Supporting Information for

First asymmetric synthesis of planar chiral [2.2]metacyclophanes

Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland donal.f.oshea@ucd.ie

Table of Contents

Experimental details, synthesis and analysis of compounds 8a-c, 9a-c S2-S7
Enantioselective ortho-lithiation of compounds 9a-c S8-S9
Synthesis and Analysis of compounds 11a-k S10-S23
${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8a-c, 9a-c and 11a-k S24-S44
Synthesis and Analysis of compound $\mathbf{9 a}-\mathrm{D}_{1}$ S45
${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $9 \mathrm{a}-\mathrm{D}_{1}$ S46-S47
Racemization Plots Data for Compounds 11a-c S48-51
References S52
X-Ray structural data for $\left(\boldsymbol{R}_{\mathbf{p}}\right)$-11a and rac-11d S53-S64

Experimental details

General Methods: All reactions involving air-sensitive reagents were performed under nitrogen in oven-dried glassware using syringe-septum cap technique. All solvents were purified and degassed before use. Chromatographic separations were carried out under pressure on Merck silica gel 60 using flash-column techniques. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel coated aluminum plates (60 Merck F254) with UV light (254 nm) as visualizing agent. Unless specified, all reagents were used as received without further purifications. TMP(H) was distilled from CaH_{2} prior to use. THF and diethyl ether were obtained from a solvent purification system. Heptane was distilled under nitrogen from CaH_{2} prior to use. BuLi was purchased as a 2.5 M solution in hexanes, $s \mathrm{BuLi}$ as a 1.4 M solution in cyclohexanes. $\mathrm{KO} t \mathrm{Bu}$ was purchased as a 1 M solution in THF. The exact concentration of the organolithium solutions were determined by titration with diphenylacetic acid in THF prior to use. ${ }^{1}$ (-)-Sparteine and PMDTA were stored over potassium hydroxide. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were recorded at room temperature on 400 MHz or 500 MHz spectrometers and calibrated using residual undeuterated solvent as an internal reference. ${ }^{2} \mathrm{H}$ NMR (92.07 MHz) spectra were obtained in DCM using residual $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as an internal standard. Optical rotations were measured at 589 nm . Enantiomeric ratios were determined by analytical chiral HPLC analyses on Daicel Chiralpak columns ($250 \times 4.6 \mathrm{~mm}$ ID) using heptane/ethanol as solvent mixtures. Racemates were obtained using $s \mathrm{BuLi} /$ PMDTA or by racemization of an enantioenriched sample in NMP at 453 K .

Synthesis and analysis of compounds 8a-c and 9a-c.

N, N-Diisopropyl-3,5-dimethylbenzamide. ${ }^{2}$ A solution of 3,5-dimethylbenzoic acid (3.00 g, 20 mmol) in thionyl chloride ($14.5 \mathrm{~mL}, 200 \mathrm{mmol}$) was refluxed for 24 h . The excess thionyl chloride was distilled off by azeotropic distillation with toluene. The residue was dissolved in dry THF (50 mL), diisopropyl amine ($14.0 \mathrm{~mL}, 100 \mathrm{mmol}$) added dropwise and stirred for 30 minutes at room temperature. The reaction mixture was filtered and the filtrate dried under reduced pressure. Dichloromethane (40 mL) was added and washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 20 \mathrm{~mL}$) dried over sodium sulfate and concentrated to dryness. Filtration over a short silica plug eluting with 1:1 cyclohexane:ethyl acetate gave a yellow solid $\left(\mathrm{R}_{f}=0.50,3.49 \mathrm{~g}, 75 \%\right)$, mp 79-81 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 4.05-3.32(\mathrm{br}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 1.72-0.92$ (br, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,138.9,138.0,130.0,123.1,50.7,45.7,21.2,20.7$. ESIHRMS $[\mathrm{M}+\mathrm{H}]^{+}: 234.1868, \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}$ requires 234.1858.

1-Methoxy-3-methyl-5-(3-methylphenethyl)benzene (8a). ${ }^{3}$ A solution of m-xylene ($1.06 \mathrm{~g}, 10.0$ $\mathrm{mmol})$ and 1-methoxy-3,5-dimethylbenzene ($0.71 \mathrm{~mL}, 5.00 \mathrm{mmol}$) in THF (50 mL) at $-78{ }^{\circ} \mathrm{C}$ was treated dropwise with $\mathrm{BuLi}(2.26 \mathrm{M}, 7.30 \mathrm{~mL}, 16.5 \mathrm{mmol})$ and stirred for $5 \mathrm{~min} . \mathrm{KOtBu}(1.0 \mathrm{M}$ in THF, $16.5 \mathrm{~mL}, 16.5 \mathrm{mmol}$) was added dropwise followed by 2,2,6,6-tetramethylpiperidine (2.78 $\mathrm{mL}, 15.0 \mathrm{mmol}$). The reaction mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}, 1,2$-dibromoethane (2.14 $\mathrm{mL}, 25.0 \mathrm{mmol}$) added and stirred for a further 5 min . The reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Diethyl ether (30 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 10 \mathrm{~mL}$), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with $98: 2$ pentane:diethyl ether gave $\mathbf{8 a}$ as a colourless oil $\left(\mathrm{R}_{f}=0.65,481 \mathrm{mg}, 40 \%\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.05-6.98(m, 3H), $6.63(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,143.4,141.9,139.3,137.9,129.2,128.2,126.6$,
$125.4,121.8,112.2,111.1,55.1,38.1,37.9,21.5,21.4$; ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: 241.1595, \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}$ requires 241.1592 .
N, N-Diisopropyl-3-methyl-5-(3-methylphenethyl)benzamide (8b). A solution of m-xylene (1.06 $\mathrm{g}, 10.0 \mathrm{mmol})$ and N, N-diisopropyl-3,5-dimethylbenzamide ($1.16 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (50 mL) at $78{ }^{\circ} \mathrm{C}$ was treated dropwise with $\operatorname{BuLi}(2.50 \mathrm{M}, 8.0 \mathrm{~mL}, 20.0 \mathrm{mmol})$ and stirred for 5 min . A solution of KOtBu (1.0 M in THF, 20.0 mL , 20.0 mmol) in THF (25 mL) was added dropwise followed by 2,2,6,6-tetramethylpiperidine ($3.37 \mathrm{~mL}, 20.0 \mathrm{mmol}$). The reaction mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}, 1,2$-dibromoethane $(2.14 \mathrm{~mL}, 25.0 \mathrm{mmol})$ added and stirred for a further 5 min. The reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Ethyl acetate (30 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 20 \mathrm{~mL}$), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 60:40 pentane:diethyl ether gave 8b as a colorless oil $\left(\mathrm{R}_{f}=0.65,491 \mathrm{mg}, 30 \%\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 6 \mathrm{H}), 3.97-3.37(\mathrm{br}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 4 \mathrm{H}), 2.32$ $(\mathrm{s}, 3 \mathrm{H})$ superimposed to $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.65-0.96(\mathrm{br}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3$, $142.0,141.6,139.0,138.1,137.8,129.5,129.2,128.2,126.6,125.4,123.8,122.5,37.8,37.7,21.4$, 21.3, 20.7. (Note: i-Pr tertiary C not observed). ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: 338.2480, \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}$ requires 338.2484.

1,2-Bis(3-methoxy-5-methylphenyl)ethane (8c). ${ }^{3}$ A solution of 1-methoxy-3,5-dimethylbenzene ($204 \mathrm{mg}, 1.50 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated dropwise with $\mathrm{BuLi}(2.40 \mathrm{M}, 0.69 \mathrm{~mL}$, $1.65 \mathrm{mmol})$ and stirred for $5 \mathrm{~min} . \mathrm{KOtBu}(1.0 \mathrm{M}$ in $\mathrm{THF}, 1.65 \mathrm{~mL}, 1.65 \mathrm{mmol})$ was added dropwise followed by 2,2,6,6-tetramethylpiperidine ($0.25 \mathrm{~mL}, 1.50 \mathrm{mmol})$. The reaction mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}, 1,2$-dibromoethane $(0.39 \mathrm{~mL}, 4.50 \mathrm{mmol})$ added and stirred for a further 5 min. The reaction mixture was warmed to rt and the solvent was removed under reduced pressure.

