:

The geometry of complex **3** was optimized using Gaussian09 package,^[S11] employing the B3PW91 functional,^[S12] and using the general double- ζ LANL2DZ^[S13] basis set augmented by polarization functions on all atoms. The optimized geometry has been fully characterized as a true minimum via analytical frequency calculations. The composition of the molecular orbitals were calculated using the AOmix program.^[S14]

Table 3. Energy and Cartesian coordinates of the optimized geometry of complex 3 E=-900.477205502 u.a.

	Х	Y	Z
Со	1.804839	10.356606	5.685584
С	2.171456	13.595971	6.368592
С	3.278457	14.096787	7.031403
С	1.623247	12.317650	6.672701
С	2.156077	11.253388	7.499593
Н	3.115222	11.257401	8.004557
С	1.193690	10.202584	7.602936
Η	1.296855	9.300810	8.195806
С	0.096537	10.532140	6.745650
Н	-0.786379	9.927849	6.571328
С	0.394039	11.785318	6.128798
Η	-0.232893	12.292496	5.403247
С	3.604688	9.645031	4.987954
Η	4.547324	9.737533	5.515666
С	3.062541	10.591193	4.065065
Η	3.513298	11.533921	3.777201
С	1.785603	10.103866	3.645017
Η	1.101282	10.608870	2.972437
С	1.551484	8.844891	4.287056
Η	0.660464	8.235505	4.186617
С	2.674788	8.562301	5.120235
Η	2.791456	7.698266	5.764561
Н	1.636059	14.190243	5.633694

N	3.895723	15.274609	6.897092
Н	3.724180	13.462661	7.797056
С	3.464027	16.286295	5.914158
Η	2.665687	15.819410	5.331796
С	5.015207	15.609108	7.810984
Н	5.329944	16.615323	7.519305
С	4.562685	15.670461	9.272766
Н	4.265343	14.684822	9.650542
Н	5.386551	16.025534	9.901039
Н	3.717250	16.354076	9.399124
С	6.211173	14.673697	7.612690
Н	5.981484	13.646921	7.923000
Н	6.532826	14.654266	6.566396
Η	7.053996	15.014840	8.223128
С	2.877271	17.523651	6.601184
Н	3.631034	18.064954	7.184264
Н	2.492179	18.215700	5.844699
Η	2.051554	17.253040	7.267573
С	4.589834	16.639010	4.937011
Η	4.983416	15.743845	4.443643
Н	4.201751	17.310371	4.163688
Н	5.420040	17.158109	5.428508

See the references [SI2] to [SI5] at the end of the S.I.

UV-vis. of **4** in acetone: $\lambda_{max 1} = 415$ nm, $\lambda_{max 2} = 496$ nm, $\epsilon = 1.25 \times 10^4$ L/mol.cm

UV-vis. of **4** in acetone/CH₂Cl₂/DMSO: $\lambda_{max 1} = 415$ nm

Blue line (Acetone): $\lambda_{max 2} = 496$ nm Violet line (CH₂Cl₂): $\lambda_{max 2} = 504$ nm Red line (DMSO): $\lambda_{max 2} = 499$ nm Kinetic process of the formation of **4** in acetone: $\lambda_{max 1} = 415$ nm, $\lambda_{max 2} = 496$ nm, $k = 8.45 \times 10^{-3}$ s⁻¹

The IR spectrum of **4:** IR (KBr): 1614 cm⁻¹ ($v_{C=C}$), 835 cm⁻¹ (v_{PF6})

4

Date: mercredi 24 octobre 20

ESI of 4: calc. *m/z* for M⁺ (C₂₀H₂₉CoN) 342.3, found 342.2.

¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 0.96 (t, 6H, CH₃), 1.35 (m, 4H, CH₂), 1.60 (m, 4H, CH₂), 3.24 (t, 4H, CH₂), 4.89 (d, J = 13.44Hz, 1H), 5.44 (s, 5H, Cp), 5.66 (t, 2H/C₅H₄), 5.79 (t, 2H/C₅H₄), 7.49 (d, J = 13.44Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.92 (s, H₂O).

³¹P NMR of **4** (121 MHz, CD₃COCD₃), δ_{ppm}: -144.11 (m, PF₆).

