Supporting Information for

First asymmetric synthesis of planar chiral [2.2]metacyclophanes

Marco Blangetti, Helge Müller-Bunz and Donal F. O'Shea*

Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology,

University College Dublin, Belfield, Dublin 4, Ireland

donal.f.oshea@ucd.ie

Table of Contents

Experimental details, synthesis and analysis of compounds 8a-c, 9a-c	S2-S7
Enantioselective ortho-lithiation of compounds 9a-c	S8-S9
Synthesis and Analysis of compounds 11a-k	S10-S23
¹ H, ³¹ P and ¹³ C NMR spectra of 8a-c , 9a-c and 11a-k	S24-S44
Synthesis and Analysis of compound 9a -D ₁	S45
¹ H, ² H and ¹³ C NMR spectra of 9a -D ₁	S46-S47
Racemization Plots Data for Compounds 11a-c	S48-51
References	S52
X-Ray structural data for (R_p) -11a and <i>rac</i> -11d	S53-S64

Experimental details

General Methods: All reactions involving air-sensitive reagents were performed under nitrogen in oven-dried glassware using syringe-septum cap technique. All solvents were purified and degassed before use. Chromatographic separations were carried out under pressure on Merck silica gel 60 using flash-column techniques. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel coated aluminum plates (60 Merck F254) with UV light (254 nm) as visualizing agent. Unless specified, all reagents were used as received without further purifications. TMP(H) was distilled from CaH₂ prior to use. THF and diethyl ether were obtained from a solvent purification system. Heptane was distilled under nitrogen from CaH₂ prior to use. BuLi was purchased as a 2.5 M solution in hexanes, sBuLi as a 1.4 M solution in cyclohexanes. KOtBu was purchased as a 1 M solution in THF. The exact concentration of the organolithium solutions were determined by titration with diphenylacetic acid in THF prior to use.¹ (-)-Sparteine and PMDTA were stored over potassium hydroxide. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded at room temperature on 400 MHz or 500 MHz spectrometers and calibrated using residual undeuterated solvent as an internal reference. ²H NMR (92.07 MHz) spectra were obtained in DCM using residual CD₂Cl₂ as an internal standard. Optical rotations were measured at 589 nm. Enantiomeric ratios were determined by analytical chiral HPLC analyses on Daicel Chiralpak columns (250 x 4.6 mm ID) using heptane/ethanol as solvent mixtures. Racemates were obtained using sBuLi/PMDTA or by racemization of an enantioenriched sample in NMP at 453 K.

Synthesis and analysis of compounds **8a-c** and **9a-c**.

*N,N-***Diisopropyl-3,5-dimethylbenzamide**.² A solution of 3,5-dimethylbenzoic acid (3.00 g, 20 mmol) in thionyl chloride (14.5 mL, 200 mmol) was refluxed for 24 h. The excess thionyl chloride was distilled off by azeotropic distillation with toluene. The residue was dissolved in dry THF (50 mL), diisopropyl amine (14.0 mL, 100 mmol) added dropwise and stirred for 30 minutes at room temperature. The reaction mixture was filtered and the filtrate dried under reduced pressure. Dichloromethane (40 mL) was added and washed with HCl (2 M, 3 x 20 mL), dried over sodium sulfate and concentrated to dryness. Filtration over a short silica plug eluting with 1:1 cyclohexane:ethyl acetate gave a yellow solid ($R_f = 0.50$, 3.49 g, 75 %), mp 79-81 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.98 (s, 1H), 6.90 (s, 2H), 4.05-3.32 (br, 2H), 2.31 (s, 6H), 1.72-0.92 (br, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 138.9, 138.0, 130.0, 123.1, 50.7, 45.7, 21.2, 20.7. ESI-HRMS [M+H]⁺: 234.1868, C₁₅H₂₄NO requires 234.1858.

1-Methoxy-3-methyl-5-(3-methylphenethyl)benzene (8a).³ A solution of *m*-xylene (1.06 g, 10.0 mmol) and 1-methoxy-3,5-dimethylbenzene (0.71 mL, 5.00 mmol) in THF (50 mL) at -78 °C was treated dropwise with BuLi (2.26 M, 7.30 mL, 16.5 mmol) and stirred for 5 min. KO/Bu (1.0 M in THF, 16.5 mL, 16.5 mmol) was added dropwise followed by 2,2,6,6-tetramethylpiperidine (2.78 mL, 15.0 mmol). The reaction mixture was stirred for 15 min at -78 °C, 1,2-dibromoethane (2.14 mL, 25.0 mmol) added and stirred for a further 5 min. The reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Diethyl ether (30 mL) was added to the residue, washed with HC1 (2 M, 3 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 98:2 pentane:diethyl ether gave **8a** as a colourless oil ($R_f = 0.65$, 481 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.17 (t, *J* = 7.5 Hz, 1H), 7.05–6.98 (m, 3H), 6.63 (s, 1H), 6.56 (d, *J* = 7.5 Hz, 2H), 3.76 (s, 3H), 2.85 (br s, 4H), 2.33 (s, 3H), 2.30 (s, 3H), ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 143.4, 141.9, 139.3, 137.9, 129.2, 128.2, 126.6,

125.4, 121.8, 112.2, 111.1, 55.1, 38.1, 37.9, 21.5, 21.4; ESI-HRMS [M+H]⁺: 241.1595, C₁₇H₂₁O requires 241.1592.

N,*N*-Diisopropyl-3-methyl-5-(3-methylphenethyl)benzamide (8b). A solution of *m*-xylene (1.06 g, 10.0 mmol) and *N*,*N*-diisopropyl-3,5-dimethylbenzamide (1.16 g, 5.0 mmol) in THF (50 mL) at - 78 °C was treated dropwise with BuLi (2.50 M, 8.0 mL, 20.0 mmol) and stirred for 5 min. A solution of KOtBu (1.0 M in THF, 20.0 mL, 20.0 mmol) in THF (25 mL) was added dropwise followed by 2,2,6,6-tetramethylpiperidine (3.37 mL, 20.0 mmol). The reaction mixture was stirred for 15 min at -78 °C, 1,2-dibromoethane (2.14 mL, 25.0 mmol) added and stirred for a further 5 min. The reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Ethyl acetate (30 mL) was added to the residue, washed with HCl (2 M, 3 x 20 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 60:40 pentane:diethyl ether gave **8b** as a colorless oil ($R_f = 0.65$, 491 mg, 30%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, *J* = 7.8 Hz, 1H), 7.01-6.90 (m, 6H), 3.97-3.37 (br, 2H), 2.86 (s, 4H), 2.32 (s, 3H) superimposed to 2.31 (s, 3H), 1.65-0.96 (br, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 142.0, 141.6, 139.0, 138.1, 137.8, 129.5, 129.2, 128.2, 126.6, 125.4, 123.8, 122.5, 37.8, 37.7, 21.4, 21.3, 20.7. (Note: *i*-Pr tertiary C not observed). ESI-HRMS [M+H]⁺: 338.2480, C₂₃H₃₂NO requires 338.2484.

1,2-Bis(3-methoxy-5-methylphenyl)ethane (**8c**).³ A solution of 1-methoxy-3,5-dimethylbenzene (204 mg, 1.50 mmol) in THF (15 mL) at -78 °C was treated dropwise with BuLi (2.40 M, 0.69 mL, 1.65 mmol) and stirred for 5 min. KO*t*Bu (1.0 M in THF, 1.65 mL, 1.65 mmol) was added dropwise followed by 2,2,6,6-tetramethylpiperidine (0.25 mL, 1.50 mmol). The reaction mixture was stirred for 15 min at -78 °C, 1,2-dibromoethane (0.39 mL, 4.50 mmol) added and stirred for a further 5 min. The reaction mixture was warmed to rt and the solvent was removed under reduced pressure.

Diethyl ether (30 mL) was added to the residue, washed with HCl (2 M, 3 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 98:2 cyclohexane:ethyl acetate gave **8c** as a colourless solid ($R_f = 0.50$, 186 mg, 92%), mp 80-81 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.65 (s, 2H), 6.58–6.57 (m, 4H), 3.78 (s, 6H), 2.85 (s, 4H), 2.32 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 159.69, 143.30, 139.28, 121.75, 112.19, 111.11, 55.11, 37.94, 21.50; ESI-HRMS [M+Na]⁺: 293.1510, C₁₈H₂₂O₂Na requires 293.1517.

(9a).^{3,4} 5-Methoxy[2.2]metacyclophane solution of 1-methoxy-3-methyl-5-(3-А methylphenethyl)benzene 8a (481 mg, 2.00 mmol) in THF (30 mL) at -78 °C was treated dropwise with BuLi (2.26 M, 2.50 mL, 5.00 mmol) and stirred for 5 min. KOtBu (1.0 M in THF, 5.00 mL, 5.00 mmol) was added dropwise followed by 2,2,6,6-tetramethylpiperidine (0.67 mL, 4.00 mmol). The reaction mixture was stirred for 30 min during which time the temperature was raised to -60 °C. 1,2-Dibromoethane (0.51 mL, 15.0 mmol) was added, the reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Diethyl ether (30 mL) was added to the residue, washed with HCl (2 M, 3 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 99:1 cyclohexane:diethyl ether gave 9a as a colourless solid ($R_f = 0.55, 200 \text{ mg}, 42\%$), mp 83-85 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.25 (t, J =7.4 Hz, 1H), 7.03 (dd, J = 7.4, 1.4 Hz, 2H), 6.64 (d, J = 0.9 Hz, 2H), 4.38 (s, 1H), 3.98 (s, 1H), 3.84 (s, 3H), 3.05 (m, 4H), 2.12 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 160.7, 140.4, 138.9, 136.2, 129.9, 128.5, 125.3, 110.8, 55.3, 41.1, 40.9; EI-HRMS [M]⁺: 238.1359, C₁₇H₁₈O requires 238.1358.