Diethyl ether (30 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 98:2 cyclohexane:ethyl acetate gave 8c as a colourless solid $\left(\mathrm{R}_{f}=0.50,186 \mathrm{mg}, 92 \%\right), \mathrm{mp} 80-81$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.65(\mathrm{~s}, 2 \mathrm{H}), 6.58-6.57(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.85(\mathrm{~s}, 4 \mathrm{H}), 2.32$ (s, 6 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.69,143.30,139.28,121.75,112.19,111.11,55.11$, 37.94, 21.50; ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}: 293.1510, \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}$ requires 293.1517.

5-Methoxy[2.2]metacyclophane (9a). ${ }^{3,4}$ A solution of 1-methoxy-3-methyl-5-(3-

 methylphenethyl)benzene 8a ($481 \mathrm{mg}, 2.00 \mathrm{mmol}$) in THF (30 mL) at $-78^{\circ} \mathrm{C}$ was treated dropwise with BuLi ($2.26 \mathrm{M}, 2.50 \mathrm{~mL}, 5.00 \mathrm{mmol}$) and stirred for 5 min . $\mathrm{KOtBu}(1.0 \mathrm{M}$ in THF, 5.00 mL , 5.00 mmol) was added dropwise followed by 2,2,6,6-tetramethylpiperidine ($0.67 \mathrm{~mL}, 4.00 \mathrm{mmol}$). The reaction mixture was stirred for 30 min during which time the temperature was raised to -60 ${ }^{\circ} \mathrm{C}$. 1,2-Dibromoethane $(0.51 \mathrm{~mL}, 15.0 \mathrm{mmol})$ was added, the reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Diethyl ether (30 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with $99: 1$ cyclohexane:diethyl ether gave $\mathbf{9 a}$ as a colourless solid $\left(\mathrm{R}_{f}=0.55,200 \mathrm{mg}, 42 \%\right), \mathrm{mp} 83-85{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,140.4,138.9,136.2$, 129.9, 128.5, 125.3, 110.8, 55.3, 41.1, 40.9; EI-HRMS [M] ${ }^{+}: 238.1359, \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}$ requires 238.1358.N, N-Diisopropyl[2.2]metacylophane-5-carboxamide (9b). A solution of N, N-diisopropyl-3-methyl-5-(3-methylphenethyl)benzamide $\mathbf{8 b}(472 \mathrm{mg}, 1.40 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was treated dropwise with $\operatorname{BuLi}(2.50 \mathrm{M}, 1.40 \mathrm{~mL}, 5.60 \mathrm{mmol})$ and stirred for 5 min . A solution of $\mathrm{KO} t \mathrm{Bu}(1.0 \mathrm{M}$ in $\mathrm{THF}, 5.60 \mathrm{~mL}, 5.60 \mathrm{mmol}$) was added dropwise followed by $2,2,6,6-$
tetramethylpiperidine ($0.95 \mathrm{~mL}, 5.60 \mathrm{mmol}$). The reaction mixture was stirred for 30 min during which time the temperature was raised to $-60^{\circ} \mathrm{C} .1,2$-Dibromoethane ($0.72 \mathrm{~mL}, 8.40 \mathrm{mmol}$) was added, the reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Ethyl acetate (30 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 3:2 pentane:diethyl ether gave 9b as a colourless solid $\left(\mathrm{R}_{f}=0.65,144 \mathrm{mg}, 31 \%\right), \mathrm{mp} 65-67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.41(\mathrm{br}, 2 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.74-0.93$ (br, 12H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,139.6,138.7,138.6,137.0,136.8,129.0,125.4$, 122.9, 40.9, 40.5, 20.7. (Note: i-Pr tertiary C not observed). ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: 336.2314$, $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}$ requires 336.2327.

5,13-Dimethoxy[2.2]metacyclophane (9c). ${ }^{3,5}$ A solution of 1,2-bis(3-methoxy-5-

 methylphenyl)ethane 8c ($354 \mathrm{mg}, 1.31 \mathrm{mmol}$) in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$ was treated dropwise with BuLi ($2.50 \mathrm{M}, 1.31 \mathrm{~mL}, 3.28 \mathrm{mmol}$) and stirred for 5 min . KOtBu (1.0 M in THF, $3.28 \mathrm{~mL}, 3.28$ mmol) was added dropwise followed by 2,2,6,6-tetramethylpiperidine ($0.44 \mathrm{~mL}, 2.62 \mathrm{mmol}$). The reaction mixture was stirred for 30 min during which time the temperature was raised to $-60{ }^{\circ} \mathrm{C}$. 1,2-Dibromoethane ($0.34 \mathrm{~mL}, 3.93 \mathrm{mmol}$) was added, the reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Diethyl ether $(30 \mathrm{~mL})$ was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with $94: 6$ pentane:ethyl acetate gave 9 c as a colourless solid ($\mathrm{R}_{f}=0.70,123 \mathrm{mg}, 35 \%$), mp 166-169 ${ }^{\circ} \mathrm{C}$ (lit. $.^{6} \mathrm{mp} 168-170{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.62(\mathrm{~s}, 4 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 160.5,140.4,129.5,110.8,55.3,41.0 ;$ EI-HRMS [M] ${ }^{+}: 268.1460$, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ requires 268.1463.
Enantioselective o-lithiation of [2.2]metacyclophanes 9a-c

General procedure. A solution of [2.2]metacyclophane $9(0.10 \mathrm{mmol})$ in dry diethyl ether or dry heptane was treated with (-)-sparteine ($46 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the mixture was stirred for 5 min . After cooling to the specified temperature, $\operatorname{BuLi}(2.50 \mathrm{M}, 80 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ or $s \mathrm{BuLi}(1.40 \mathrm{M}, 150$ $\mu \mathrm{L}, 0.20 \mathrm{mmol})$ were added dropwise and the reaction mixture stirred for the required time. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and ethyl chloroformate ($30 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred for the specified time and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 2 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. The crude products were purified by silica gel chromatography followed by chiral HPLC analyses (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature).

Tabulated results:

Entry	Cyclophane	$\mathbf{R L i}$	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	solvent	product	yield $(\mathbf{\%})$	e.r.
1	$\mathbf{9 a}$	BuLi	-78	ether	$\mathbf{1 1 a}$	-	-
2	$\mathbf{9 a}$	BuLi	rt	ether	$\mathbf{1 1 a}$	15	$72: 18$
3	$\mathbf{9 a}$	$s \mathrm{BuLi}$	rt	ether	$\mathbf{1 1 a}$	51	$81: 19$
4	$\mathbf{9 a}$	$s \mathrm{BuLi}$	-78	ether	$\mathbf{1 1 a}$	18	$82: 18$
5	$\mathbf{9 a}$	$s \mathrm{BuLi}$	-60	ether	$\mathbf{1 1 a}$	43	$89: 11$
6	$\mathbf{9 a}$	$s \mathrm{BuLi}$	-40	ether	$\mathbf{1 1 a}$	65	$91: 9$
7	$\mathbf{9 a}$	$s \mathrm{BuLi}$	-20	ether	$\mathbf{1 1 a}$	58	$85: 15$
8	$\mathbf{9 a}$	$s \mathrm{BuLi}$	0	heptane	$\mathbf{1 1 a}$	-	-
9	$\mathbf{9 b}$	BuLi	-40	ether	$\mathbf{1 1 b}$	-	-
10	$\mathbf{9 b}$	$s \mathrm{BuLi}$	0	heptane	$\mathbf{1 1 b}$	-	-
11	$\mathbf{9 b}$	$s \mathrm{BuLi}$	-40	ether	$\mathbf{1 1 b}$	73	$74: 26$
12	$\mathbf{9 b}$	$s \mathrm{BuLi}$	-78	ether	$\mathbf{1 1 b}$	76	$85: 15$
13	$\mathbf{9 c}$	BuLi	-78	ether	$\mathbf{1 1 c}$	-	-
14	$\mathbf{9 c}$	$s \mathrm{BuLi}$	-40	ether	$\mathbf{1 1 c}$	46	$91: 9$

HPLC Analysis for Table 2

Entry 2. 11a

Entry 4. 11a

Entry 6.11a

Entry 11.11b

Entry 14.11 c

Entry 3. 11a

Entry 5.11a

Entry 7.11a

Entry 12.11 b

11a: Eluent: 1% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$. Retention times: 9.7 min (minor isomer) and 12.8 min (major isomer).

11b: Eluent: 2% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 13.6 min (minor isomer) and 17.0 min (major isomer).

11c: Eluent: 1% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$. Retention times: 12.7 min (major isomer) and 14.1 min (minor isomer).