¹³C NMR (75 MHz, (CD₃)₂CO), $δ_{ppm}$: 13.21 (CH₃), 19.73 (CH₂), 73.04 (2C/C₅H₄), 81.32 (2C/C₅H₄), 82.46 (CH), 84.28 (Cp/unsub.), 117.20 (C/C₅H₄), 147.84 (CH), 29.50, 205.42 (CD₃)₂CO).

UV-vis. for **5**: $\lambda_{max 1} = 417$ nm, $\lambda_{max 2} = 495$ nm

The IR spectrum of **5**: IR (KBr): 1615 cm⁻¹ ($v_{C=C}$), 836 cm⁻¹ (v_{PF6})

Date: mercredi 24 octobre 20

ESI of **5**: calc. m/z for M⁺ (C₁₈H₂₁CoN) 310.1, found 310.1.

¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 3.88 (t, 4H), 4.93 (d, *J* = 13.50Hz, 2H), 5.21 (m, 4H), 5.48 (s, 5H, Cp), 5.67 (t, 2H/C₅H₄), 5.81 (t, 2H/C₅H₄), 5.92 (m, 2H), 7.51 (d, *J* = 13.50Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.90 (s, H₂O).

³¹P NMR of **5** (121 MHz, CD₃COCD₃), δ_{ppm} : -144.11 (m, PF₆).

¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm}: 53.34 (CH₂), 73.98 (2C/C₅H₄), 81.66 (2C/C₅H₄), 84.42 (C/C₅H₄), 84.55 (Cp/unsub.), 116.00 (CH), 116.96 (2C), 132.92 (2C), 146.88 (CH), 29.25, 205.42 (CD₃)₂CO).

UV-vis. of **6**: $\lambda_{\text{max 1}} = 410$ nm, $\lambda_{\text{max 2}} = 485$ nm

The IR spectrum of **6:** IR (KBr): 1623 cm⁻¹ ($v_{C=C}$), 834 cm⁻¹ (v_{PF6}), 3434 cm⁻¹ (v_{N-H}).

6

Date: mercredi 24 octobre 20

ESI of **6**: calc. *m*/*z* for M⁺ (C₁₆H₂₁CoN) 286.1, found 286.1.

¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 0.94 (t, 3H, CH₃), 1.40 (m, 2H, CH₂), 1.60 (m, 2H, CH₂), 3.11 (t, 2H, CH₂), 4.97 (d, *J* = 13.50Hz, 1H), 5.47 (s, 5H, Cp), 5.66 (t, 2H/C₅H₄), 5.76 (t, 2H/C₅H₄), 7.43 (m, *J* = 13.56Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.96 (s, H₂O).

¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm}: 13.17 (CH₃), 19.84 (CH₂), 30.76 (CH₂), 43.63 (CH₂), 73.59 (2C/C₅H₄), 81.45 (2C/C₅H₄), 83.00 (C/C₅H₄), 84.41 (Cp/unsub.), 116.96 (CH), 145.33 (CH), 29.02, 205.61 (CD₃)₂CO).

³¹P NMR of **6** (121 MHz, CD₃COCD₃), δ_{ppm} : -144.11 (m, PF₆).

UV-vis. for 7 and 7A: $\lambda_{max 1} = 360$ nm, $\lambda_{max 2} = 495$ nm

The IR spectrum of 7 and 7A: IR (KBr): 1642 cm⁻¹ ($v_{C=C}$), 1600 cm⁻¹ ($v_{C=N}$), 837 cm⁻¹ (v_{PF6}), 3398 cm⁻¹ (v_{N-H}).

Date: mercredi 24 octobre 20

ESI of 7 and 7A: calc. m/z for M⁺ (C₁₈H₁₇CoN) 306.1, found 306.1

¹H NMR of 7 (300 MHz, (CD₃)₂CO), δ_{ppm} : 5.58 (d, J = 13.35Hz, 1H), 5.64 (s, 5H, Cp), 5.81 (t, 2H/C₅H₄), 6.06 (t, 2H/C₅H₄), 6.98 (t, 2H/Ph), 7.15 (d, 1H/Ph), 7.38 (t, 2H/Ph), 8.06 (m, J = 13.45Hz, 1H), 8.74 (d, 1H/NH), 2.07 (m, (CD₃)₂CO), 2.96 (s, H₂O).