N,*N*-Diisopropyl[2.2]metacylophane-5-carboxamide (9b). A solution of *N*,*N*-diisopropyl-3methyl-5-(3-methylphenethyl)benzamide 8b (472 mg, 1.40 mmol) in THF (30 mL) at -78 °C was treated dropwise with BuLi (2.50 M, 1.40 mL, 5.60 mmol) and stirred for 5 min. A solution of KO*t*Bu (1.0 M in THF, 5.60 mL, 5.60 mmol) was added dropwise followed by 2,2,6,6tetramethylpiperidine (0.95 mL, 5.60 mmol). The reaction mixture was stirred for 30 min during which time the temperature was raised to -60 °C. 1,2-Dibromoethane (0.72 mL, 8.40 mmol) was added, the reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Ethyl acetate (30 mL) was added to the residue, washed with HCl (2 M, 3 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 3:2 pentane:diethyl ether gave **9b** as a colourless solid ($R_f = 0.65$, 144 mg, 31%), mp 65-67 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 1.3 Hz, 3H), 7.04 (d, J = 1.5 Hz, 1H), 4.39 (s, 1H), 4.24 (s, 1H), 3.92-3.41 (br, 2H), 3.15-3.03 (m, 4H), 2.19-2.05 (m, 4H), 1.74-0.93 (br, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 139.6, 138.7, 138.6, 137.0, 136.8, 129.0, 125.4, 122.9, 40.9, 40.5, 20.7. (Note: *i*-Pr tertiary C not observed). ESI-HRMS [M+H]⁺: 336.2314, C₂₃H₃₀NO requires 336.2327.

(9c).^{3,5} 5,13-Dimethoxy[2.2]metacyclophane А solution of 1,2-bis(3-methoxy-5methylphenyl)ethane 8c (354 mg, 1.31 mmol) in THF (30 mL) at -78 °C was treated dropwise with BuLi (2.50 M, 1.31 mL, 3.28 mmol) and stirred for 5 min. KOtBu (1.0 M in THF, 3.28 mL, 3.28 mmol) was added dropwise followed by 2,2,6,6-tetramethylpiperidine (0.44 mL, 2.62 mmol). The reaction mixture was stirred for 30 min during which time the temperature was raised to -60 °C. 1,2-Dibromoethane (0.34 mL, 3.93 mmol) was added, the reaction mixture was warmed to rt and the solvent was removed under reduced pressure. Diethyl ether (30 mL) was added to the residue, washed with HCl (2 M, 3 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 94:6 pentane:ethyl acetate gave 9c as a colourless solid ($R_f = 0.70, 123 \text{ mg}, 35\%$), mp 166-169 °C (lit.⁶ mp 168-170 °C). ¹H NMR (500 MHz, CDCl₃) δ 6.62 (s, 4H), 4.08 (s, 2H), 3.83 (s, 6H), 3.06–2.96 (m, 4H), 2.18–2.08 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 160.5, 140.4, 129.5, 110.8, 55.3, 41.0; EI-HRMS [M]⁺: 268.1460, C₁₈H₂₀O₂ requires 268.1463.

Enantioselective o-lithiation of [2.2]metacyclophanes 9a-c

General procedure. A solution of [2.2]metacyclophane **9** (0.10 mmol) in dry diethyl ether or dry heptane was treated with (-)-sparteine (46 μ L, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to the specified temperature, BuLi (2.50 M, 80 μ L, 0.20 mmol) or *s*BuLi (1.40 M, 150 μ L, 0.20 mmol) were added dropwise and the reaction mixture stirred for the required time. The reaction mixture was cooled to -78 °C and ethyl chloroformate (30 μ L, 0.30 mmol) added dropwise. The reaction mixture was stirred for the specified time and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. The crude products were purified by silica gel chromatography followed by chiral HPLC analyses (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature).

Entry	Cyclophane	RLi	T (°C)	solvent	product	yield (%)	e.r.
1	9a	BuLi	-78	ether	11a	-	-
2	9a	BuLi	rt	ether	11a	15	72:18
3	9a	sBuLi	rt	ether	11a	51	81:19
4	9a	sBuLi	-78	ether	11a	18	82:18
5	9a	sBuLi	-60	ether	11a	43	89:11
6	9a	sBuLi	-40	ether	11a	65	91:9
7	9a	sBuLi	-20	ether	11a	58	85:15
8	9a	sBuLi	0	heptane	11a	-	-
9	9b	BuLi	-40	ether	11b	-	-
10	9b	sBuLi	0	heptane	11b	-	-
11	9b	sBuLi	-40	ether	11b	73	74:26
12	9b	sBuLi	-78	ether	11b	76	85:15
13	9c	BuLi	-78	ether	11c	-	-
14	9c	sBuLi	-40	ether	11c	46	91:9

Tabulated results:

Entry 14. 11c

11a: Eluent: 1% ethanol in heptane, flow rate: 1.0 ml/min. Retention times: 9.7 min (minor isomer) and 12.8 min (major isomer).

11b: Eluent: 2% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 13.6 min (minor isomer) and 17.0 min (major isomer).

11c: Eluent: 1% ethanol in heptane, flow rate: 1.0 ml/min. Retention times: 12.7 min (major isomer) and 14.1 min (minor isomer).

Synthesis and analysis of compounds **11a-k**

 (R_p) -(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11a). A solution of 5methoxy[2.2]metacyclophane 9a (23.8 mg, 0.10 mmol) in dry diethyl ether (1 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40 °C, sBuLi (150 µL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and ethyl chloroformate (30 µL, 0.30 mmol) added dropwise. The reaction mixture was stirred at room temperature for 1 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 70:30 pentane: diethyl ether gave **11a** as a colourless solid ($R_f = 0.60$, 20 mg, 65%), mp 70-72 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.27 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 7.5 Hz, 2H), 6.66 (s, 1H), 4.53 (s, 1H), 4.50-4.36 (m, 2H), 3.94 (s, 1H), 3.86 (s, 3H), 3.15 (dt, J = 12.5, 3.5 Hz, 1H), 3.11 (dt, J = 5.8, 3.1 Hz, 1H), 3.08-3.00 (m, 2H), 2.38 (td, J = 12.2, 3.5 Hz, 1H), 2.20-2.04 (m, 2H), 1.95 (td, J = 12.4, 3.6 Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 168.5, 157.3, 141.3, 139.0, 138.6, 137.0, 136.3, 129.9, 128.8, 125.6, 125.3, 120.8, 108.5, 61.1, 56.1, 41.3, 40.6, 39.8, 38.7, 14.4. EI-HRMS $[M]^+$: 310.1555, $C_{20}H_{22}O_3$ requires 310.1569. $[\alpha]_D^{20} = -$ 20.3 (c 0.4, CHCl₃, 82% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 9.7 min (minor isomer) and 12.8 min (major isomer).

HPLC of *racemic* **11a**

(R_p)-(-)-5-(N,N-Diisopropylcarbamoyl)[2.2]metacylophane-4-carboxylic acid ethyl ester (11b). A solution of N,N-diisopropyl[2.2]metacylophane-5-carboxamide **9b** (33.5 mg, 0.10 mmol) in dry diethyl ether (1 mL) was treated with (-)-sparteine (46 μ L, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -78 °C, sBuLi (150 μ L, 0.20 mmol) was added dropwise and the reaction mixture stirred at -78 °C for 4 h. Ethyl chloroformate (30 μ L, 0.30 mmol) was added dropwise, the reaction mixture was stirred at room temperature for 1 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 3:2 pentane:diethyl ether gave **11b** as a colourless solid (R_f = 0.50, 31 mg, 76%), mp 120-121 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 6.96 (s, 1H), 4.60-4.48 (br, 1H), 4.44 (dt, J = 17.0, 7.2 Hz, 1H), 4.31 (dt, J = 17.5, 7.0 Hz, 1H), 4.24 (s, 1H), 3.77-3.62 (m, 1H), 3.61-3.43 (m, 2H), 3.18-3.05 (m, 3H), 2.60-2.40 (br, 1H), 2.22-2.06 (m, 2H), 1.91 (td, J = 12.0, 3.1 Hz, 1H), 1.56 (d, J = 6.4 Hz, 6H), 1.39 (t, J = 7.1 Hz, 3H), 1.20-1.05 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 167.9, 139.5, 139.2, 138.1, 137.3, 129.3, 126.8, 125.7, 125.3, 122.7, 61.2, 51.1, 45.6, 40.9, 39.8, 39.1, 20.4, 14.3.

ESI-HRMS $[M+H]^+$: 408.2546, C₂₆H₃₄NO₃ requires 408.2539. $[\alpha]_D^{20}$ = -33.2 (c 0.6, CHCl₃, 69% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 2% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 13.6 min (minor isomer) and 17.0 min (major isomer).