Synthesis and analysis of compounds 11a-k

 methoxy[2.2]metacyclophane $\mathbf{9 a}(23.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether (1 mL) was treated with (-)-sparteine ($46 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the mixture was stirred for 5 min . After cooling to $-40{ }^{\circ} \mathrm{C}$, $s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and ethyl chloroformate ($30 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred at room temperature for 1 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl ($2 \mathrm{M}, 2 \times 10 \mathrm{~mL}$), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 70:30 pentane:diethyl ether gave 11a as a colourless solid ($\mathrm{R}_{f}=0.60$, $20 \mathrm{mg}, 65 \%), \mathrm{mp} 70-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.50-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dt}, J=12.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dt}, J=5.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{td}, J=12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-$ $2.04(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{td}, J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,157.3,141.3,139.0,138.6,137.0,136.3,129.9,128.8,125.6,125.3,120.8,108.5,61.1$, 56.1, 41.3, 40.6, 39.8, 38.7, 14.4. EI-HRMS $[M]^{+}: 310.1555, \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$ requires 310.1569. $[\alpha]_{\mathrm{D}}{ }^{20}=-$ 20.3 (c $0.4, \mathrm{CHCl}_{3}, 82 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 9.7 min (minor isomer) and 12.8 min (major isomer).

HPLC of racemic 11a

HPLC of 11a

$\left(R_{\mathrm{p}}\right)-(-)-5-(N, N$-Diisopropylcarbamoyl)[2.2]metacylophane-4-carboxylic acid ethyl ester (11b).

 A solution of N, N-diisopropyl[2.2]metacylophane-5-carboxamide 9 b ($33.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dry diethyl ether (1 mL) was treated with (-)-sparteine ($46 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the mixture was stirred for 5 min . After cooling to $-78^{\circ} \mathrm{C}, s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 4 h . Ethyl chloroformate ($30 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added dropwise, the reaction mixture was stirred at room temperature for 1 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 2 \times 10$ mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 3:2 pentane:diethyl ether gave 11b as a colourless solid $\left(\mathrm{R}_{f}=0.50,31\right.$ $\mathrm{mg}, 76 \%), \mathrm{mp} 120-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.48(\mathrm{br}, 1 \mathrm{H}), 4.44(\mathrm{dt}, J=17.0,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{dt}, J=17.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.05(\mathrm{~m}$, $3 \mathrm{H}), 2.60-2.40(\mathrm{br}, 1 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{td}, J=12.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$, $1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.05(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,167.9,139.5$, $139.2,138.1,137.3,129.3,126.8,125.7,125.3,122.7,61.2,51.1,45.6,40.9,39.8,39.1,20.4,14.3$.ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: 408.2546, \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{3}$ requires 408.2539. $[\alpha]_{\mathrm{D}}{ }^{20}=-33.2$ (c $0.6, \mathrm{CHCl}_{3}, 69 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 2% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 13.6 min (minor isomer) and 17.0 min (major isomer).

HPLC chart of racemic 11b

HPLC chart of 11b

$\left(R_{\mathrm{p}}\right)-(-)$-5,13-Dimethoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11c). A solution of 5,13-dimethoxy[2.2]metacyclophane $9 \mathrm{c}(26.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether (4 mL) was treated with (-)-sparteine $(46 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and the mixture was stirred for 5 min . After cooling to $-40^{\circ} \mathrm{C}, s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and ethyl chloroformate ($30 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred at room temperature for 1 h and the solvent was removed under reduced pressure. Ethyl acetate $(10 \mathrm{~mL})$ was added to the residue, washed with HCl ($2 \mathrm{M}, 2 \times 10 \mathrm{~mL}$), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 99.5:0.5 $\mathrm{DCM}: \mathrm{MeOH}$ gave 11c as a colourless solid $\left(\mathrm{R}_{f}=0.50,16\right.$ $\mathrm{mg}, 46 \%$), mp 74-78 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 4.50-4.36(\mathrm{~m}$, $2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dt}, J=12.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.02$
$(\mathrm{m}, 2 \mathrm{H}), 2.98(\mathrm{dt}, J=12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{td}, J=12.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{td}$, $J=12.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,160.7,157.1$, $141.3,140.5,140.1,137.0,129.6,120.7,110.9,110.8,108.4,61.1,56.0,55.3,41.2,40.7,39.9$, 38.6, 14.3. ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: 341.1765, \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4}$ requires 341.1753. $[\alpha]_{\mathrm{D}}{ }^{20}=-12.5$ (c 0.3, $\mathrm{CHCl}_{3}, 82 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254 nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: 1.0 $\mathrm{ml} / \mathrm{min}$). Retention times: 12.7 min (major isomer) and 14.1 min (minor isomer).

HPLC chart of racemic 11c

Area Percent Report

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier \& Dilution Factor with ISTDs				
Signal 1: dadl a, Sig-254, 8 Ref- 360,100				
Peak RetTime Type - [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\text { mAU }{ }^{*} s\right]} \end{gathered}$	Height [mAU]	$\stackrel{\text { Area }}{8}$
12.675 BB	0.2638	54.95518	3.20832	49.8732
213.533 mm	0.3950	55.23459	2.33072	50.1268
Totals:		110.18977	5.53904	

HPLC chart of 11c

$\left(\boldsymbol{R}_{\mathrm{p}}\right)$-(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid (11d). A solution of (R_{p})-5-methoxy[2.2]metacylophane-4-carboxylic acid ethyl ester 11a ($50.0 \mathrm{mg}, 0.16 \mathrm{mmol}, 91: 9$ e.r.) in 2propanol (3 mL) was treated with $\mathrm{KOH}(20 \%$ in 2-propanol, 6 mL) and the mixture was heated at $80^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, the reaction mixture was quenched with HCl ($2 \mathrm{M}, 20 \mathrm{~mL}$), ethyl acetate (10 mL) was added, washed with water ($2 \times 20 \mathrm{~mL}$), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with ethyl acetate gave 11d as a colourless solid $\left(\mathrm{R}_{f}=0.50,40 \mathrm{mg}, 88 \%\right), \mathrm{mp} 162-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.88$ $(\mathrm{s}, 3 \mathrm{H}), 3.25(\mathrm{dt}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{dt}, J=12.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{td}$, $\mathrm{J}=12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{td}, J=12.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,158.3,143.4,141.3,139.4,138.0,135.8,131.9,129.1,125.8$, 125.2, 116.4, 108.7, 56.6, 41.3, 40.6, 40.1, 39.4. ESI-HRMS [M-H] ${ }^{-}: 281.1168, \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}$ requires 281.1178. $[\alpha]_{\mathrm{D}}{ }^{20}=-5.3$ (c 0.3, $\mathrm{MeOH}, 82 \%$ ee). Enantiomeric excess was determined after esterification followed by analytical chiral HPLC analysis. A solution of 5-methoxy[2,2]metacylophane-4-carboxylic acid ($40 \mathrm{mg}, 0.14 \mathrm{mmol}$) in ethanol (10 mL) was treated with 12 M HCl (three drops) and heated under reflux for 1 h . The solvent was removed under reduced pressure and ethyl acetate (20 mL) was added. The organic layer was washed with saturated NaHCO_{3} and water, dried over sodium sulfate and concentrated to dryness. Purification over a short silica plug (70:30 pentane:diethyl ether) gave the corresponding ethyl ester 11a which was analyzed by chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 9.7 min (minor isomer) and 12.8 min (major isomer).

HPLC chart of 11a before hydrolysis

HPLC chart of 11a after hydrolysis and reesterification.

$\left(R_{p}\right)-(+)$-5-Methoxy[2.2]metacylophane-4-carbaldehyde (11e). A solution of 5methoxy[2.2]metacyclophane $\mathbf{9 a}(23.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether $(1 \mathrm{~mL})$ was treated with (-)-sparteine ($46 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the mixture was stirred for 5 min . After cooling to $-40^{\circ} \mathrm{C}$, $s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and DMF ($24 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 2 \times 10$ mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 70:30 pentane:diethyl ether gave 11e as a colourless solid $\left(\mathrm{R}_{f}=0.80\right.$, $18 \mathrm{mg}, 68 \%), \mathrm{mp} 88-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.64(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.45-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.03(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{td}, J=11.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,164.2,146.8,142.2,139.4,137.8,135.3,131.8,129.0,125.8,125.1,120.4$, 108.4, 55.9, 41.6, 40.6, 40.2, 38.0. ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: 267.1379, \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}$ requires 267.1385. $[\alpha]_{\mathrm{D}}{ }^{20}=+97.2$ (c $0.4, \mathrm{CHCl}_{3}, 82 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 8.6 min (minor isomer) and 10.3 min (major).