¹H NMR 7A (300 MHz, (CD₃)₂CO), δ_{ppm}: 6.06 (s, 5H, Cp), 6.61 (t, 2H/C₅H₄), 6.52 (t, 2H/C₅H₄), 7.34 (m, 2H/Ph), 7.44 (m, 3H/Ph), 7.78 (d, 2H/CH₂), 9.78 (m, 1H), 2.07 (m, (CD₃)₂CO), 2.96 (s, H₂O).

 ^{31}P NMR of 7 and 7A (121 MHz, CD₃COCD₃), δ_{ppm} : -144.12 (m, PF₆).

 13 C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 76.06, 82.35, 84.40, 84.78, 84.84, 84.88, 85.53, 86.12 86.46 (Cp/sub.), 91.20 (CH), 114.80 (CH), 120.43 (CH), 121.43, 124.78, 128.83, 129.52, 137.33, 138.20 (Ph), 34.39, 210.85 (CD₃)₂CO.

The IR spectrum of **8**: IR (KBr): 1622 cm⁻¹ ($v_{C=C}$), 832 cm⁻¹ (v_{PF6}), 3444 cm⁻¹ (v_{N-H}).

8

ESI of 8: calc. *m/z* for M⁺ (C₁₉H₁₉CoN) 320.3 found 320.1

8

¹H NMR of **8** (300 MHz, (CD₃)₂CO), δ_{ppm} : 4.37 (d, 2H), 5.00 (d, J = 13.62Hz, 1H), 5.43 (s, 5H, Cp), 5.66 (t, 2H/C₅H₄), 5.77 (t, 2H/C₅H₄), 6.79 (m, 1H/NH), 7.41 (m, 5H/Ph), 7.53 (m, J = 13.67Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.94 (s, H₂O).

¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm}: 52.89 (CH₂), 79.60 (2C/C₅H₄), 87.09 (2C/C₅H₄), 89.91 (Cp/unsub.), 92.05 (CH), 120.96 (C/C₅H₄), 144.00 (CH), 132.59, 132.80, 133.91, 150.08 (6C/Ph), 34.39, 210.85 (CD₃)₂CO.

³¹P NMR of **8** (121 MHz, CD₃COCD₃), δ_{ppm} : -144.12 (m, PF₆).

UV-vis. of **9**: $\lambda_{max 1} = 410$ nm, $\lambda_{max 2} = 490$ nm

The IR spectrum of **9:** IR (KBr): 1621 cm⁻¹ ($v_{C=C}$), 836 cm⁻¹ (v_{PF6}), 3429 cm⁻¹ (v_{N-H}).

Date: mercredi 24 octobre 20

¹H NMR of **9** (300 MHz, (CD₃)₂CO), δ_{ppm} : 4.08 (d, 2H), 4.16 (t, 2H/C₅H₄), 4.22 (s, 5H, Cp), 4.31 (t, 2H/C₅H₄), 5.08 (d, *J* = 13.59Hz, 1H), 5.48 (s, 5H, Cp), 5.67 (t, 2H/C₅H₄), 5.79 (t, 2H/C₅H₄), 7.47 (d, *J* = 13.59Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.94 (s, H₂O).

³¹P NMR of **9** (121 MHz, CD₃COCD₃), δ_{ppm}: -144.12 (m, PF₆)

¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 13.42 (CH₂), 67.90 (2C/C₅H₄/Fc), 68.20 (2C/C₅H₄/Fc), 68.55 (Cp/unsub./Fc), 68.72 (C₅H₄/Fc), 73.88 (2C/C₅H₄), 81.59 (2C/C₅H₄), 83.69 (CH), 84.49 (Cp/unsub.), 116.50 (C/C₅H₄), 140.30 (CH), 29.27, 205.48 (CD₃)₂CO.

ESI of **9:** calc. *m/z* for M⁺ (C₂₃H₂₃CoFeN) 428.1, found 428.1.

UV-vis. of **10**: $\lambda_{max 1} = 410$ nm, $\lambda_{max 2} = 495$ nm

IR (KBr) of **10**: 1614 cm⁻¹ ($v_{C=C}$), 837 cm⁻¹ (v_{PF6-}), 3442 cm⁻¹ (v_{OH}).

Date: mercredi 28 novembre

ESI of **10**: calc. m/z for M⁺ (C₂₃H₂₇CoFeF₆NOP) 392.4, found 392.1.

¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 0.85 (t, 3H, CH₃), 1.29 (m, 2H/CH₂), 1.53 (m, 2H/CH₂), 3.18 (t, 2H/CH₂), 4.36 (s, 2H/PhCH₂), 4.89 (d, *J* = 13.32Hz, 1H), 5.40 (s, 5H, Cp), 5.64 (t, 2H/C₅H₄), 5.78 (t, 2H/C₅H₄), 6.82 (d, 2H/Ph), 7.14 (d, 2H/Ph), 7.62 (d, *J* = 13.58Hz, 1H), 8.43 (broad, 1H/OH), 2.03 (m, (CD₃)₂CO), 2.87 (s, H₂O).

n

¹³C NMR (75 MHz, (CD₃)₂CO), δ_{ppm}: 13.18 (CH₃), 19.75 (CH₂), 73.48 (2C/C₅H₄/Fc), 81.48 (2C/C₅H₄/Fc), 83.56 (C/C₅H₄/Fc), 84.38 (Cp/unsub.), 115.38 (2C/Ph), 116.96 (CH), 127.83 (CH), 128.84 (2C/Ph), 147.65 (C/Ph), 156.98 (C/Ph), 29.65, 205.37 (CD₃)₂CO.

³¹P NMR (121 MHz, CD₃COCD₃) of **10**, δ_{ppm} : -144.12 (m, PF₆)

10

2	2	2	4	4	ഹ	ഹ
2	00	4	œ	4	œ	4
б	ŋ	2	0	\sim	ŋ	2
б	m	\sim	÷	4	œ	2
0	ŋ	σ	4	œ	2	\sim
m	m	m	4	4	S	S
-	-	-	-	-	-	-
L	L	ι	ι	1	J	J.
אוווור						

UV-vis. of 11: $\lambda_{max 1} = 410$ nm, $\lambda_{max 2} = 505$ nm

The IR (KBr) spectrum of **11**: 1615 cm⁻¹ ($v_{C=C}$), 835 cm⁻¹ (v_{PF6}), 3651 cm⁻¹ (v_{OH})

$$\mathsf{PF}_6^{-} \begin{array}{c} \mathsf{Co}^+ \\ \mathsf{Co}^+ \\ \mathsf{H} \end{array} \begin{array}{c}^+ \\ \mathsf{NEt}_3 \\ \mathsf{OH}^- \end{array}$$

11

Date: mercredi 24 octobre 20

ESI of 11: calc. m/z for M⁺ (C₁₈H₂₆CoNPF₆) 460.3, found 460.1.

¹H NMR (300 MHz, (CD₃)₂CO), δ_{ppm} : 1.44 (t, 9H), 3.82 (m, 6H), 5.95 (s, 5H, Cp), 6.06 (t, 2H/C₅H₄), 6.29 (t, 2H/C₅H₄), 7.09 (d, J = 14.64Hz, 1H), 7.29 (d, J = 14.64Hz, 1H), 2.07 (m, (CD₃)₂CO), 2.93 (s, H₂O).

³¹P NMR of **11** (121 MHz, CD₃COCD₃), δ_{ppm}: -144.11 (m, PF₆).

11

~ ~	• • •	~	4	4	LC)	LC)
2	00	4	œ	4	œ	4
6	ъ	2	0		ь	2
σ	ŝ	\sim	-	4	œ	2
0	ŝ	σ	4	œ	2	~
~	n m	m	4	4	ь	ь
-	•	-	-	-	-	-
L	. L	ι	ι	1	J	J

 13 C NMR (75 MHz, (CD₃)₂CO), δ_{ppm} : 7.63 (CH₃), 55.28 (CH₂), 83.20 (2C/C₅H₄), 85.86 (2C/C₅H₄), 86.27 (Cp/unsub.), 96.90 (C/C₅H₄), 123.07 (CH), 136.97 (CH), 29.16, 205.57 (CD₃)₂CO).

References of the S.I.

[SI1] X. M. Zhao, X. Q. Hao, B. Liu, M. L. Zhang, M. P. Song, Y. J. Wu, J. Organomet. Chem. 2006, 691, 255-260.

[S12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Rev. A.1, Gaussian Inc., Wallingford, CT, 2009
[SI3] a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652, b) P. Ziesche, H. Eschrig, editors, *Electronic Structure of Solids '91*, Akademie Verlag, Berlin, 1991
[SI4] P. J. Hay, W. R., Wadt, J. Chem. Phys., 1985, 82, 299–310

[SI5] S. I. Gorelsky, AOMix program, http://www.sg-chem.net/