HPLC chart of racemic 11b

HPLC chart of 11b

(R_p)-(-)-5,13-Dimethoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11c). A solution of 5,13-dimethoxy[2.2]metacyclophane 9c (26.8 mg, 0.10 mmol) in dry diethyl ether (4 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40°C, *s*BuLi (150 µL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and ethyl chloroformate (30 µL, 0.30 mmol) added dropwise. The reaction mixture was stirred at room temperature for 1 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 99.5:0.5 DCM:MeOH gave **11c** as a colourless solid (R_f = 0.50, 16 mg, 46%), mp 74-78 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.64 (s, 1H), 6.62 (s, 2H), 4.50-4.36 (m, 2H), 4.22 (s, 1H), 4.05 (s, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.13 (dt, *J* = 12.4, 3.4 Hz, 1H), 3.07-3.02

(m, 2H), 2.98 (dt, J = 12.2, 3.5 Hz, 1H), 2.36 (td, J = 12.2, 3.4 Hz, 1H), 2.18-2.10 (m, 2H), 2.01 (td, J = 12.3, 3.5 Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 160.7, 157.1, 141.3, 140.5, 140.1, 137.0, 129.6, 120.7, 110.9, 110.8, 108.4, 61.1, 56.0, 55.3, 41.2, 40.7, 39.9, 38.6, 14.3. ESI-HRMS [M+H]⁺: 341.1765, C₂₁H₂₅O₄ requires 341.1753. [α]_D²⁰= -12.5 (c 0.3, CHCl₃, 82% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 12.7 min (major isomer) and 14.1 min (minor isomer).

HPLC chart of racemic 11c

HPLC chart of 11c

(R_p)-(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid (11d). A solution of (R_p)-5methoxy[2.2]metacylophane-4-carboxylic acid ethyl ester 11a (50.0 mg, 0.16 mmol, 91:9 e.r.) in 2propanol (3 mL) was treated with KOH (20% in 2-propanol, 6 mL) and the mixture was heated at 80 °C for 30 min. After cooling to room temperature, the reaction mixture was quenched with HCl (2 M, 20 mL), ethyl acetate (10 mL) was added, washed with water (2 x 20 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with ethyl acetate gave 11d as a colourless solid ($R_f = 0.50$, 40 mg, 88%), mp 162-164 °C. ¹H NMR (500 MHz, CD₃OD) δ 7.27 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 2H), 4.49 (s, 1H), 3.94 (s, 1H), 3.88 (s, 3H), 3.25 (dt, J = 12.5, 3.5 Hz, 1H), 3.16-3.09 (m, 2H), 3.04 (dt, J = 12.3, 3.5 Hz, 1H), 2.34 (td, J = 12.2, 3.5 Hz, 1H, 2.20-2.12 (m, 1H), 2.10-2.03 (m, 1H), 1.94 (td, J = 12.3, 3.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 158.3, 143.4, 141.3, 139.4, 138.0, 135.8, 131.9, 129.1, 125.8, 125.2, 116.4, 108.7, 56.6, 41.3, 40.6, 40.1, 39.4. ESI-HRMS [M-H]⁻: 281.1168, C₁₈H₁₇O₃ requires 281.1178. $\left[\alpha\right]_{D}^{20}$ = -5.3 (c 0.3, MeOH, 82% ee). Enantiomeric excess was determined after esterification followed by analytical chiral HPLC analysis. solution 5-А of methoxy[2,2]metacylophane-4-carboxylic acid (40 mg, 0.14 mmol) in ethanol (10 mL) was treated with 12 M HCl (three drops) and heated under reflux for 1 h. The solvent was removed under reduced pressure and ethyl acetate (20 mL) was added. The organic layer was washed with saturated NaHCO₃ and water, dried over sodium sulfate and concentrated to dryness. Purification over a short silica plug (70:30 pentane: diethyl ether) gave the corresponding ethyl ester **11a** which was analyzed by chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 9.7 min (minor isomer) and 12.8 min (major isomer).

HPLC chart of **11a** *after* hydrolysis *and* re-esterification.

(*R*_p)-(+)-5-Methoxy[2.2]metacylophane-4-carbaldehyde 5-(11e). А solution of methoxy[2.2]metacyclophane 9a (23.8 mg, 0.10 mmol) in dry diethyl ether (1 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40°C, sBuLi (150 µL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and DMF (24 µL, 0.30 mmol) added dropwise. The reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 70:30 pentane: diethyl ether gave **11e** as a colourless solid ($R_f = 0.80$, 18 mg, 68%), mp 88-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.64 (s, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.69 (s, 1H), 4.45-4.35 (m, 2H), 3.99 (s, 1H), 3.93 (s, 3H), 3.20-3.03 (m, 3H), 2.22-2.02 (m, 4H), 1.69 (td, J = 11.7, 3.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 164.2, 146.8, 142.2, 139.4, 137.8, 135.3, 131.8, 129.0, 125.8, 125.1, 120.4, 108.4, 55.9, 41.6, 40.6, 40.2, 38.0. ESI-HRMS [M+H]⁺: 267.1379, C₁₈H₁₉O₂ requires 267.1385. $\left[\alpha\right]_{D}^{20}$ = +97.2 (c 0.4, CHCl₃, 82% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 8.6 min (minor isomer) and 10.3 min (major).

HPLC chart of 11e

(*R*_p)-(-)-4-Iodo-5-methoxy[2.2]metacylophane (11f). 5-А solution of methoxy[2.2]metacyclophane 9a (23.8 mg, 0.10 mmol) in dry diethyl ether (1 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40°C, sBuLi (150 µL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and a solution of iodine (76 mg, 0.30 mmol) in diethyl ether (1 mL) added dropwise. The reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), sodium thiosulfate (2 x 15 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 95:5 pentane:diethyl ether gave **11f** as a colourless solid ($R_f = 0.70$, 22 mg, 59%), mp 56-60 °C. ¹H NMR (500 MHz, $CDCl_3$) δ 7.27 (d, J = 7.4 Hz, 1H), 7.06 (d, J = 7.4, 1H), 7.03 (d, J = 7.4 Hz, 1H), 6.56 (d, J = 1.5Hz, 1H), 4.38 (s, 1H), 4.06 (d, J = 1.5 Hz, 1H), 3.92 (s, 3H), 3.59 (dt, J = 12.4, 3.5 Hz, 1H), 3.10 (dt, J = 11.4, 3.3 Hz, 1H), 3.05 (dt, J = 11.9, 3.2 Hz, 1H), 3.00 (dt, J = 12.4, 3.5 Hz, 1H), 2.27 (td, J = 12.3, 3.3 Hz, 1H), 2.18-2.02 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 142.8, 140.1, 138.7, 138.5, 135.9, 130.4, 128.9, 125.8, 125.3, 108.4, 87.3, 56.6, 45.8, 40.7, 40.7, 38.3. $[\alpha]_D^{20} = -2.4$ (c 0.4, CHCl₃, 85% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 0.5% ethanol in heptane, flow rate: 0.8 ml/min). Retention times: 7.0 min (minor isomer) and 8.2 min (major isomer).

S15

(R_p)-(-)-5-Methoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11g). A solution of 5methoxy[2.2]metacyclophane 9a (23.8 mg, 0.10 mmol) in dry diethyl ether (1 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40°C, sBuLi (150 µL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and diethyl chlorophosphate (43 µL, 0.30 mmol) added dropwise. The reaction mixture was stirred at room temperature for 4 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with ethyl acetate gave **11g** as a colourless solid ($R_f = 0.50, 22 \text{ mg}, 58\%$), mp 113-116 °C. ¹H NMR (500 MHz, CD₃OD) δ 7.18 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 7.5 Hz, 2H), 6.79 (dd, J = 5.6, 0.7 Hz, 1H), 4.30 (s, 1H), 4.27-4.22 (m, 1H), 4.12-3.97 (m, 4H), 3.95 (d, J = 4.2Hz, 1H), 3.81 (s, 3H), 3.08-3.02 (m, 3H), 2.99 (dt, J = 12.5, 3.6 Hz, 1H), 2.17-2.05 (m, 2H), 1.97-1.89 (m, 1H), 1.67 (td, J = 12.2, 2.9 Hz, 1H), 1.28-1.21 (m, 6H). ¹³C NMR (100 MHz, CD₃OD) δ 163.6 (d, J = 3.1 Hz), 145.7 (d, J = 2.6 Hz), 145.0 (d, J = 9.7 Hz), 139.0, 138.1, 134.9, 131.5 (d, J = 16.2 Hz), 128.8, 125.2, 124.9, 110.9, 108.9 (d, J = 9.8 Hz), 61.9 (d, J = 6.0 Hz), 61.8 (d, J = 5.9Hz), 55.3, 40.7 (d, J = 0.8 Hz), 40.4 (d, J = 1.1 Hz), 40.1 (d, J = 0.9 Hz), 39.7 (d, J = 2.5 Hz), 15.3 (d, J = 6.8 Hz), 15.2 (d, J = 6.7 Hz). ³¹P NMR (162 MHz, CD₃OD) δ 19.6 (s). ESI-HRMS $[M+Na]^+$: 397.1557, $C_{21}H_{27}O_4PNa$ requires 397.1545. $[\alpha]_D^{20} = -3.9$ (c 0.4, CHCl₃, 86% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 5% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 9.9 min (minor isomer) and 11.2 min (major isomer).