HPLC chart of racemic 11e

HPLC chart of 11e

$\left(\boldsymbol{R}_{\mathrm{p}}\right)$-(-)-4-Iodo-5-methoxy[2.2]metacylophane (11f). A solution of 5methoxy[2.2]metacyclophane $\mathbf{9 a}(23.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether $(1 \mathrm{~mL})$ was treated with (-)-sparteine ($46 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the mixture was stirred for 5 min . After cooling to $-40^{\circ} \mathrm{C}$, $s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of iodine ($76 \mathrm{mg}, 0.30 \mathrm{mmol}$) in diethyl ether (1 mL) added dropwise. The reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 2 \times 10 \mathrm{~mL})$, sodium thiosulfate $(2 \times 15 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with $95: 5$ pentane:diethyl ether gave 11f as a colourless solid $\left(\mathrm{R}_{f}=0.70,22 \mathrm{mg}, 59 \%\right)$, mp $56-60{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dt}, J=12.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ $(\mathrm{dt}, J=11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=12.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{td}, J$ $=12.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,142.8$, 140.1, 138.7, $138.5,135.9,130.4,128.9,125.8,125.3,108.4,87.3,56.6,45.8,40.7,40.7,38.3 .[\alpha]_{\mathrm{D}}{ }^{20}=-2.4(\mathrm{c}$ $0.4, \mathrm{CHCl}_{3}, 85 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 0.5% ethanol in heptane, flow rate: $0.8 \mathrm{ml} / \mathrm{min}$). Retention times: 7.0 min (minor isomer) and 8.2 min (major isomer).

HPLC chart of racemic 11f

HPLC chart of $\mathbf{1 1 f}$

$\left(R_{\mathrm{p}}\right)-(-)-5-$ Methoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11g). A solution of 5methoxy[2.2]metacyclophane $\mathbf{9 a}(23.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether $(1 \mathrm{~mL})$ was treated with (-)-sparteine ($46 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the mixture was stirred for 5 min . After cooling to $-40^{\circ} \mathrm{C}$, $s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and diethyl chlorophosphate ($43 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred at room temperature for 4 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl ($2 \mathrm{M}, 2 \times 10 \mathrm{~mL}$), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with ethyl acetate gave 11 g as a colourless solid $\left(\mathrm{R}_{f}=0.50,22 \mathrm{mg}, 58 \%\right)$, mp 113-116 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{dd}, J=5.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.12-3.97(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{~d}, J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.99(\mathrm{dt}, J=12.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.97-$ $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{td}, J=12.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $163.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 145.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 145.0(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 139.0,138.1,134.9,131.5(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}), 128.8,125.2,124.9,110.9,108.9(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 61.9(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 61.8(\mathrm{~d}, J=5.9$ $\mathrm{Hz}), 55.3,40.7(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 40.4(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 40.1(\mathrm{~d}, J=0.9 \mathrm{~Hz}), 39.7(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 15.3$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}), 15.2(\mathrm{~d}, J=6.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 19.6$ (s). ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}: 397.1557, \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{PNa}$ requires $397.1545 .[\alpha]_{\mathrm{D}}{ }^{20}=-3.9$ (c $0.4, \mathrm{CHCl}_{3}, 86 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 5% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 9.9 min (minor isomer) and 11.2 min (major isomer).

HPLC chart of racemic 11g

HPLC chart of $\mathbf{1 1 g}$

$\left(R_{\mathrm{p}}\right)$-(-)-Diphenyl(5-methoxy[2.2]metacylophan-4-yl)phosphine oxide (11h). A solution of 5methoxy[2.2]metacyclophane $\mathbf{9 a}(23.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether $(1 \mathrm{~mL})$ was treated with (-)-sparteine $(46 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and the mixture was stirred for 5 min . After cooling to $-40^{\circ} \mathrm{C}$, $s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and chlorodiphenylphosphine ($55 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred at room temperature for 4 h and the solvent was removed under reduced pressure. Ethyl acetate $(10 \mathrm{~mL})$ was added to the residue, washed with HCl ($2 \mathrm{M}, 2 \times 10 \mathrm{~mL}$), dried over sodium sulfate and concentrated to dryness. Purification by short-pad silica gel chromatography eluting with DCM gave 11 h as a colourless solid $\left(\mathrm{R}_{f}=0.40,30 \mathrm{mg}\right.$, 69%), mp 196-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.78(\mathrm{dd}, J=$ 8.1, 1.4 Hz, 1H), $7.67(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 4 \mathrm{H})$, 7.42-7.36 (m, 2H), $7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.57(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{dt}, J=$ $12.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dt}, J=12.1,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{dq}, J=11.4,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{td}, J=12.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{td}, J=$ 12.1, $3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 147.8(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 144.9$
$(\mathrm{d}, J=2.1 \mathrm{~Hz}), 139.7,137.9,136.9,135.9,135.8,135.2,134.8,133.1(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 129.0,128.1(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 125.7,125.0,115.2,114.1,109.1(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 55.1,41.1,41.0$, 40.6, 39.0. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.0$ (s). ESI-HRMS $[\mathrm{M}+\mathrm{H}]^{+}: 439.1815, \mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{P}$ requires 439.1827. $[\alpha]_{\mathrm{D}}{ }^{20}=-14.2$ (c $0.6, \mathrm{CHCl}_{3}, 89 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254 nm UV detector, room temperature, eluent: 20% ethanol in heptane, flow rate: $0.8 \mathrm{ml} / \mathrm{min}$). Retention times: 7.8 min (minor isomer) and 8.9 min (major isomer).

HPLC chart of racemic 11h*

* obtained by racemization of $\mathbf{1 1 h}$ in NMP (453 K)

HPLC chart of 11h

$\left(\boldsymbol{R}_{\mathrm{p}}\right)$-(+)-N,N-Diisopropyl-4-formyl-[2.2]metacylophane-5-carboxamide (11i). A solution of N, N-diisopropyl[2.2]metacylophane-5-carboxamide $9 \mathbf{~ (~} 33.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dry diethyl ether (1 $\mathrm{mL})$ was treated with (-)-sparteine $(46 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and the mixture was stirred for 5 min . After cooling to $-78{ }^{\circ} \mathrm{C}, s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h . DMF ($24 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added dropwise, the reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10
$\mathrm{mL})$ was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 2 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with $3: 2$ pentane:ethyl acetate gave 11i as a colourless solid $\left(\mathrm{R}_{f}=0.60,19 \mathrm{mg}, 59 \%\right), \mathrm{mp} 101-103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 3 \mathrm{H}), 4.42-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.57-3.45$ $(\mathrm{m}, 2 \mathrm{H}), 3.24-3.10(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{td}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=6.8,2.8$ $\mathrm{Hz}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,169.4,138.7$, 138.6, 137.8, $136.0,129.5,127.5,125.8,125.4,123.5,51.2,46.0,41.1,40.3,37.6,20.6,20.5,20.4,20.2$. ESIHRMS $[\mathrm{M}+\mathrm{H}]^{+}: 364.2284, \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{2}$ requires 364.2277. $[\alpha]_{\mathrm{D}}{ }^{20}=+30.3$ (c $0.4, \mathrm{CHCl}_{3}, 68 \%$ ee $)$. Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 2% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 26.5 min (major isomer) and 33.3 min (minor isomer).

HPLC chart of racemic 11i*

HPLC chart of 11i

[^0]($\boldsymbol{R}_{\mathrm{p}}$)-(-)-5,13-Dimethoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11j). A solution of 5,13-dimethoxy[2.2]metacyclophane $9 \mathrm{c}(26.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether (4 mL) was treated with (-)-sparteine $(46 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and the mixture was stirred for 5 min . After cooling to $-40^{\circ} \mathrm{C}, s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and diethyl chlorophosphate ($43 \mu \mathrm{~L}, 0.30$ mmol) added dropwise. The reaction mixture was stirred at room temperature for 4 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 2 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with ethyl acetate gave $\mathbf{1 1} \mathbf{j}$ as a colourless solid $\left(\mathrm{R}_{f}=0.40,16 \mathrm{mg}, 40 \%\right), \mathrm{mp} 130-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.66(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{dt}, J=11.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.02(\mathrm{~m}, 6 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{td}, J=12.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{dd}, J=12.0,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 160.8,145.8(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}), 144.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 141.1,139.5,131.6(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 128.8,110.7,108.9(\mathrm{~d}, J=9.7$ $\mathrm{Hz}), 61.68-61.51(\mathrm{~m}), 56.4,55.3,41.1(\mathrm{~d}, J=0.6 \mathrm{~Hz}), 41.0(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 40.6,40.1(\mathrm{~d}, J=2.5$ $\mathrm{Hz}), 16.5(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=6.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.7$ (s). ESI-HRMS $[\mathrm{M}+\mathrm{Na}]^{+}: 427.1663, \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{NaP}$ requires 427.1650. $[\alpha]_{\mathrm{D}}^{20}=-6.2$ (c $0.3, \mathrm{CHCl}_{3}, 79 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 5% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 11.8 min (major isomer) and 12.7 min (minor isomer).

HPLC chart of racemic $\mathbf{1 1} \mathbf{j}$

HPLC chart of $\mathbf{1 1} \mathbf{j}$

$\left(\boldsymbol{R}_{\mathrm{p}}\right)$-(+)-5,13-Dimethoxy[2.2]metacylophane-4-carbaldehyde (11k). A solution of 5,13dimethoxy[2.2]metacyclophane $9 \mathbf{c}(26.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry diethyl ether $(4 \mathrm{~mL})$ was treated with (-)-sparteine ($46 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the mixture was stirred for 5 min . After cooling to $-40^{\circ} \mathrm{C}$, $s \mathrm{BuLi}(150 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added dropwise and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and DMF ($24 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 2 \times 10$ mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 80:20 pentane:ethyl acetate gave 11 k as a colourless solid $\left(\mathrm{R}_{f}=0.70\right.$, $17 \mathrm{mg}, 58 \%), \mathrm{mp} 80-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.62(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, $6.60(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{dt}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.12-3.00 (m, 3H), 2.20-2.07 (m, 3H), $1.74(\mathrm{td}, J=11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,164.1,160.8,146.9,142.3,140.9,139.3,131.5,128.6,120.4,110.9,110.8,108.4,55.9$, 55.3, 41.5, 40.8, 40.4, 37.9. ESI-HRMS [M+Na] ${ }^{+}$: 319.1301, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}$ requires 319.1310 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+69.7$ (c $0.3, \mathrm{CHCl}_{3}, 82 \%$ ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA $250 \times 4.6 \mathrm{~mm}$ ID, 254 nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: $1.0 \mathrm{ml} / \mathrm{min}$). Retention times: 12.7 min (minor isomer) and 14.4 min (major isomer).

HPLC chart of racemic $\mathbf{1 1 k}$

HPLC chart of $\mathbf{1 1 k}$

N, N-Diisopropyl-3,5-dimethylbenzamide

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1-Methoxy-3-methyl-5-(3-methylphenethyl)benzene (8a)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N,N-Diisopropyl-3-methyl-5-(3-methylphenethyl)benzamide (8b)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 N~~

1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1
7.5	7.0	6.5	6.0	5.5	5.0	4.5			3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1,2-Bis(3-methoxy-5-methylphenyl)ethane (8c)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5-Methoxy[2.2]metacyclophane (9a)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N, N-Diisopropyl[2.2]metacylophane-5-carboxamide (9b)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5,13-Dimethoxy[2.2]metacyclophane (9c)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left(R_{\mathrm{p}}\right)$-(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11a)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R_{\mathrm{p}}\right)$-(-)-5-(N, N-diisopropylcarbamoyl)[2.2]metacylophane-4-carboxylic acid ethyl ester (11b)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

($\boldsymbol{R}_{\mathrm{p}}$)-(-)-5,13-Dimethoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11c)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R_{\mathrm{p}}\right)$-(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid (11d)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left(R_{\mathrm{p}}\right)-(+)$-5-Methoxy[2.2]metacylophane-4-carbaldehyde (11e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\boldsymbol{R}_{\mathrm{p}}$)-(-)-4-Iodo-5-methoxy[2.2]metacylophane (11f)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R_{\mathrm{p}}\right)-(-)$-5-Methoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11g)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(\boldsymbol{R}_{\mathrm{p}}\right)$-(+)- N, N-Diisopropyl-4-formyl-[2.2]metacylophane-5-carboxamide (11i)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left(R_{\mathrm{p}}\right)-(-)$-5,13-Dimethoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11j)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(\boldsymbol{R}_{\mathrm{p}}\right)-(+)$-5,13-Dimethoxy[2.2]metacylophane-4-carbaldehyde (11k)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Synthesis and analysis of compound $9 \mathbf{9}-\mathrm{D}_{1}$

4-Deuterio-5-methoxy[2.2]metacylophane ($\mathbf{9} \mathbf{a}-\mathbf{D}_{\mathbf{1}}$). A solution of 5 -methoxy[2.2]metacylophane 9a ($25 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (10 mL) at $-78^{\circ} \mathrm{C}$ was treated dropwise with BuLi $(2.50 \mathrm{M}, 0.46$ $\mathrm{mL}, 0.12 \mathrm{mmol}$) and stirred for 5 min . $\mathrm{KOtBu}(1.0 \mathrm{M}$ in $\mathrm{THF}, 0.12 \mathrm{~mL}, 0.12 \mathrm{mmol})$ was added dropwise, the reaction mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and $\mathrm{CD}_{3} \mathrm{OD}(33 \mu \mathrm{~L})$ added. The reaction mixture was warmed under N_{2} to rt and the solvent removed under reduced pressure. Ethyl acetate (20 mL) was added to the residue, washed with $\mathrm{HCl}(2 \mathrm{M}, 3 \times 10 \mathrm{~mL})$, dried over sodium sulfate and concentrated to dryness to give $9 \mathrm{a}-\mathrm{D}_{1}$ as a colourless solid ($23 \mathrm{mg}, 88 \%, 75 \% \mathrm{D}$ incorporation). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.64(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.13-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.04(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,140.5,140.5,140.5,139.1,136.4,130.0,128.7,125.5$, 111.0, 110.9, 55.5, 41.3, 41.2, 41.0. ${ }^{2} \mathrm{H}$ NMR ($92.07 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\delta 6.66$ (s). EI-HRMS [M] ${ }^{+}$: 239.1422, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{DO}$ requires 239.1420.

${ }^{2} \mathrm{H}$ NMR ($92.07 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)

Racemization Plots Data for Compounds 11a-c

General procedure for the racemization of [2.2]metacyclophanes 11a-c. In a round-bottom flask equipped with a reflux condenser, a sample of enantioenriched [2.2]metacyclophane 11a-c (0.5 mg) was dissolved in N-methyl-2-pyrrolidone (1 mL) and heated at 453 K . At a specified time interval, a sample (approx vol. $100 \mu \mathrm{~L}$) was taken and rapidly cooled to room temperature with an ice bath. Heptane (approx. vol. 0.5 mL) was added and, after a short micro extraction, the upper heptane layer was isolated and submitted for HPLC analysis.