(*R*_p)-(-)-Diphenyl(5-methoxy[2.2]metacylophan-4-yl)phosphine oxide (11h). A solution of 5methoxy[2.2]metacyclophane **9a** (23.8 mg, 0.10 mmol) in dry diethyl ether (1 mL) was treated with (-)-sparteine (46 μL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40°C, *s*BuLi (150 μL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and chlorodiphenylphosphine (55 μL, 0.30 mmol) added dropwise. The reaction mixture was stirred at room temperature for 4 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by short-pad silica gel chromatography eluting with DCM gave **11h** as a colourless solid (R_{*f*} = 0.40, 30 mg, 69%), mp 196-198 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.78 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.67 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.65 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.53-7.42 (m, 4H), 7.42-7.36 (m, 2H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.08-7.02 (m, 2H), 6.60-6.57 (m, 1H), 4.92 (dt, *J* = 12.1, 3.3 Hz, 1H), 4.47 (s, 1H), 4.13 (d, *J* = 1.7 Hz, 1H), 3.24 (s, 3H), 3.15 (dt, *J* = 12.1, 3.5 Hz, 1H), 3.08 (dq, *J* = 11.4, 3.8 Hz, 2H), 2.25-2.15 (m, 2H), 2.08 (td, *J* = 4.7 Hz), 147.8 (d, *J* = 6.1 Hz), 144.9 (d, J = 2.1 Hz), 139.7, 137.9, 136.9, 135.9, 135.8, 135.2, 134.8, 133.1 (d, J = 11.2 Hz), 131.4 (d, J = 10.2 Hz), 131.1 (d, J = 10.3 Hz), 131.0 (d, J = 2.8 Hz), 130.7 (d, J = 2.9 Hz), 129.0, 128.1 (d, J = 12.5 Hz), 127.9 (d, J = 12.5 Hz), 125.7, 125.0, 115.2, 114.1, 109.1 (d, J = 6.6 Hz), 55.1, 41.1, 41.0, 40.6, 39.0. ³¹P NMR (162 MHz, CDCl₃) δ 31.0 (s). ESI-HRMS [M+H]⁺: 439.1815, C₂₉H₂₈O₂P requires 439.1827. [α]_D²⁰= -14.2 (c 0.6, CHCl₃, 89% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 20% ethanol in heptane, flow rate: 0.8 ml/min). Retention times: 7.8 min (minor isomer) and 8.9 min (major isomer).

HPLC chart of *racemic* 11h*

* obtained by racemization of 11h in NMP (453 K)

(R_p)-(+)-N,N-Diisopropyl-4-formyl-[2.2]metacylophane-5-carboxamide (11i). A solution of N,N-diisopropyl[2.2]metacylophane-5-carboxamide **9b** (33.5 mg, 0.10 mmol) in dry diethyl ether (1 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -78 °C, *s*BuLi (150 µL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -78 °C for 4 h. DMF (24 µL, 0.30 mmol) was added dropwise, the reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10

mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 3:2 pentane:ethyl acetate gave **11i** as a colourless solid ($R_f = 0.60, 19 \text{ mg}, 59\%$), mp 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.12-7.00 (m, 3H), 4.42-4.26 (m, 3H), 3.57-3.45 (m, 2H), 3.24-3.10 (m, 3H), 2.21-2.06 (m, 3H), 1.85 (td, J = 12.0, 3.0 Hz, 1H), 1.60 (dd, J = 6.8, 2.8 Hz, 6H), 1.08 (d, J = 5.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 169.4, 138.7, 138.6, 137.8, 136.0, 129.5, 127.5, 125.8, 125.4, 123.5, 51.2, 46.0, 41.1, 40.3, 37.6, 20.6, 20.5, 20.4, 20.2. ESI-HRMS [M+H]⁺: 364.2284, C₂₄H₃₀NO₂ requires 364.2277. [α]_D²⁰= +30.3 (c 0.4, CHCl₃, 68% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 2% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 26.5 min (major isomer) and 33.3 min (minor isomer).

HPLC chart of racemic 11i*

HPLC chart of 11i

* obtained by racemization of **11i** in NMP (453 K)
** by-product due to decomposition of starting material at 453K

(*R*_p)-(-)-5,13-Dimethoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11j). A solution of 5,13-dimethoxy[2.2]metacyclophane 9c (26.8 mg, 0.10 mmol) in dry diethyl ether (4 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40 °C, sBuLi (150 μL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and diethyl chlorophosphate (43 µL, 0.30 mmol) added dropwise. The reaction mixture was stirred at room temperature for 4 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with ethyl acetate gave **11***j* as a colourless solid $(R_f = 0.40, 16 \text{ mg}, 40\%), \text{ mp } 130-132 \text{ °C}.$ ¹H NMR (400 MHz, CDCl₃) δ 6.66 (d, J = 5.3 Hz, 1H),6.61 (d, J = 11.1 Hz, 2H), 4.48 (dt, J = 11.8, 3.3 Hz, 1H), 4.25-4.02 (m, 6H), 3.88 (s, 3H), 3.82 (s, 3H), 3. 3H), 3.10-3.00 (m, 3H), 2.26 (td, J = 12.3, 3.1 Hz, 1H), 2.20-2.04 (m, 2H), 1.83 (dd, J = 12.0, 9.2 Hz, 1H), 1.38-1.27 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0 (d, J = 2.9 Hz), 160.8, 145.8 (d, J= 9.9 Hz), 144.7 (d, J = 2.6 Hz), 141.1, 139.5, 131.6 (d, J = 16.0 Hz), 128.8, 110.7, 108.9 (d, J = 9.7) Hz), 61.68-61.51 (m), 56.4, 55.3, 41.1 (d, J = 0.6 Hz), 41.0 (d, J = 0.8 Hz), 40.6, 40.1 (d, J = 2.5 Hz), 16.5 (d, J = 6.6 Hz), 16.3 (d, J = 6.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.7 (s). ESI-HRMS $[M+Na]^+$: 427.1663, $C_{22}H_{29}O_5NaP$ requires 427.1650. $[\alpha]_D^{20} = -6.2$ (c 0.3, CHCl₃, 79% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 5% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 11.8 min (major isomer) and 12.7 min (minor isomer).

HPLC chart of *racemic* **11**j

(R_p)-(+)-5,13-Dimethoxy[2.2]metacylophane-4-carbaldehyde (11k). A solution of 5,13dimethoxy[2.2]metacyclophane 9c (26.8 mg, 0.10 mmol) in dry diethyl ether (4 mL) was treated with (-)-sparteine (46 µL, 0.20 mmol) and the mixture was stirred for 5 min. After cooling to -40°C, *s*BuLi (150 µL, 0.20 mmol) was added dropwise and the reaction mixture stirred at -40 °C for 4 h. The reaction mixture was cooled to -78 °C and DMF (24 µL, 0.30 mmol) added dropwise. The reaction mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Ethyl acetate (10 mL) was added to the residue, washed with HCl (2 M, 2 x 10 mL), dried over sodium sulfate and concentrated to dryness. Purification by silica gel chromatography eluting with 80:20 pentane:ethyl acetate gave **11k** as a colourless solid (R_f = 0.70, 17 mg, 58%), mp 80-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.62 (s, 1H), 6.67 (s, 1H), 6.63 (s, 1H), 6.60 (s, 1H), 4.38 (dt, *J* = 11.5, 3.5 Hz, 1H), 4.09 (s, 1H), 4.07 (s, 1H), 3.92 (s, 3H), 3.82 (s, 3H), 3.12-3.00 (m, 3H), 2.20-2.07 (m, 3H), 1.74 (td, *J* = 11.8, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 164.1, 160.8, 146.9, 142.3, 140.9, 139.3, 131.5, 128.6, 120.4, 110.9, 110.8, 108.4, 55.9, 55.3, 41.5, 40.8, 40.4, 37.9. ESI-HRMS [M+Na]⁺: 319.1301, C₁₉H₂₀O₃Na requires 319.1310. $\left[\alpha\right]_{D}^{20}$ = +69.7 (c 0.3, CHCl₃, 82% ee). Enantiomeric excess was determined by analytical chiral HPLC (Chiralpak IA 250 x 4.6 mm ID, 254nm UV detector, room temperature, eluent: 1% ethanol in heptane, flow rate: 1.0 ml/min). Retention times: 12.7 min (minor isomer) and 14.4 min (major isomer).