Determination of rate constant and racemization barriers. The inversion barriers $\left(\Delta \mathrm{G}^{*}\right)$ were calculated on the basis of the absolute rate equation ${ }^{7,8}$ assuming a unitary transmission coefficient. The rate constants were determined via a first-order integrated law plot considering the racemization of an optical antipode as a reversible first order reaction, where the forward and reverse reaction-rate constants k_{f} and k_{r} are identical:

and $k_{\mathrm{f}}=k_{\mathrm{r}}=k_{\mathrm{i}}$ (inversion constant).
$\left(R_{\mathrm{p}}\right)-(-)-5-$ Methoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11a)

$\mathrm{T}=453.0 \mathrm{~K}$
$k^{\prime}\left(\times 10^{5}\right)=450 \mathrm{~s}^{-1}$
$k_{\mathrm{i}}\left(\mathrm{x} 10^{5}\right)=225 \mathrm{~s}^{-1}$
$\Delta \mathrm{G}^{*} 453=141.6 \mathrm{~kJ} / \mathrm{mol}(33.8 \mathrm{kcal} / \mathrm{mol})$
$\left(R_{\mathrm{p}}\right)$-(-)-5-(N, N-diisopropylcarbamoyl)[2.2]metacylophane-4-carboxylic acid ethyl ester (11b)

$$
\begin{aligned}
& \mathrm{T}=453.0 \mathrm{~K} \\
& k^{\prime}\left(\times 10^{5}\right)=572 \mathrm{~s}^{-1} \\
& k_{\mathrm{i}}\left(\times 10^{5}\right)=286 \mathrm{~s}^{-1} \\
& \Delta \mathrm{G}_{453}^{*}=134.5 \mathrm{~kJ} / \mathrm{mol}(32.1 \mathrm{kcal} / \mathrm{mol})
\end{aligned}
$$

(R_{p})-(-)-5,13-Dimethoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11c)

$$
\begin{aligned}
& \mathrm{T}=453.0 \mathrm{~K} \\
& k^{\prime}\left(\times 10^{5}\right)=451 \mathrm{~s}^{-1} \\
& k_{\mathrm{i}}\left(\times 10^{5}\right)=225.5 \mathrm{~s}^{-1} \\
& \Delta \mathrm{G}_{453}^{*}=135.4 \mathrm{~kJ} / \mathrm{mol}(32.4 \mathrm{kcal} / \mathrm{mol})
\end{aligned}
$$

References

1. W. G. Kofron and L. M. Baclawski, J. Org. Chem. 1976, 41, 1879.
2. G. G. Pagani, G. G. Caccialanza and P. P. Borgna, Farmaco Sci. 1973, 28, 835.
3. M. Blangetti, P. Fleming and D. F. O'Shea, Beilstein J. Org. Chem. 2011, 7, 1249.
4. S. A. Sherrod and R. L. Da Costa, Tetrahedron Lett. 1973, 23, 2083.
5. G. J. Bodwell, T. J. Houghton, J. Kennedy and M. R. Mannion, Angew. Chem., Int. Ed. 1996, 35, 2121.
6. T. Sato, K. Torizuka, R. Komaki and H. Atobe, J. Chem. Soc, Perkin Trans. 2 1980, 4, 561.
7. (a) S. Glasstone, K. J. Laidler and H. Eyring, The theory of rate processes, McGraw-Hill Book Co., New York, N.Y., 1941. (b) F. W. Cagle Jr and H. Eyring, J. Am. Chem. Soc. 1951, 73, 5628.
8. C. Glotzmann, E. Langer, H. Lehner and K. Schlogl, Monatsh. Chem. 1974, 105, 907.

X-Ray Structural Data for $\left(\boldsymbol{R}_{\mathbf{p}}\right)$-11a

Table 1. Crystal data and structure refinement for $\left(\boldsymbol{R}_{\mathbf{p}}\right) \mathbf{- 1 1 a}$

Identification code	$\left(R_{\mathrm{p}}\right)$-11a
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$
Formula weight	310.38
Temperature	100(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	P2 ${ }_{1}$ (\#4)
Unit cell dimensions	$\mathrm{a}=8.15436(7) \AA \alpha=90^{\circ}$.
	$\mathrm{b}=8.76221(7) \AA \beta=107.081(1)^{\circ}$.
	$\mathrm{c}=12.1310(1) \AA \gamma=90^{\circ}$.
Volume	828.530(12) \AA^{3}
Z	2
Density (calculated)	$1.244 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.658 \mathrm{~mm}^{-1}$
F(000)	332
Crystal size	$0.3840 \times 0.2026 \times 0.1554 \mathrm{~mm}^{3}$
Theta range for data collection	3.81 to 76.63°.
Index ranges	$-10<=\mathrm{h}<=10,-10<=\mathrm{k}<=11,-13<=1<=15$
Reflections collected	16971
Independent reflections	$3445[\mathrm{R}(\mathrm{int})=0.0231]$
Completeness to theta $=76.63{ }^{\circ}$	99.4 \%
Absorption correction	Analytical
Max. and min. transmission	0.926 and 0.842
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3445 / 1 / 210
Goodness-of-fit on F^{2}	1.067
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0269, \mathrm{wR} 2=0.0728$
R indices (all data)	$\mathrm{R} 1=0.0273, \mathrm{wR} 2=0.0732$
Absolute structure parameter	0.06(13)
Largest diff. peak and hole	0.193 and -0.172 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left(\boldsymbol{R}_{\mathbf{p}}\right) \mathbf{- 1 1 a}$. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

Atom	x	y		z
$\mathrm{C}(1)$	$3351(1)$	$8565(1)$	$1417(1)$	$17(1)$
C(7)	$1898(1)$	$7468(1)$	$962(1)$	$18(1)$
O(1)	$2069(1)$	$6125(1)$	$816(1)$	$32(1)$
O(2)	$395(1)$	$8182(1)$	$734(1)$	$21(1)$
C(8)	$-1139(1)$	$7283(1)$	$190(1)$	$23(1)$
C(9)	$-1502(2)$	$7313(1)$	$-1101(1)$	$24(1)$
C(2)	$4097(1)$	$9240(1)$	$629(1)$	$17(1)$
O(3)	$3311(1)$	$8898(1)$	$-503(1)$	$20(1)$
C(10)	$4022(2)$	$9571(1)$	$-1337(1)$	$24(1)$
C(3)	$5560(1)$	$10145(1)$	$1020(1)$	$18(1)$

C(4)	$6183(1)$	$10496(1)$	$2195(1)$	$17(1)$
C(5)	$5291(1)$	$9975(1)$	$2939(1)$	$17(1)$
C(6)	$3968(1)$	$8908(1)$	$2588(1)$	$17(1)$
C(11)	$7962(1)$	$1149(1)$	$2695(1)$	$19(1)$
C(12)	$9311(1)$	$9837(1)$	$3114(1)$	$21(1)$
C(13)	$3520(1)$	$7945(1)$	$3492(1)$	$21(1)$
C(14)	$4882(2)$	$6637(1)$	$3908(1)$	$23(1)$
C(15)	$8868(1)$	$8897(1)$	$4030(1)$	$20(1)$
C(16)	$9405(1)$	$9339(1)$	$5187(1)$	$24(1)$
C(17)	$8622(2)$	$8726(2)$	$5963(1)$	$27(1)$
C(18)	$7217(2)$	$7758(1)$	$5583(1)$	$25(1)$
C(19)	$6652(1)$	$7300(1)$	$4431(1)$	$21(1)$
C(20)	$7583(1)$	$7791(1)$	$3692(1)$	$20(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\left(\boldsymbol{R}_{\mathbf{p}}\right) \mathbf{- 1 1 a}$.

$\mathrm{C}(1)-\mathrm{C}(6)$	$1.3938(14)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4056(14)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.4989(14)$
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.2043(14)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.3312(13)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.4615(12)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.5056(16)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.3670(13)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.3946(15)$
$\mathrm{O}(3)-\mathrm{C}(10)$	$1.4332(13)$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.3997(14)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.3913(15)$
$\mathrm{C}(4)-\mathrm{C}(11)$	$1.5109(14)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.3965(14)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(13)$	$1.5107(14)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.5687(15)$
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.5101(15)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.5724(15)$
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9900
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9900
$\mathrm{C}(14)-\mathrm{C}(19)$	$1.5118(15)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.3966(16)$
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.3972(15)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.3909(18)$
$\mathrm{C}(16)-\mathrm{H}(16)$	1.3500
$\mathrm{C}(17)-\mathrm{C}(18)$	

$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{C}(19)$	1.3958(16)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.4015(16)$
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	120.23(9)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	121.54(9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	118.22(9)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	124.59(10)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(1)$	124.61(10)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(1)$	110.79(9)
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	117.03(9)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	109.92(9)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.7
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.7
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.2
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	124.64(9)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	114.92(9)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.41(9)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(10)$	116.83(8)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.30(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.09(10)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	119.15(9)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	120.65(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.74(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.1
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.1
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	118.06(9)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(13)$	121.82(9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	118.88(9)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	110.63(9)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.1
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(11)$	109.97(8)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.7
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.7
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.7
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.7
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.2
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	109.95(8)

$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.7
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.7
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.7
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.7
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.2
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(13)$	$110.61(9)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.1
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	$118.27(10)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(12)$	$121.09(10)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(12)$	$118.90(9)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.18(11)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.52(11)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120.32(11)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.8
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119.8
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$118.06(11)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$121.59(10)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(14)$	$118.69(10)$
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$121.73(10)$
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{H}(20)$	119.1
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.1