HPLC chart of racemic 11k

HPLC chart of 11k

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
2	12.737	MM	0.2597	35. 611//	2.34934	9.2570

N,N-Diisopropyl-3,5-dimethylbenzamide

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

1-Methoxy-3-methyl-5-(3-methylphenethyl)benzene (8a)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

N,*N*-Diisopropyl-3-methyl-5-(3-methylphenethyl)benzamide (8b)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

1,2-Bis(3-methoxy-5-methylphenyl)ethane (8c)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

5-Methoxy[2.2]metacyclophane (9a)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

N,*N*-Diisopropyl[2.2]metacylophane-5-carboxamide (9b)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

5,13-Dimethoxy[2.2]metacyclophane (9c)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

(*R*_p)-(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11a)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

(*R*_p)-(-)-5-(*N*,*N*-diisopropylcarbamoyl)[2.2]metacylophane-4-carboxylic acid ethyl ester (11b)

¹H NMR (500 MHz, CDCl₃)

(R_p) -(-)-5,13-Dimethoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11c)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

(R_p) -(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid (11d)

¹H NMR (500 MHz, CD₃OD)

¹³C NMR (100 MHz, CDCl₃)

(R_p) -(+)-5-Methoxy[2.2]metacylophane-4-carbaldehyde (11e)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

(*R*_p)-(-)-4-Iodo-5-methoxy[2.2]metacylophane (11f)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

(*R*_p)-(-)-5-Methoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11g)

¹H NMR (500 MHz, CD₃OD)

¹³C NMR (100 MHz, CD₃OD)

³¹P NMR (162 MHz, CD₃OD)

(R_p) -(-)-Diphenyl(5-methoxy[2.2]metacylophan-4-yl)phosphine oxide (11h)

¹H NMR (500 MHz, CDCl₃)

 13 C NMR (100 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

$(R_{\rm p})\mbox{-}(+)\mbox{-}N\mbox{-}N\mbox{-}Diisopropyl\mbox{-}4\mbox{-}formyl\mbox{-}[2.2]\mbox{metacylophane-}5\mbox{-}carboxamide\mbox{(}11i\mbox{)}$

¹H NMR (400 MHz, CDCl₃)

 13 C NMR (100 MHz, CDCl₃)

(*R*_p)-(-)-5,13-Dimethoxy[2.2]metacylophane-4-phosphonic acid diethyl ester (11j)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

$(R_{\rm p})\mbox{-}(+)\mbox{-}5,\mbox{13-Dimethoxy}\mbox{[2.2]metacylophane-4-carbaldehyde (11k)}$

¹H NMR (400 MHz, CDCl₃)

 13 C NMR (100 MHz, CDCl₃)

Synthesis and analysis of compound **9a**-D₁

4-Deuterio-5-methoxy[2.2]metacylophane (9a-D₁). A solution of 5-methoxy[2.2]metacylophane **9a** (25 mg, 0.11 mmol) in THF (10 mL) at -78 °C was treated dropwise with BuLi (2.50 M, 0.46 mL, 0.12 mmol) and stirred for 5 min. KO*t*Bu (1.0 M in THF, 0.12 mL, 0.12 mmol) was added dropwise, the reaction mixture was stirred for 15 min at -78 °C and CD₃OD (33 µL) added. The reaction mixture was warmed under N₂ to rt and the solvent removed under reduced pressure. Ethyl acetate (20 mL) was added to the residue, washed with HCl (2 M, 3 x 10 mL), dried over sodium sulfate and concentrated to dryness to give **9a-D**₁ as a colourless solid (23 mg, 88%, 75% D incorporation). ¹H NMR (500 MHz, CDCl₃) δ 7.24 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 7.3 Hz, 2H), 6.64 (s, 1H), 4.37 (s, 1H), 3.97 (s, 1H), 3.84 (s, *J* = 7.6 Hz, 3H), 3.13-2.98 (m, 4H), 2.19-2.04 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 160.8, 140.5, 140.5, 140.5, 139.1, 136.4, 130.0, 128.7, 125.5, 111.0, 110.9, 55.5, 41.3, 41.2, 41.0. ²H NMR (92.07 MHz, CH₂Cl₂) δ 6.66 (s). EI-HRMS [M]⁺: 239.1422, C₁₇H₁₇DO requires 239.1420.

4-Deuterio-5-methoxy[2.2]metacylophane (9a-D₁)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

²H NMR (92.07 MHz, CH₂Cl₂)

Racemization Plots Data for Compounds 11a-c

General procedure for the racemization of [2.2]metacyclophanes 11a-c. In a round-bottom flask equipped with a reflux condenser, a sample of enantioenriched [2.2]metacyclophane 11a-c (0.5 mg) was dissolved in *N*-methyl-2-pyrrolidone (1 mL) and heated at 453 K. At a specified time interval, a sample (approx vol. 100 μ L) was taken and rapidly cooled to room temperature with an ice bath. Heptane (approx. vol. 0.5 mL) was added and, after a short micro extraction, the upper heptane layer was isolated and submitted for HPLC analysis.

Determination of rate constant and racemization barriers. The inversion barriers (ΔG^*) were calculated on the basis of the absolute rate equation^{7,8} assuming a unitary transmission coefficient. The rate constants were determined *via* a first-order integrated law plot considering the racemization of an optical antipode as a reversible first order reaction, where the forward and reverse reaction-rate constants k_f and k_r are identical:

$$A \stackrel{k_{f}}{\underset{k_{r}}{\longleftarrow}} B$$

and $k_{\rm f} = k_{\rm r} = k_{\rm i}$ (inversion constant).

 (R_p) -(-)-5-Methoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11a)

T = 453.0 K k^{2} (x 10⁵) = 450 s⁻¹ k_{i} (x 10⁵) = 225 s⁻¹ $\Delta G^{*}_{453} = 141.6$ kJ/mol (33.8 kcal/mol)

 (R_p) -(-)-5-(*N*,*N*-diisopropylcarbamoyl)[2.2]metacylophane-4-carboxylic acid ethyl ester (11b)

T = 453.0 K k^{2} (x 10⁵) = 572 s⁻¹ k_{i} (x 10⁵) = 286 s⁻¹ $\Delta G^{*}_{453} = 134.5$ kJ/mol (32.1 kcal/mol)

 (R_p) -(-)-5,13-Dimethoxy[2.2]metacylophane-4-carboxylic acid ethyl ester (11c)

 k° (x 10⁵) = 451 s⁻¹ k_{i} (x 10⁵) = 225.5 s⁻¹ $\Delta G^{*}_{453} = 135.4$ kJ/mol (32.4 kcal/mol)

References

- 1. W. G. Kofron and L. M. Baclawski, J. Org. Chem. 1976, 41, 1879.
- 2. G. G. Pagani, G. G. Caccialanza and P. P. Borgna, Farmaco Sci. 1973, 28, 835.
- 3. M. Blangetti, P. Fleming and D. F. O'Shea, Beilstein J. Org. Chem. 2011, 7, 1249.
- 4. S. A. Sherrod and R. L. Da Costa, *Tetrahedron Lett.* 1973, 23, 2083.
- 5. G. J. Bodwell, T. J. Houghton, J. Kennedy and M. R. Mannion, *Angew. Chem., Int. Ed.* 1996, **35**, 2121.
- 6. T. Sato, K. Torizuka, R. Komaki and H. Atobe, J. Chem. Soc, Perkin Trans. 2 1980, 4, 561.
- (a) S. Glasstone, K. J. Laidler and H. Eyring, *The theory of rate processes*, McGraw-Hill Book Co., New York, N.Y., 1941. (b) F. W. Cagle Jr and H. Eyring, *J. Am. Chem. Soc.* 1951, **73**, 5628.
- 8. C. Glotzmann, E. Langer, H. Lehner and K. Schlogl, Monatsh. Chem. 1974, 105, 907.

X-Ray Structural Data for (R_p) -11a

Table 1. Crystal data and structure refinement for (R_p) -11a

Identification code	$(R_{\rm p})$ -11a
Empirical formula	$C_{20} H_{22} O_3$
Formula weight	310.38
Temperature	100(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	P2 ₁ (#4)
Unit cell dimensions	$a = 8.15436(7) \text{ Å} \alpha = 90^{\circ}.$
	$b = 8.76221(7) \text{ Å}\beta = 107.081(1)^{\circ}.$
	$c = 12.1310(1) \text{ Å } \gamma = 90^{\circ}.$
Volume	828.530(12) Å ³
Z	2
Density (calculated)	1.244 Mg/m ³
Absorption coefficient	0.658 mm^{-1}
F(000)	332
Crystal size	0.3840 x 0.2026 x 0.1554 mm ³
Theta range for data collection	3.81 to 76.63°.
Index ranges	-10<=h<=10, -10<=k<=11, -13<=l<=15
Reflections collected	16971
Independent reflections	3445 [R(int) = 0.0231]
Completeness to theta = 76.63°	99.4 %
Absorption correction	Analytical
Max. and min. transmission	0.926 and 0.842
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3445 / 1 / 210
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)]	R1 = 0.0269, wR2 = 0.0728
R indices (all data)	R1 = 0.0273, wR2 = 0.0732
Absolute structure parameter	0.06(13)
Largest diff. peak and hole	0.193 and $-0.172 \text{ e.}\text{\AA}^{-3}$

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for (\mathbf{R}_{p})-11a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	Х	у	Z	U(eq)
C(1)	3351(1)	8565(1)	1417(1)	17(1)
C(7)	1898(1)	7468(1)	962(1)	18(1)
O(1)	2069(1)	6125(1)	816(1)	32(1)
O(2)	395(1)	8182(1)	734(1)	21(1)
C(8)	-1139(1)	7283(1)	190(1)	23(1)
C(9)	-1502(2)	7313(1)	-1101(1)	24(1)
C(2)	4097(1)	9240(1)	629(1)	17(1)
O(3)	3311(1)	8898(1)	-503(1)	20(1)
C(10)	4022(2)	9571(1)	-1337(1)	24(1)
C(3)	5560(1)	10145(1)	1020(1)	18(1)

C(4)	6183(1)	10496(1)	2195(1)	17(1)
C(5)	5291(1)	9975(1)	2939(1)	17(1)
C(6)	3968(1)	8908(1)	2588(1)	17(1)
C(11)	7962(1)	11149(1)	2695(1)	19(1)
C(12)	9311(1)	9837(1)	3114(1)	21(1)
C(13)	3520(1)	7945(1)	3492(1)	21(1)
C(14)	4882(2)	6637(1)	3908(1)	23(1)
C(15)	8868(1)	8897(1)	4030(1)	20(1)
C(16)	9405(1)	9339(1)	5187(1)	24(1)
C(17)	8622(2)	8726(2)	5963(1)	27(1)
C(18)	7217(2)	7758(1)	5583(1)	25(1)
C(19)	6652(1)	7300(1)	4431(1)	21(1)
C(20)	7583(1)	7791(1)	3692(1)	20(1)

Table 3. Bond lengths [Å] and angles [°] for (R_p) -11a.

C(1)–C(6)	1.3938(14)
C(1)–C(2)	1.4056(14)
C(1)–C(7)	1.4989(14)
C(7)–O(1)	1.2043(14)
C(7)–O(2)	1.3312(13)
O(2) - C(8)	1.4615(12)
C(8)–C(9)	1.5056(16)
C(8)–H(8A)	0.9900
C(8)–H(8B)	0.9900
C(9)–H(9A)	0.9800
C(9)–H(9B)	0.9800
C(9)–H(9C)	0.9800
C(2) - O(3)	1.3670(13)
C(2) - C(3)	1.3946(15)
O(3) - C(10)	1.4332(13)
C(10)–H(10A)	0.9800
C(10)–H(10B)	0.9800
C(10)–H(10C)	0.9800
C(3)-C(4)	1.3997(14)
C(3)–H(3)	0.9500
C(4) - C(5)	1.3913(15)
C(4)–C(11)	1.5109(14)
C(5)-C(6)	1.3965(14)
C(5)–H(5)	0.9500
C(6)–C(13)	1.5107(14)
C(11)–C(12)	1.5687(15)
C(11)–H(11A)	0.9900
C(11)–H(11B)	0.9900
C(12)–C(15)	1.5101(15)
C(12)-H(12A)	0.9900
C(12)–H(12B)	0.9900
C(13)-C(14)	1.5724(15)
C(13)–H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)–C(19)	1.5118(15)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.3966(16)
C(15)-C(20)	1.3972(15)
C(16)–C(17)	1.3909(18)
C(16)-H(16)	0.9500
C(17)–C(18)	1.3912(18)

C(17)–H(17)	0.9500
C(18)–C(19)	1.3958(16)
C(18)–H(18)	0.9500
C(19)–C(20)	1.4015(16)
C(20)-H(20)	0.9500
C(6)–C(1)–C(2)	120.23(9)
C(6)–C(1)–C(7)	121.54(9)
C(2)–C(1)–C(7)	118.22(9)
O(1)-C(7)-O(2)	124.59(10)
O(1)-C(7)-C(1)	124.61(10)
O(2)-C(7)-C(1)	110.79(9)
C(7)–O(2)–C(8)	117.03(9)
O(2)-C(8)-C(9)	109.92(9)
O(2) - C(8) - H(8A)	109.7
C(9) - C(8) - H(8A)	109.7
$O(2) - C(8) - \Pi(8D)$	109.7
H(8A) = C(8) = H(8B)	109.7
C(8) - C(9) - H(9A)	108.2
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)–C(9)–H(9C)	109.5
H(9A)–C(9)–H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
O(3)–C(2)–C(3)	124.64(9)
O(3)-C(2)-C(1)	114.92(9)
C(3)-C(2)-C(1)	120.41(9)
C(2)-O(3)-C(10)	116.83(8)
O(3)-C(10)-H(10A)	109.5
U(3) - U(10) - H(10B) U(10A) - C(10) - H(10B)	109.5
$\Pi(10A) - C(10) - \Pi(10B)$ $\Omega(3) - C(10) - H(10C)$	109.5
H(10A) - C(10) - H(10C)	109.5
H(10R) - C(10) - H(10C)	109.5
C(2)–C(3)–C(4)	119.30(10)
C(2)–C(3)–H(3)	120.4
C(4)–C(3)–H(3)	120.4
C(5)-C(4)-C(3)	119.09(10)
C(5)-C(4)-C(11)	119.15(9)
C(3)-C(4)-C(11)	120.65(9)
C(4) - C(5) - C(6)	121.74(9)
C(4) - C(5) - H(5)	119.1
C(1) - C(6) - C(5)	112.1
C(1) - C(6) - C(13)	121 82(9)
C(5)-C(6)-C(13)	118.88(9)
C(4)-C(11)-C(12)	110.63(9)
C(4)-C(11)-H(11A)	109.5
C(12)–C(11)–H(11A)	109.5
C(4)–C(11)–H(11B)	109.5
C(12)–C(11)–H(11B)	109.5
H(11A)–C(11)–H(11B)	108.1
C(15)-C(12)-C(11)	109.97(8)
C(13)-C(12)-H(12A)	109.7
$C(11) - C(12) - \Pi(12A)$ $C(15) - C(12) - \Pi(12A)$	109.7
C(12) - C(12) - H(12B)	109.7
H(12A)-C(12)-H(12B)	108.2
C(6)–C(13)–C(14)	109.95(8)

C(6)–C(13)–H(13A)	109.7
C(14)–C(13)–H(13A)	109.7
C(6)–C(13)–H(13B)	109.7
C(14)–C(13)–H(13B)	109.7
H(13A)–C(13)–H(13B)	108.2
C(19)-C(14)-C(13)	110.61(9)
C(19)–C(14)–H(14A)	109.5
C(13)-C(14)-H(14A)	109.5
C(19)–C(14)–H(14B)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	108.1
C(16)–C(15)–C(20)	118.27(10)
C(16)-C(15)-C(12)	121.09(10)
C(20)–C(15)–C(12)	118.90(9)
C(17)–C(16)–C(15)	120.18(11)
C(17)–C(16)–H(16)	119.9
C(15)-C(16)-H(16)	119.9
C(16)–C(17)–C(18)	120.52(11)
C(16)–C(17)–H(17)	119.7
C(18)–C(17)–H(17)	119.7
C(17)–C(18)–C(19)	120.32(11)
C(17)–C(18)–H(18)	119.8
C(19)–C(18)–H(18)	119.8
C(18)-C(19)-C(20)	118.06(11)
C(18)-C(19)-C(14)	121.59(10)
C(20)-C(19)-C(14)	118.69(10)
C(15)-C(20)-C(19)	121.73(10)
C(15)-C(20)-H(20)	119.1
C(19)-C(20)-H(20)	119.1

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for (\mathbf{R}_{p})-11a. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	14(1)	15(1)	20(1)	1(1)	4(1)	1(1)
C(7)	18(1)	19(1)	18(1)	1(1)	7(1)	0(1)
O(1)	23(1)	18(1)	51(1)	-1(1)	7(1)	0(1)
O(2)	15(1)	21(1)	26(1)	-4(1)	4(1)	0(1)
C(8)	14(1)	28(1)	25(1)	-3(1)	5(1)	-4(1)
C(9)	23(1)	25(1)	24(1)	-5(1)	6(1)	-4(1)
C(2)	18(1)	16(1)	16(1)	0(1)	4(1)	3(1)
O(3)	22(1)	23(1)	15(1)	-1(1)	5(1)	-4(1)
C(10)	28(1)	27(1)	16(1)	1(1)	7(1)	-5(1)
C(3)	18(1)	17(1)	18(1)	3(1)	6(1)	1(1)
C(4)	17(1)	14(1)	20(1)	2(1)	4(1)	1(1)
C(5)	18(1)	18(1)	16(1)	0(1)	4(1)	3(1)
C(6)	16(1)	19(1)	18(1)	2(1)	6(1)	3(1)
C(11)	18(1)	19(1)	21(1)	0(1)	4(1)	-2(1)
C(12)	16(1)	23(1)	23(1)	-1(1)	5(1)	0(1)
C(13)	20(1)	25(1)	19(1)	2(1)	7(1)	-2(1)
C(14)	26(1)	21(1)	22(1)	6(1)	8(1)	-1(1)
C(15)	17(1)	19(1)	22(1)	2(1)	3(1)	4(1)
C(16)	20(1)	26(1)	23(1)	1(1)	0(1)	1(1)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

C(17)	29(1)	30(1)	18(1)	3(1)	1(1)	3(1)
C(18)	27(1) 24(1)	27(1)	20(1) 22(1)	7(1) 5(1)	6(1)	3(1)
C(19) C(20)	24(1) 21(1)	17(1)	21(1)	1(1)	6(1) 4(1)	3(1) 4(1)

Table 5.	Hydrogen coordinates (x 10 ⁴) and isotrop	c displacement parameters (Å ² x 10 ³) for (R_p)-11a	ł.

Atom	X	у	Z	U(eq)
H(8A)	-2131	7707	401	27
H(8B)	-965	6216	469	27
H(9A)	-1514	8373	-1362	36
H(9B)	-2621	6843	-1464	36
H(9C)	-608	6744	-1316	36
H(10A)	4091	10681	-1229	35
H(10B)	3287	9335	-2115	35
H(10C)	5173	9159	-1238	35
H(3)	6128	10520	495	21
H(5)	5590	10356	3706	21
H(11A)	7979	11824	3352	23
H(11B)	8269	11768	2102	23
H(12A)	9319	9177	2454	25
H(12B)	10471	10282	3431	25
H(13A)	2365	7494	3165	25
H(13B)	3497	8592	4156	25
H(14A)	4567	5998	4488	28
H(14B)	4885	5978	3246	28
H(16)	10307	10059	5445	29
H(17)	9050	8972	6759	33
H(18)	6639	7406	6110	30
H(20)	7334	7362	2942	24

Table 6. Torsion angles [°] for (R_p) -11a.