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left(\boldsymbol{R}_{\mathbf{p}}\right) \mathbf{- 1 1 a}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C(1)	14(1)	15(1)	20(1)	1(1)	4(1)	1(1)
C(7)	18(1)	19(1)	18(1)	1(1)	7(1)	0(1)
$\mathrm{O}(1)$	23(1)	18(1)	51(1)	-1(1)	7(1)	0(1)
$\mathrm{O}(2)$	15(1)	21(1)	26(1)	-4(1)	4(1)	0(1)
C(8)	14(1)	28(1)	25(1)	-3(1)	5(1)	-4(1)
C(9)	23(1)	25(1)	24(1)	-5(1)	6(1)	-4(1)
C(2)	18(1)	16(1)	16(1)	0(1)	4(1)	3(1)
$\mathrm{O}(3)$	22(1)	23(1)	15(1)	-1(1)	5(1)	-4(1)
C(10)	28(1)	27(1)	16(1)	1(1)	7(1)	-5(1)
C(3)	18(1)	17(1)	18(1)	3(1)	6(1)	1(1)
C(4)	17(1)	14(1)	20(1)	2(1)	4(1)	1(1)
C(5)	18(1)	18(1)	16(1)	0(1)	4(1)	3(1)
C(6)	16(1)	19(1)	18(1)	2(1)	6(1)	3(1)
C(11)	18(1)	19(1)	21(1)	0(1)	4(1)	-2(1)
C(12)	16(1)	23(1)	23(1)	-1(1)	5(1)	0(1)
C(13)	20(1)	25(1)	19(1)	2(1)	7(1)	-2(1)
C(14)	26(1)	21(1)	22(1)	6(1)	8(1)	-1(1)
C(15)	17(1)	19(1)	22(1)	2(1)	3(1)	4(1)
C(16)	20(1)	26(1)	23(1)	1(1)	0(1)	1(1)

$\mathrm{C}(17)$	$29(1)$	$30(1)$	$18(1)$	$3(1)$	$1(1)$	$3(1)$
$\mathrm{C}(18)$	$27(1)$	$27(1)$	$20(1)$	$7(1)$	$6(1)$	$3(1)$
$\mathrm{C}(19)$	$24(1)$	$17(1)$	$22(1)$	$5(1)$	$6(1)$	$3(1)$
$\mathrm{C}(20)$	$21(1)$	$17(1)$	$21(1)$	$1(1)$	$4(1)$	$4(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left(\boldsymbol{R}_{\mathbf{p}}\right)-\mathbf{1 1 a}$.

Atom	x	y	z	U(eq)
H(8A)	-2131	7707	401	27
$\mathrm{H}(8 \mathrm{~B})$	-965	6216	469	27
H(9A)	-1514	8373	-1362	36
H(9B)	-2621	6843	-1464	36
H(9C)	-608	6744	-1316	36
H(10A)	4091	10681	-1229	35
H(10B)	3287	9335	-2115	35
H(10C)	5173	9159	-1238	35
H(3)	6128	10520	495	21
$\mathrm{H}(5)$	5590	10356	3706	21
H(11A)	7979	11824	3352	23
H(11B)	8269	11768	2102	23
H(12A)	9319	9177	2454	25
H(12B)	10471	10282	3431	25
H(13A)	2365	7494	3165	25
H(13B)	3497	8592	4156	25
H(14A)	4567	5998	4488	28
H(14B)	4885	5978	3246	28
$\mathrm{H}(16)$	10307	10059	5445	29
H(17)	9050	8972	6759	33
H(18)	6639	7406	6110	30
H(20)	7334	7362	2942	24

Table 6. Torsion angles [${ }^{\circ}$] for $\left(\boldsymbol{R}_{\mathbf{p}}\right) \mathbf{- 1 1 a}$.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$-93.35(14)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$86.10(14)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$87.13(12)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$-93.42(11)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$-4.66(16)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)$	$174.86(8)$
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$-87.12(12)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$-175.76(9)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$4.78(14)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$6.00(15)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-173.47(9)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(10)$	$-2.29(15)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(10)$	$179.54(9)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$175.85(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-6.08(15)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-2.21(15)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	$165.67(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$10.92(15)$
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-157.14(10)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$2.40(15)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-178.15(9)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(13)$	$-164.77(10)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(13)$	$14.68(15)$

Electronic Supplementary Material (ESI) for Chemical Communications

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$-10.95(15)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	$156.60(10)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	$77.88(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	$-89.99(12)$
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	$-59.92(11)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	$90.00(11)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	$-77.07(12)$
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	$60.33(12)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(16)$	$-84.97(12)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(20)$	$79.74(12)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-2.43(16)$
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$162.37(10)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-4.78(18)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$4.65(18)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$2.66(17)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$-162.43(11)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$84.39(12)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)$	$-80.61(13)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$10.01(16)$
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$-155.13(10)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$-10.12(16)$
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$155.41(10)$

Symmetry transformations used to generate equivalent atoms

X-Ray Structural Data for rac-11d

Table 1. Crystal data and structure refinement for rac-11d

Identification code	$r a c-11 d$
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$
Formula weight	282.32
Temperature	$100(2) \mathrm{K}$
Wavelength	$1.54184 \AA$
Crystal system	Monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}(\# 14)$
Unit cell dimensions	$\mathrm{a}=13.4948(2) \AA \alpha=90^{\circ}$.
	$\mathrm{b}=14.0951(2) \AA \beta=96.909(2)^{\circ}$.
	$\mathrm{c}=7.5300(1) \AA \gamma=90^{\circ}$.
Volume	$1421.88(3) \AA^{3}$
Z	4
Density (calculated)	$1.319 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.715 \mathrm{~mm}{ }^{-1}$
$\mathrm{~F}(000)$	600
Crystal size	$0.2158 \mathrm{x} 0.1231 \mathrm{x} 0.0393 \mathrm{~mm}{ }^{3}$
Theta range for data collection	3.30 to 76.47°.
Index ranges	$-16<=\mathrm{h}<=17,-17<=\mathrm{k}<=17,-9<=1<=9$
Reflections collected	$22791^{\mathrm{a})}$
Independent reflections	$2970[\mathrm{R}(\text { int })=0.0327]^{\mathrm{a})}$
Completeness to theta $=76.47^{\circ}$	$99.8 \%{ }^{\mathrm{a})}$
Absorption correction	Analytical
Max. and min. transmission	0.975 and 0.890
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$2970 / 0 / 194$
Goodness-of-fit on F^{2}	1.002
Final R indices [I>2sigma(I) $]$	$\mathrm{R} 1=0.0353, \mathrm{wR} 2=0.0955$
R indices (all data)	$\mathrm{R} 1=0.0454, \mathrm{wR} 2=0.0999$
Largest diff. peak and hole	0.253 and $-0.223 \mathrm{e} . \AA^{-3}$

${ }^{\text {a) }}$ This crystal is a non-merohedral twin. The refinement was done on an HKLF5 file. This prevents merging of equivalent reflections, so the number of unique reflections and the internal R -value cannot be determined.

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for rac-11d. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	y	z	$\mathrm{U}(\mathrm{eq})$	
$\mathrm{C}(1)$	$1579(1)$	$5579(1)$	$6747(1)$	$17(1)$
C(7)	$746(1)$	$5172(1)$	$7650(1)$	$19(1)$
O(1)	$839(1)$	$5151(1)$	$9341(1)$	$21(1)$
O(2)	$-33(1)$	$4868(1)$	$6721(1)$	$26(1)$
C(2)	$1400(1)$	$6458(1)$	$5891(1)$	$16(1)$
O(3)	$515(1)$	$6869(1)$	$6168(1)$	$20(1)$
C(8)	$326(1)$	$7816(1)$	$5536(1)$	$23(1)$
C(3)	$2074(1)$	$6816(1)$	$4800(1)$	$18(1)$
C(4)	$2960(1)$	$6323(1)$	$4661(1)$	$18(1)$
C(5)	$3182(1)$	$5514(1)$	$5693(1)$	$19(1)$

C(6)	$2465(1)$	$5088(1)$	$6638(1)$	$18(1)$
C(9)	$3571(1)$	$6532(1)$	$3147(1)$	$22(1)$
C(10)	$3240(1)$	$5879(1)$	$1489(1)$	$23(1)$
C(11)	$2569(1)$	$4050(1)$	$7114(1)$	$22(1)$
C(12)	$2198(1)$	$3419(1)$	$5445(1)$	$24(1)$
C(13)	$3351(1)$	$4845(1)$	$1991(1)$	$23(1)$
C(14)	$2616(1)$	$4417(1)$	$2885(1)$	$22(1)$
C(15)	$2823(1)$	$3616(1)$	$3957(1)$	$23(1)$
C(16)	$3732(1)$	$3151(1)$	$3891(1)$	$27(1)$
C(17)	$4428(1)$	$3508(1)$	$2843(2)$	$29(1)$
C(18)	$4255(1)$	$4367(1)$	$1955(1)$	$28(1)$

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for $r a c-11 d$.