C(6)-C(1)-C(7)-O(1)	-93.35(14)
C(2)-C(1)-C(7)-O(1)	86.10(14)
C(6)–C(1)–C(7)–O(2)	87.13(12)
C(2)-C(1)-C(7)-O(2)	-93.42(11)
O(1)-C(7)-O(2)-C(8)	-4.66(16)
C(1)-C(7)-O(2)-C(8)	174.86(8)
C(7)–O(2)–C(8)–C(9)	-87.12(12)
C(6)-C(1)-C(2)-O(3)	-175.76(9)
C(7)-C(1)-C(2)-O(3)	4.78(14)
C(6)-C(1)-C(2)-C(3)	6.00(15)
C(7)-C(1)-C(2)-C(3)	-173.47(9)
C(3)-C(2)-O(3)-C(10)	-2.29(15)
C(1)-C(2)-O(3)-C(10)	179.54(9)
O(3)-C(2)-C(3)-C(4)	175.85(10)
C(1)-C(2)-C(3)-C(4)	-6.08(15)
C(2)-C(3)-C(4)-C(5)	-2.21(15)
C(2)-C(3)-C(4)-C(11)	165.67(9)
C(3)-C(4)-C(5)-C(6)	10.92(15)
C(11)-C(4)-C(5)-C(6)	-157.14(10)
C(2)-C(1)-C(6)-C(5)	2.40(15)
C(7)-C(1)-C(6)-C(5)	-178.15(9)
C(2)-C(1)-C(6)-C(13)	-164.77(10)
C(7)-C(1)-C(6)-C(13)	14.68(15)

C(4)-C(5)-C(6)-C(1)	-10.95(15)
C(4)-C(5)-C(6)-C(13)	156.60(10)
C(5)-C(4)-C(11)-C(12)	77.88(12)
C(3)-C(4)-C(11)-C(12)	-89.99(12)
C(4)–C(11)–C(12)–C(15)	-59.92(11)
C(1)-C(6)-C(13)-C(14)	90.00(11)
C(5)-C(6)-C(13)-C(14)	-77.07(12)
C(6)-C(13)-C(14)-C(19)	60.33(12)
C(11)-C(12)-C(15)-C(16)	-84.97(12)
C(11)-C(12)-C(15)-C(20)	79.74(12)
C(20)-C(15)-C(16)-C(17)	-2.43(16)
C(12)-C(15)-C(16)-C(17)	162.37(10)
C(15)-C(16)-C(17)-C(18)	-4.78(18)
C(16)–C(17)–C(18)–C(19)	4.65(18)
C(17)–C(18)–C(19)–C(20)	2.66(17)
C(17)-C(18)-C(19)-C(14)	-162.43(11)
C(13)-C(14)-C(19)-C(18)	84.39(12)
C(13)-C(14)-C(19)-C(20)	-80.61(13)
C(16)-C(15)-C(20)-C(19)	10.01(16)
C(12)-C(15)-C(20)-C(19)	-155.13(10)
C(18)-C(19)-C(20)-C(15)	-10.12(16)
C(14)-C(19)-C(20)-C(15)	155.41(10)

Symmetry transformations used to generate equivalent atoms:

X-Ray Structural Data for rac-11d

Table 1. Crystal data and structure refinement for rac-11d

Identification code	<i>rac</i> -11d
Empirical formula	$C_{18} H_{18} O_3$
Formula weight	282.32
Temperature	100(2) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	P2 ₁ /c (#14)
Unit cell dimensions	$a = 13.4948(2) \text{ Å} \alpha = 90^{\circ}.$
	$b = 14.0951(2) \text{ Å}\beta = 96.909(2)^{\circ}.$
	$c = 7.5300(1) \text{ Å} \gamma = 90^{\circ}.$
Volume	1421.88(3) Å ³
Z	4
Density (calculated)	1.319 Mg/m ³
Absorption coefficient	0.715 mm^{-1}
F(000)	600
Crystal size	0.2158 x 0.1231 x 0.0393 mm ³
Theta range for data collection	3.30 to 76.47°.
Index ranges	$-16\!\!<\!\!=\!\!h\!\!<\!\!=\!\!17,-\!17\!\!<\!\!=\!\!k\!\!<\!\!=\!\!17,-\!9\!\!<\!\!=\!\!l\!\!<\!\!=\!\!9$
Reflections collected	22791 ^{a)}
Independent reflections	2970 [R(int) = 0.0327] ^{a)}
Completeness to theta = 76.47°	99.8 % ^{a)}
Absorption correction	Analytical
Max. and min. transmission	0.975 and 0.890
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2970 / 0 / 194
Goodness-of-fit on F ²	1.002
Final R indices [I>2sigma(I)]	R1 = 0.0353, $wR2 = 0.0955$
R indices (all data)	R1 = 0.0454, WR2 = 0.0999
Largest diff. peak and hole	0.253 and $-0.223 \text{ e.}\text{\AA}^{-3}$

^{a)} This crystal is a non-merohedral twin. The refinement was done on an HKLF5 file. This prevents merging of equivalent reflections, so the number of unique reflections and the internal R-value cannot be determined.

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for *rac*-11d. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	X	у	Z	U(eq)
C(1)	1579(1)	5579(1)	6747(1)	17(1)
C(7)	746(1)	5172(1)	7650(1)	19(1)
O(1)	839(1)	5151(1)	9341(1)	21(1)
O(2)	-33(1)	4868(1)	6721(1)	26(1)
C(2)	1400(1)	6458(1)	5891(1)	16(1)
O(3)	515(1)	6869(1)	6168(1)	20(1)
C(8)	326(1)	7816(1)	5536(1)	23(1)
C(3)	2074(1)	6816(1)	4800(1)	18(1)
C(4)	2960(1)	6323(1)	4661(1)	18(1)
C(5)	3182(1)	5514(1)	5693(1)	19(1)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

C(6)	2465(1)	5088(1)	6638(1)	18(1)
C(9)	3571(1)	6532(1)	3147(1)	22(1)
C(10)	3240(1)	5879(1)	1489(1)	23(1)
C(11)	2569(1)	4050(1)	7114(1)	22(1)
C(12)	2198(1)	3419(1)	5445(1)	24(1)
C(13)	3351(1)	4845(1)	1991(1)	23(1)
C(14)	2616(1)	4417(1)	2885(1)	22(1)
C(15)	2823(1)	3616(1)	3957(1)	23(1)
C(16)	3732(1)	3151(1)	3891(1)	27(1)
C(17)	4428(1)	3508(1)	2843(2)	29(1)
C(18)	4255(1)	4367(1)	1955(1)	28(1)

Table 3. Bond lengths [Å] and angles [°] for rac-11d.

C(1)-C(6)	1.3930(12)
C(1)–C(2)	1.4037(12)
C(1)–C(7)	1.4962(11)
C(7)–O(1)	1.2646(11)
C(7)–O(2)	1.2650(12)
O(1)–H(1O1)	0.8400
O(2)–H(1O2)	0.8400
C(2)–O(3)	1.3664(10)
C(2)-C(3)	1.3915(12)
O(3)–C(8)	1.4300(10)
C(8)–H(8A)	0.9800
C(8)–H(8B)	0.9800
C(8)–H(8C)	0.9800
C(3)–C(4)	1.3975(12)
C(3)–H(3)	0.9500
C(4) - C(5)	1.3911(13)
C(4) - C(9)	1.5141(11)
C(5)-C(6)	1.4030(12)
C(5)–H(5)	0.9500
C(6)–C(11)	1.5085(12)
C(9)–C(10)	1.5725(14)
C(9)–H(9A)	0.9900
C(9)–H(9B)	0.9900
C(10)–C(13)	1.5077(14)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)–C(12)	1.5712(13)
C(11)–H(11A)	0.9900
C(11)–H(11B)	0.9900
C(12)–C(15)	1.5080(14)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)–C(18)	1.3973(13)
C(13)–C(14)	1.4008(14)
C(14)–C(15)	1.3959(14)
C(14)–H(14)	0.9500
C(15)-C(16)	1.3965(13)
C(16)–C(17)	1.3918(16)
C(16)–H(16)	0.9500
C(17)–C(18)	1.3897(16)
C(17)–H(17)	0.9500
C(18)–H(18)	0.9500
C(6)-C(1)-C(2)	120.83(8)

C(6)-C(1)-C(7)	122.25(8)
C(2)-C(1)-C(7)	116.76(8)
O(1)-C(7)-O(2)	121.58(8)
O(1)-C(7)-C(1)	118.52(8)
O(2)-C(7)-C(1)	119.89(8)
C(7)–O(1)–H(1O1)	109.5
C(7)–O(2)–H(1O2)	109.5
O(3)-C(2)-C(3)	125.59(8)
O(3)-C(2)-C(1)	114.13(8)
C(3)-C(2)-C(1)	120.20(8)
C(2) - O(3) - C(8)	117.96(7)
O(3)-C(8)-H(8A)	109.5
O(3)–C(8)–H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
O(3)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(2)-C(3)-C(4)	119 28(8)
C(2) - C(3) - H(3)	120.4
C(4) - C(3) - H(3)	120.4
C(5) - C(4) - C(3)	119 63(8)
C(5) - C(4) - C(9)	118 71(8)
C(3) - C(4) - C(9)	120.46(8)
C(4) - C(5) - C(6)	120.40(0) 121.26(8)
C(4) - C(5) - H(5)	119 /
C(4) - C(5) - H(5)	110.4
C(1) - C(6) - C(5)	117.70(8)
C(1) - C(6) - C(11)	121 58(8)
C(5) - C(6) - C(11)	121.30(8) 110.07(8)
C(4) - C(9) - C(10)	119.07(8) 110.80(7)
C(4) = C(9) = C(10) C(4) = C(0) = H(0A)	100.5
$C(4) - C(9) - \Pi(9A)$	109.5
$C(10) - C(3) - \Pi(3A)$ C(4) C(0) H(0P)	109.5
$C(4) - C(9) - \Pi(9B)$	109.5
$U(10) - U(9) - \Pi(9D)$	109.5
$\Gamma(9A) - C(9) - \Gamma(9B)$	100.1
C(13) - C(10) - C(9)	110.95(8)
C(13) - C(10) - H(10A)	109.5
C(12) = C(10) = H(10A)	109.5
C(13) - C(10) - H(10B)	109.5
U(10A) = C(10) = H(10B)	109.5
R(10A) - C(10) - R(10B) C(6) C(11) C(12)	100.0
C(0) - C(11) - C(12)	110.55(6)
$C(0) - C(11) - \Pi(11A)$ $C(12) - C(11) - \Pi(11A)$	109.0
$C(12) - C(11) - \Pi(11A)$	109.0
$C(0) - C(11) - \Pi(11B)$	109.0
$U(12) - U(11) - \Pi(11D)$	109.0
$\Pi(11A) - C(11) - \Pi(11B)$ C(15) C(12) C(11)	100.1
C(15) - C(12) - C(11)	109.70(8)
C(13) - C(12) - H(12A)	109.7
$C(11) - C(12) - \Pi(12A)$ $C(15) - C(12) - \Pi(12B)$	109.7
$C(13) - C(12) - \Pi(12D)$	109.7
$U(12) - U(12) - \Pi(12D)$	109.7
$\Pi(12A) - C(12) - \Pi(12B)$	108.2
C(10) - C(13) - C(14) C(18) - C(12) - C(10)	121 45(0)
C(10) - C(13) - C(10) C(14) - C(12) - C(10)	121.43(9)
C(14) = C(13) = C(10) C(15) = C(14) = C(12)	121 50(0)
C(13) = C(14) = C(13) C(15) = C(14) = U(14)	121.30(9)
$C(13) = C(14) = \Pi(14)$ $C(13) = C(14) = \Pi(14)$	119.2
$C(13) = C(14) = \Pi(14)$ C(14) = C(15) = C(16)	117.2
C(14) - C(13) - C(10)	110.34(9)

C(14)–C(15)–C(12)	119.15(9)
C(16)-C(15)-C(12)	120.84(9)
C(17)-C(16)-C(15)	120.38(10)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(18)-C(17)-C(16)	120.16(9)
C(18)-C(17)-H(17)	119.9
C(16)-C(17)-H(17)	119.9
C(17)-C(18)-C(13)	120.49(10)
C(17)-C(18)-H(18)	119.8
C(13)-C(18)-H(18)	119.8

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for *rac*-11d. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	20(1)	18(1)	13(1)	-1(1)	3(1)	-3(1)
C(7)	23(1)	16(1)	18(1)	2(1)	7(1)	1(1)
O(1)	23(1)	26(1)	13(1)	0(1)	5(1)	-4(1)
O(2)	24(1)	39(1)	16(1)	2(1)	4(1)	-12(1)
C(2)	19(1)	17(1)	14(1)	-3(1)	3(1)	-1(1)
O(3)	24(1)	17(1)	21(1)	2(1)	9(1)	2(1)
C(8)	30(1)	18(1)	23(1)	2(1)	5(1)	4(1)
C(3)	23(1)	16(1)	14(1)	0(1)	2(1)	-4(1)
C(4)	19(1)	21(1)	16(1)	-1(1)	3(1)	-6(1)
C(5)	16(1)	24(1)	17(1)	-1(1)	1(1)	-2(1)
C(6)	20(1)	19(1)	14(1)	1(1)	1(1)	-1(1)
C(9)	20(1)	28(1)	21(1)	3(1)	7(1)	-5(1)
C(10)	22(1)	32(1)	17(1)	3(1)	6(1)	1(1)
C(11)	24(1)	21(1)	21(1)	4(1)	3(1)	2(1)
C(12)	25(1)	18(1)	28(1)	2(1)	1(1)	0(1)
C(13)	22(1)	31(1)	15(1)	-3(1)	1(1)	2(1)
C(14)	19(1)	26(1)	19(1)	-3(1)	-1(1)	2(1)
C(15)	23(1)	23(1)	22(1)	-5(1)	-1(1)	0(1)
C(16)	28(1)	24(1)	26(1)	-7(1)	-4(1)	6(1)
C(17)	25(1)	35(1)	28(1)	-10(1)	-1(1)	10(1)
C(18)	23(1)	39(1)	21(1)	-6(1)	4(1)	4(1)

Table 5.	Hydrogen coordinates	$(x \ 10^4)$) and isotropic	displacement	parameters ((Å ² x 10 ³	³) for <i>rac</i> -11d.
	1 1	\	/ I			`	/

Atom	X	У	Z	U(eq)
H(101) ^{a)}	286	5021	9687	31
H(1O2) ^{a)}	34	4915	5630	39
H(8A)	874	8230	6033	35
H(8B)	-302	8043	5915	35
H(8C)	278	7824	4227	35
H(3)	1934	7389	4156	21
H(5)	3831	5246	5758	23
H(9A)	4287	6426	3559	27
H(9B)	3483	7206	2790	27
H(10A)	2535	6012	1033	28
H(10B)	3654	6022	523	28
H(11A)	2171	3905	8103	26

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

H(11B)	3277	3904	7526	26
H(12A)	2250	2740	5780	28
H(12B)	1489	3562	5036	28
H(14)	1962	4677	2760	26
H(16)	3875	2587	4565	32
H(17)	5023	3163	2734	35
H(17) H(18)	4756	4631	1318	33

 $\overline{a^{(a)}}$ s.o.f. = 0.5 (s.o.f.: site occupation factor)

Table 6. Torsion angles [°] for *rac*-11d.

C(6)-C(1)-C(7)-O(1)	75.25(11)
C(2)-C(1)-C(7)-O(1)	-109.27(10)
C(6)-C(1)-C(7)-O(2)	-105.42(11)
C(2)-C(1)-C(7)-O(2)	70.06(11)
C(6)-C(1)-C(2)-O(3)	-177.87(8)
C(7)-C(1)-C(2)-O(3)	6.58(11)
C(6)-C(1)-C(2)-C(3)	5.17(13)
C(7)-C(1)-C(2)-C(3)	-170.38(8)
C(3)-C(2)-O(3)-C(8)	-10.90(12)
C(1)–C(2)–O(3)–C(8)	172.33(7)
O(3)-C(2)-C(3)-C(4)	179.20(8)
C(1)-C(2)-C(3)-C(4)	-4.21(12)
C(2)-C(3)-C(4)-C(5)	-3.77(13)
C(2)-C(3)-C(4)-C(9)	163.54(8)
C(3)-C(4)-C(5)-C(6)	11.09(13)
C(9)-C(4)-C(5)-C(6)	-156.44(8)
C(2)-C(1)-C(6)-C(5)	1.87(12)
C(7)-C(1)-C(6)-C(5)	177.17(8)
C(2)-C(1)-C(6)-C(11)	-163.71(8)
C(7)-C(1)-C(6)-C(11)	11.59(13)
C(4)-C(5)-C(6)-C(1)	-10.02(13)
C(4)-C(5)-C(6)-C(11)	155.94(9)
C(5)-C(4)-C(9)-C(10)	76.90(10)
C(3)-C(4)-C(9)-C(10)	-90.52(10)
C(4)-C(9)-C(10)-C(13)	-58.40(10)
C(1)-C(6)-C(11)-C(12)	86.60(10)
C(5)-C(6)-C(11)-C(12)	-78.80(10)
C(6)-C(11)-C(12)-C(15)	61.04(10)
C(9)-C(10)-C(13)-C(18)	-86.17(10)
C(9)-C(10)-C(13)-C(14)	79.31(10)
C(18) - C(13) - C(14) - C(15)	10.25(14)
C(10) - C(13) - C(14) - C(15)	-155./1(9)
C(13)-C(14)-C(15)-C(16)	-10.55(14)
C(13)-C(14)-C(15)-C(12)	154.87(9)
C(11) - C(12) - C(15) - C(14)	-80.39(10)
C(11)-C(12)-C(15)-C(16)	84.65(11)
C(14) - C(15) - C(16) - C(17)	2.97(14)
C(12) - C(15) - C(16) - C(17)	-162.19(9)
C(15) - C(16) - C(17) - C(18)	4.64(15)
C(10) - C(17) - C(18) - C(13)	-4.94(15)
C(14) - C(13) - C(18) - C(17)	-2.3/(14)
U(10) - U(13) - U(18) - U(17)	163.20(9)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D–H)	d(HA)	d(DA)	<(DHA)	
O(2)-H(1O2)O(2)#1	0.84	1.80	2.6305(14)	171.9	
O(1)-H(1O1)O(1)#2	0.84	1.78	2.6139(13)	172.4	

Table 7. Hydrogen bonds for *rac*-11d [Å and °].

Symmetry transformations used to generate equivalent atoms:

 $\#1 \ -x, -y+1, -z+1 \quad \#2 \ -x, -y+1, -z+2$