$\mathrm{C}(1)-\mathrm{C}(6)$	$1.3930(12)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4037(12)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.4962(11)$
$\mathrm{C}(7)-\mathrm{O}(1)$	$1.2646(11)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.2650(12)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O} 1)$	0.8400
$\mathrm{O}(2)-\mathrm{H}(1 \mathrm{O} 2)$	0.8400
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.3664(10)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.3915(12)$
$\mathrm{O}(3)-\mathrm{C}(8)$	$1.4300(10)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.3975(12)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.3911(13)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.5141(11)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.4030(12)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(11)$	$1.5085(12)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5725(14)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(10)-\mathrm{C}(13)$	$1.5077(14)$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.5712(13)$
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(15)$	$120.83(8)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	$0.5080(14)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(13)-\mathrm{C}(18)$	0.9900
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.3973(13)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.4008(14)$
$\mathrm{C}(14)-\mathrm{H}(14)$	$1.3959(14)$
$\mathrm{C}(15)-\mathrm{C}(16)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.3965(13)$
$\mathrm{C}(16)-\mathrm{H}(16)$	$1.3918(16)$
$\mathrm{C}(17)-\mathrm{C}(18)$	1.9500
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	122.25(8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	116.76(8)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	121.58(8)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(1)$	118.52(8)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(1)$	119.89(8)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O} 1)$	109.5
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{H}(1 \mathrm{O} 2)$	109.5
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	125.59(8)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	114.13(8)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.20(8)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(8)$	117.96(7)
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.28(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.4
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.63(8)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	118.71(8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	120.46(8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.26(8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.4
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.4
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	117.79(8)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	121.58(8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	119.07(8)
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	110.80(7)
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.1
$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{C}(9)$	110.93(8)
$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.0
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	110.33(8)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.6
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.6
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.6
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.6
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.1
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(11)$	109.70(8)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.7
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.7
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.7
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.7
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.2
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	118.14(10)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(10)$	121.45(9)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(10)$	118.84(9)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	121.50(9)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.2
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.2
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	118.34(9)

$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(12)$	$119.15(9)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(12)$	$120.84(9)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.38(10)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.8
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.8
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$120.16(9)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$120.49(10)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.8
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18)$	119.8

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $r a c-11 d$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$20(1)$	$18(1)$	$13(1)$	$-1(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(7)$	$23(1)$	$16(1)$	$18(1)$	$2(1)$	$7(1)$	$1(1)$
$\mathrm{O}(1)$	$23(1)$	$26(1)$	$13(1)$	$0(1)$	$5(1)$	$-4(1)$
$\mathrm{O}(2)$	$24(1)$	$39(1)$	$16(1)$	$2(1)$	$4(1)$	$-12(1)$
$\mathrm{C}(2)$	$19(1)$	$17(1)$	$14(1)$	$-3(1)$	$3(1)$	$-1(1)$
$\mathrm{O}(3)$	$24(1)$	$17(1)$	$21(1)$	$2(1)$	$9(1)$	$2(1)$
$\mathrm{C}(8)$	$30(1)$	$18(1)$	$23(1)$	$2(1)$	$5(1)$	$4(1)$
$\mathrm{C}(3)$	$23(1)$	$16(1)$	$14(1)$	$0(1)$	$2(1)$	$-4(1)$
$\mathrm{C}(4)$	$19(1)$	$21(1)$	$16(1)$	$-1(1)$	$3(1)$	$-6(1)$
$\mathrm{C}(5)$	$16(1)$	$24(1)$	$17(1)$	$-1(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(6)$	$20(1)$	$19(1)$	$14(1)$	$1(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(9)$	$20(1)$	$28(1)$	$21(1)$	$3(1)$	$7(1)$	$-5(1)$
$\mathrm{C}(10)$	$22(1)$	$32(1)$	$17(1)$	$3(1)$	$6(1)$	$1(1)$
$\mathrm{C}(11)$	$24(1)$	$21(1)$	$21(1)$	$4(1)$	$3(1)$	$2(1)$
$\mathrm{C}(12)$	$25(1)$	$18(1)$	$28(1)$	$2(1)$	$1(1)$	$0(1)$
$\mathrm{C}(13)$	$22(1)$	$31(1)$	$15(1)$	$-3(1)$	$1(1)$	$2(1)$
$\mathrm{C}(14)$	$19(1)$	$26(1)$	$19(1)$	$-3(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(15)$	$23(1)$	$23(1)$	$22(1)$	$-5(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(16)$	$28(1)$	$24(1)$	$26(1)$	$-7(1)$	$-4(1)$	$6(1)$
$\mathrm{C}(17)$	$25(1)$	$35(1)$	$28(1)$	$-10(1)$	$-1(1)$	$10(1)$
$\mathrm{C}(18)$	$23(1)$	$39(1)$	$21(1)$	$-6(1)$	$4(1)$	$4(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{r a c - 1 1 d}$.

Atom	x	y	z	U(eq)
$\mathrm{H}_{(1 \mathrm{O} 1)^{\text {a }}}$	286	5021	9687	31
$\mathrm{H}(1 \mathrm{O} 2)^{\text {a }}$	34	4915	5630	39
$\mathrm{H}(8 \mathrm{~A})$	874	8230	6033	35
H(8B)	-302	8043	5915	35
$\mathrm{H}(8 \mathrm{C})$	278	7824	4227	35
H(3)	1934	7389	4156	21
$\mathrm{H}(5)$	3831	5246	5758	23
H(9A)	4287	6426	3559	27
H(9B)	3483	7206	2790	27
H(10A)	2535	6012	1033	28
H(10B)	3654	6022	523	28
H(11A)	2171	3905	8103	26

H(11B)	3277	3904	7526	26
H(12A)	2250	2740	5780	28
H(12B)	1489	3562	5036	28
H(14)	1962	4677	2760	26
H(16)	3875	2587	4565	32
H(17)	5023	3163	2734	35
H(18)	4756	4631	1318	33

${ }^{\text {a) }}$ s.o.f. $=0.5$ (s.o.f.: site occupation factor)
Table 6. Torsion angles [${ }^{\circ}$] for $\mathrm{rac}-\mathbf{1 1 d}$.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$75.25(11)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(1)$	$-109.27(10)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$-105.42(11)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$70.06(11)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$-177.87(8)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$6.58(11)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$5.17(13)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-170.38(8)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(8)$	$-10.90(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(8)$	$172.33(7)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$179.20(8)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-4.21(12)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-3.77(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$163.54(8)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$11.09(13)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-156.44(8)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$1.87(12)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$177.17(8)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$-163.71(8)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$11.59(13)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$-10.02(13)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	$155.94(9)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$76.90(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$-90.52(10)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)$	$-58.40(10)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	$86.60(10)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	$-78.80(10)$
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	$61.04(10)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(18)$	$-86.17(10)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(14)$	$79.31(10)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$10.25(14)$
$\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-155.71(9)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-10.55(14)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(12)$	$154.87(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(14)$	$-80.39(10)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(16)$	$84.65(11)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$2.97(14)$
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-162.19(9)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$4.64(15)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$-4.94(15)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$-2.37(14)$
$\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$163.20(9)$

[^1]Table 7. Hydrogen bonds for $\mathrm{rac}-\mathbf{1 1 d}\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(2)-\mathrm{H}(1 \mathrm{O} 2) \ldots \mathrm{O}(2) \# 1$	0.84	1.80	$2.6305(14)$	171.9
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O} 1) \ldots \mathrm{O}(1) \# 2$	0.84	1.78	$2.6139(13)$	172.4

Symmetry transformations used to generate equivalent atoms:
\#1-x,-y+1,-z+1 \#2-x,-y+1,-z+2

[^0]: * obtained by racemization of 11i in NMP (453 K)
 ** by-product due to decomposition of starting material at 453 K

[^1]: Symmetry transformations used to generate equivalent atoms:

