A Straightforward and Highly Diastereoselective Synthesis of 2,2-Di-Substituted Perhydrofuro[2,3-*b*]pyran (and furan) Derivatives Promoted by BiCl₃

Xiaofeng Ma,^{a, c} Qin Tang,^{a, c} Jun Ke,^{a, c} Jichao Zhang,^{a, c} Cong Wang,^{a, c} Haibo Wang,^{a, c} Yuxue Li,*^b Huawu Shao*^a

^aNatural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China, ^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China ^cUniversity of Chinese Academy of Sciences, China

shaohw@cib.ac.cn, liyuxue@sioc.ac.cn

Contents

S3
S3
S3
S5
S9
S18
S19
S23
S24

1. General Information:

All reactions sensitive to air or moisture were carried out under nitrogen or argon atmosphere with anhydrous solvents. All reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. Thin-layer chromatography was performed using silica gel GF254 precoated plates (0.20–0.25 mm thickness) with a fluorescent indicator. Visualization on TLC was achieved by UV light (254 nm) and a typical TLC indication solution (10% sulfuric acid / ethanol solution). Column chromatography was performed on silica gel 90, 200-300 mesh. Optical rotations were measured with a Perkin Elmer M341 Digital Polarimeter. ¹H and ¹³C NMR (600 and 150 MHz, respectively) spectra were recorded on a Bruker Avance 600 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃, δ 7.26 ppm; CD₃COCD₃, δ 2.05 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃, δ 77.0 ppm; CD₃COCD₃, δ 39.5). ESI-HRMS spectra were recorded on BioTOFQ.

2. Screening the reaction conditions

 Table S1. The cyclization reaction of 1,2-cyclopropaneacetylatedsugar 1a and olefin 2a under different conditions ^a

	BnO BnO OBn 1a	Me ₃ Si 2a B	Bno ^w OBn 3a	
Entry	Lewis Acid (LA)	Equiv. of LA	Solvent	Yield(%) ^b
1	TMSOTf	1.2	CH ₃ CN	complex
2	BF ₃ •Et ₂ O	1.2	CH ₃ CN	36
3	I_2	1.2	CH ₃ CN	53
4	BiCl ₃	1.2	CH ₃ CN	78 ^c
5	AlCl ₃	1.2	CH ₃ CN	78 ^d
6	ZnCl ₂	1.2	CH ₃ CN	70 ^e
7	AgOTf	1.2	CH ₃ CN	n.r.

8	PdCl ₂	1.2	CH ₃ CN	n.r.
9	FeCl ₃	1.2	CH ₃ CN	58
10	BiCl ₃	4.0	CH ₃ CN	89
11	BiCl ₃	4.0	CH ₂ Cl ₂	42
12	BiCl ₃	4.0	CHCl ₃	56
13	BiCl ₃	4.0	Acetone	n.d.
14	BiCl ₃	4.0	DMSO	trace
15	BiCl ₃	4.0	DMF	trace
16	BiCl ₃	4.0	Et ₂ O	n.d.
17	BiCl ₃	4.0	Toluene	92
18	BiCl ₃	4.0	1,4-Dioxane	n.d.
19	BiCl ₃	4.0	THF	n.d.
20	BiCl ₃	2.0	Toluene	87
21	BiCl ₃ (2.5 eq)	2.5	Toluene	91
22	BiCl ₃ (3.0 eq)	3.0	Toluene	91

[a] All reaction were carried out using 0.1mmol 1,2-cyclopropaneacetylated sugar, 0.4 mmol allyltrimethylsilane and 0.12mmol promoter in 1mL solvent at -40°C-rt unless otherwise noted. [b] Isolated yield. [c] The reaction did not complete in this condition (83% conversion rate). [d] The reaction did not complete in this condition (80% conversion rate). [e] The reaction did not complete in this condition (78% conversion rate). n.r. = no reaction. n.d. = not detected.

Various Lewis acids including TMSOTf, BF₃·Et₂O, I₂, BiCl₃, and AlCl₃ were surveyed. As shown in Table 1, when TMSOTf was used (Table 1, entry 1), we did not detect major product. When BF₃·Et₂O was employed as Lewis acid (Table 1, entry 2), perhydrofuro[2,3-*b*]pyran was obtained exclusively in 36% yield. I₂ and FeCl₃ also offered the dicyclic product despite with lower yield (Table 1, entries 3, 9). Other Lewis acids such as AgOTf and PdCl₂ did not promote the reaction (Table 1, entries 7, 8). Encouragingly, when ZnCl₂ was used, the yield was increased to 70% (Table 1, entry 6). The best results were obtained using BiCl₃ and AlCl₃ as promoters. Under the conditions, the perhydrofuro [2,3-*b*]pyran derivative was obtained in 78% yield, despite the reaction did not go to completion (Table 1, entries 4, 5). Since the bismuth (III) compounds are relatively stable in air, and easy to handle, and have been given much attention by organic chemist in recent years, we selected BiCl₃ as a promoter, the

quantity of BiCl₃ was increased to 4.0 equiv., satisfactorily, the reaction achived the complete conversion and furnished the product in 89% yield (Table 1, entry 10).

Further optimization of the reaction conditions found that the reaction could also go to completion with 2.5 equiv. of BiCl₃ in toluene, and the fused cycle product was obtain in 91% yield (table 1. entry 21).

3. Preparation of Starting Materials:

 $1-C-Acetyl-3,4,6-tri-O-benzyl-1,2-cyclopropane-1,2-deoxy-\alpha-D-glucopyranose$ (1a), $1-C-Acetyl-6-O-acetyl-3,4-di-O-benzyl-1,2-cyclopropane-1,2-deoxy-\alpha-D-glucopyranose$ (1b) and $1-C-Acetyl-3,4,6-tri-O-benzyl-1,2-cyclopropane-1,2-deoxy-\alpha-D-galctopyranose$ (1d) were obtained as our previously reported merhods.

1-C-(3',4'-Di-O-benzyl-6'-O-methylsulfonyl-2'-O-tosyl-α-D-mannopyranosyl)-acetone (6) To a solution of **5** (2.0 g, 3.35 mmol) in MeOH 100 mL was added diethylamine (DEA, 2.0 mL), the mixture was stirred at room temperature overnight. After the reaction was complete, the mixture was concentrated. The crude oil was dissolved in dichloromethane (22 mL) and cooled to 0 °C, 0.79 mL MsCl and 0.9 mL triethylamine were added, and the solution was warmed to room temperature slowly in 8 h. Then 20 mL H₂O MeOH was added and extracted with dichloromethane 3×10 mL, the extract was washed with brine (2 × 20 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to afford **6** (1.8 g, 2.85 mmol, 85%) as a colourless syrup; $[\alpha]_D^{20}$ +8.8 (*c* 0.82, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.37 – 7.27 (m, 8H), 7.20 (d, *J* = 5.7 Hz, 4H), 4.74 (dd, *J* = 7.0, 2.8 Hz, 1H), 4.55 (dd, *J* = 11.6, 3.8 Hz, 2H), 4.53 – 4.48 (m, 2H), 4.46 (d, *J* = 11.6 Hz, 1H), 4.39 (d, *J* = 11.7 Hz, 1H), 4.27 (dd, *J* = 11.3, 3.6 Hz, 1H), 3.91 – 3.87 (m, 1H), 3.79 (dd, *J* = 5.7, 2.8 Hz, 1H), 3.55 – 3.50 (m, 1H), 2.98 (s, 3H), 2.55 (qd, *J* = 16.3, 6.6 Hz, 2H), 2.43 (d, *J* = 12.4 Hz, 3H), 2.12 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 204.8, 145.3, 137.1, 137.0, 133.4, 130.0 128.6(2), 128.2, 128.1(3), 127.9, 76.9, 74.9, 74.1, 73.3, 73.2, 73.1, 67.4, 67.1, 43.9, 37.6, 30.7, 21.7; ESI-HRMS: m/z calcd for

 $C_{31}H_{36}NaO_{10}S_2[M+Na]^+$: 655.1642; found: 655.1657.

1-C-Acetyl-6-O-methylsulfonyl-3,4-di-O-benzyl-1,2-cyclopropane-1,2-deoxy-a-D-glucopyranose

(1c) To a solution of 6 (1.2 g, 1.9 mmol) in DMSO (22 mL) was added K₂CO₃ (1.2 g, 8.7 mmol). The suspension was stirred at 50 °C for 5 h. The mixture was cooled to room temperature, diluted with dichloromethane (100 mL), washed with water, brine, and dried over Na₂SO₄. The filtrate was concentrated in vacuo, and purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 10:1) to afford compound **1c** (0.7 g, 1.52 mmol, 80%) as a colourless syrup; $[\alpha]_D^{20}$ +32.5 (*c* 0.50, CHCl₃); ¹H NMR (600 MHz, Acetone-d₆): δ 7.53 – 7.10 (m, 10H), 4.77 (t, *J* = 12.2 Hz, 2H), 4.67 (d, *J* = 9.0 Hz, 1H), 4.65 (d, *J* = 9.4 Hz, 1H), 4.55 (dd, *J* = 11.3, 6.9 Hz, 1H), 4.29 (dd, *J* = 11.3, 2.8 Hz, 1H), 3.92 (ddd, *J* = 8.7, 6.0, 2.1 Hz, 2H), 3.80 (dd, *J* = 7.1, 1.9 Hz, 1H), 3.62 (t, *J* = 5.6 Hz, 1H), 3.09 (s, 3H), 2.58 (dd, *J* = 5.7, 1.8 Hz, 1H), 2.20 (s, 3H), 1.89 (t, *J* = 5.8 Hz, 1H); ¹³C NMR (150 Hz, Acetone-d₆): δ 203.6, 138.5, 138.3, 128.3, 128.3, 127.8, 127.6, 127.6, 74.8, 74.8, 72.7, 71.0, 68.8, 58.9, 36.6, 31.9, 29.9, 25.8. ESI-HRMS: m/z calcd for C₂₄H₂₈NaO₇S [M+Na]⁺: 483.1448; found: 483.1446.

Synthesis of 1,2-Cyclopropaneacetylated lyxose (1e)

3,5-Di-*O***-benzyl-1,2-***O***-isopropylidene-** α **-D-xylofuranose** (7).¹ A mixture of D-xylose (10.0 g, 66.6 mmol), dry CuSO₄ (20.4 g, 127.5 mmol), and concentrated H₂SO₄ (0.82 mL) in acetone (82 mL) was stirred at 25 °C for15 h. The mixture was suction filtration, and the solid was washed with acetone (3 × 30 mL). The filtrate was neutralized with concentrated NH₄OH, and the resulting white solid was removed by suction filtration. Removal of the solvent in vacuo from the filtrate gave syrup that was treated with aqueous 0.1 N HCl (61.2 mL) for 0.5 h at 25 °C, during which time the reaction mixture turned to a clear solution. The reaction was quenched with solid NaHCO₃ to a pH of 7.5. The solution was washed with ether once, and the aqueous fraction was evaporated in vacuo to yield a pale yellow syrup, which was dissolved in CHCl₃ (40.8 mL) prior to drying (Na₂SO₄). Filtration and removal of the solvent in vacuo, afforded pale yellow syrup. NaH (60% in dispersion in mineral oil, 6.4 g, 160 mmol) was added in batches over 30 min to an ice-cold solution of this syrup in DMF (60 mL). The mixture was stirred at 0 °C for 1 h, subsequently, benzyl bromide (19.0 mL, 160 mmol) was added dropwise to the reaction mixture over 1h. The resulting mixture was then warmed gradually to ambient and stirred for 5 h, then extracted with ethyl acetate (3 × 150 mL), the extract was washed with H₂O (3 × 300 mL), brine (3 × 300 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The residue

was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to afford **7** as colorless syrup (20.4 g, 55.1 mmol, 83%). $[\alpha]_D^{20}$ -41.4 (*c* 1.27, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.28 (m, 10H), 5.96 (d, *J* = 3.8 Hz, 1H), 4.68 (d, *J* = 12.0 Hz, 1H), 4.65 – 4.59 (m, 2H), 4.54 (dd, *J* = 11.9, 6.0 Hz, 2H), 4.44 (td, *J* = 6.1, 3.3 Hz, 1H), 4.00 (d, *J* = 3.2 Hz, 1H), 3.79 (qd, *J* = 9.9, 6.1 Hz, 2H), 1.51 (s, 3H), 1.34 (s, 3H).

3-C-(3, 5-Di-*O***-benzyl-***a***-D-xylofuranosyl)-propene (8).**² Under nitrogen atmosphere, a solution of the 1,2-*O*-isopropylidene-xylofuranose derivatives 7 (17.4 g, 47 mmol) in 140 mL of dry CH₂Cl₂ at 0 °C was treated with allyltrimethylsilane (13.6 mL, 70.5 mmol) and BF₃•OEt₂ (9.0 mL, 70.5 mmol). The reaction mixture was warmed to room temperature and allowed to react overnight. The reaction mixture was treated with a saturated aqueous solution of NaHCO₃ (80 mL) and extracted with CH₂Cl₂ (3 × 100 mL). The organic phase was dried with Na₂SO₄, concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **8** as colorless syrup (14.8 g, 41.7 mmol, 89%). $[\alpha]_D^{20}$ -21.3 (*c* 0.39, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.25 (m, 10H), 5.91 – 5.82 (m, 1H), 5.11 (dd, *J* = 21.5, 13.7 Hz, 2H), 4.62 (dd, *J* = 11.9, 8.6 Hz, 2H), 4.53 (d, *J* = 12.0 Hz, 2H), 4.25 (dd, *J* = 11.1, 5.2 Hz, 1H), 4.03 (dd, *J* = 4.3, 2.5 Hz, 1H), 3.91 (dd, *J* = 4.9, 2.4 Hz, 1H), 3.76 (dd, *J* = 10.2, 4.8 Hz, 1H), 3.14 (s, 1H), 2.90 (dt, *J* = 12.9, 6.6 Hz, 2H), 2.54 – 2.47 (m, 1H), 2.40 (dt, *J* = 14.3, 7.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 138.3, 138.1, 134.3, 128.4, 128.3, 127.8, 127.8, 127.6, 127.5, 117.5, 85.4, 84.0, 79.3, 79.3, 73.5, 71.9, 68.9, 42.3, 38.0; ESI-HRMS: m/z calcd for C₂₂H₂₆NaO₄ [M + Na]⁺: 377.1723; found: 377.1729.

3-*C*-(**3**,**5**-Di-*O*-benzyl-2-*O*-tosyl-*a*-D-xylofuranosyl)-propene (9). TsCl (20.4 g, 75.6 mmol) was added to an ice-cold solution of the mixture of propene deriavtes **8** (14.8 g, 41.7 mmol) in pyridine (100 mL). The mixture was stirred at room temperature overnight, and washed with 10% HCl aqueous, H₂O, brine respectively. The organic phase was dried with Na₂SO₄, concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **8** as colorless syrup (18.1 g, 35.6 mmol, 85%). $[\alpha]_D^{20}$ -54.2 (*c* 0.48, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.37 – 7.22 (m, 12H), 5.57 (ddt, *J* = 17.2, 9.9, 7.0 Hz, 1H), 4.95 – 4.89 (m, 2H), 4.65 (d, *J* = 2.6 Hz, 1H), 4.57 (t, *J* = 11.9 Hz, 2H), 4.48 (d, *J* = 12.1 Hz, 1H), 4.40 (d, *J* = 11.7 Hz, 1H), 4.16 (dd, *J* = 9.5, 5.9 Hz, 1H), 4.09 (d, *J* = 3.7 Hz, 1H), 3.91 (td, *J* = 6.6, 2.9 Hz, 1H), 3.69 (d, *J* = 5.5 Hz, 2H), 2.45 (s, 3H), 2.30 (dq, *J* = 14.7, 7.5 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 145.3, 138.1, 137.5, 133.5,

133.4, 130.0, 129.6, 128.4, 128.4, 128.0, 127.8, 127.8, 127.6, 127.0, 117.7, 84.8, 82.8, 82.6, 80.1, 73.4, 71.7, 68.0, 42.00, 37.5, 21.7; ESI-HRMS: m/z calcd for $C_{29}H_{32}NaO_6S$ [M + Na]⁺: 531.1812; found: 531.1812.

1-*C***-(3,5-Di-***O***-benzyl-2-***O***-tosyl-α-D-xylofuranosyl)-acetone (10). Jones reagent (2 M, 6.8 mL) was added to an ice-cold solution of the mixture of propene deriavtes 9** (2.5 g, 4.9 mmol) and Hg(OAc)₂ in acetone/H₂O (V:V = 4:1, 20 mL). The mixture was stirred at room temperature for 4 h, quenched withe MeOH. Then, the mixture was exacted with ethyl acetate, washed with H₂O, saturated aqueous NaHCO₃, brine respectively. The organic phase was dried with Na₂SO₄, concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to afford **10** as colorless syrup (1.89 g, 3.61 mmol, 74%). [α]_D²⁰ -42.7 (*c* 0.31, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.37 – 7.25 (m, 10H), 7.21 (d, *J* = 7.0 Hz, 2H), 4.79 (d, *J* = 1.5 Hz, 1H), 4.59 – 4.45 (m, 3H), 4.39 (d, *J* = 11.7 Hz, 1H), 4.34 – 4.27 (m, 1H), 4.18 (dd, *J* = 9.9, 5.5 Hz, 1H), 4.11 (t, *J* = 4.4 Hz, 1H), 3.72 – 3.59 (m, 2H), 2.77 (dd, *J* = 16.1, 7.7 Hz, 1H), 2.64 (dd, *J* = 16.1, 5.5 Hz, 1H), 2.44 (d, *J* = 4.0 Hz, 3H), 2.09 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.7, 145.3, 138.0, 137.3, 133.4, 130.0, 128.5, 128.4, 128.0, 127.9, 127.9, 127.7, 127.7, 85.1, 82.3, 80.0, 79.0, 73.4, 72.0, 67.9, 46.9, 30.6, 21.7; ESI-HRMS: m/z calcd for C₂₉H₃₂NaO₇S [M + Na]⁺: 547.1761; found: 547.1764.

1'-C-Acetyl-3,5-Di-*O***-benzyl-1,2-cyclopropane-1,2-deoxy-α-D-lyxofuranose (1e).** To a solution of acetone derivates **10** (2.18 g, 4.16 mmol) in DMSO (61 mL) was added K₂CO₃ (4.32 g, 31.3 mmol). The mixture was stirred at 60 °C for 18 h. After cooled to room temperature, the reaction mixture was exacted with ethyl acetate (50 mL), and washed with brine. The organic phase was dried with Na₂SO₄, concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to afford **1e** as colorless syrup (1.05 g, 2.99 mmol, 72%). $[\alpha]_D^{20}$ -36.3 (*c* 1.12, acetone); ¹H NMR (600 MHz, acetone-*d*₆) δ 7.38 – 7.24 (m, 10H), 4.60 (dd, *J* = 12.1, 6.6 Hz, 2H), 4.52 (d, *J* = 12.1 Hz, 1H), 4.49 (d, *J* = 2.6 Hz, 1H), 4.48 (dd, *J* = 10.8, 7.2 Hz, 1H), 2.57 (td, *J* = 5.5, 3.9 Hz, 1H), 2.52 (d, *J* = 3.3 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (150 MHz, acetone-*d*₆) δ 202.2, 138.9, 138.4, 128.3, 128.1, 127.6, 127.5, 127.4, 127.2, 88.1, 78.5, 72.7, 70.5, 69.0, 67.9, 36.3, 32.8, 29.8; ESI-HRMS: m/z calcd for C₂₂H₂₅O₄ [M + H]⁺: 353.1747; found: 353.1746.

4. General procedure for BiCl₃-promoted transformation for cyclopropanated sugars to perhydrofuro[2,3-*b*]pyran derivatives.

Under an argon atmosphere, BiCl₃ (0.25 mmol) in 0.5 mL toluene was cooled to -40 °C, to this mixture was added slowly cyclopropanated sugars **1** (0.1 mmol) and olefins **2** (0.4 mmol) in 0.5 mL toluene. The solution was then warmed slowly to room temperature, and stirred until the reaction was completed detected be TLC. Then the reaction was quenched with a vigorously stirred solution of saturated aqueous NaHCO₃ (10 mL), and extracted with CH_2Cl_2 (3 × 20 mL). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (ethyl acetate/ petroleum ether = 1: 10 to 1: 6) to afford products **3** as single diastereoisomer.

(2*S*,3*aR*,4*R*,5*S*,6*R*,7*aR*)-2-allyl-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2-methylhexahydro-furo [2,3-*b*]pyran (3a)

Colorless syrup, 47 mg, yield: 91%, $[\alpha]_D^{20}$ +46.2 (*c* 0.41, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.41 – 7.29 (m, 15H), 5.88 – 5.77 (m, 1H), 5.50 (d, *J* = 5.1 Hz, 1H), 5.12 (t, *J* = 12.2 Hz, 2H), 4.83 (d, *J* = 11.8 Hz, 1H), 4.75 (d, *J* = 11.1 Hz, 1H), 4.69 (d, *J* = 4.2 Hz, 1H), 4.67 (d, *J* = 4.6 Hz, 1H), 4.58 (t, *J* = 11.8 Hz, 2H), 3.95 (dt, *J* = 8.9, 3.0 Hz, 1H), 3.82 (dd, *J* = 10.7, 3.6 Hz, 1H), 3.79 (dd, *J* = 8.9, 6.9 Hz, 1H), 3.74 (dd, *J* = 10.6, 2.5 Hz, 1H), 3.70 (t, *J* = 6.9 Hz, 1H), 2.49 – 2.42 (m, 1H), 2.30 – 2.21 (m, 2H), 2.01 (dd, *J* = 13.3, 8.4 Hz, 1H), 1.77 (dd, *J* = 13.3, 5.4 Hz, 1H), 1.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 138.4, 138.2(2), 128.4(2), 128.0, 127.9(2), 127.8(2), 127.6, 118.2, 100.6, 80.9, 80.2, 77.4, 73.7, 73.5, 73.3, 71.9, 69.2, 47.0, 43.9, 38.0, 27.7; ESI-HRMS: m/z calcd for C₃₃H₃₈NaO₅ [M+Na]⁺: 537.2617; found: 537.2611.

(2R,3aR,4R,5S,6R,7aR)-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2-methyl-2-(2-methylallyl)hexa hydro-furo[2,3-b]pyran (3b)

Colorless syrup, 40 mg, yield: 75%, $[\alpha]_D^{20}$ +52.1 (*c* 0.17, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.37 – 7.19 (m, 19H), 5.44 (d, *J* = 5.1 Hz, 1H), 4.86 (s, 1H), 4.78 (d, *J* = 11.8 Hz, 1H), 4.70 (d, *J* = 11.4 Hz, 2H), 4.65 (d, *J* = 3.4 Hz, 1H), 4.63 (d, *J* = 3.8 Hz, 1H), 4.54 (d, *J* = 12.1 Hz, 1H), 4.52 (d, *J* = 12.6 Hz, 1H), 3.89 (dt, *J* = 8.9, 2.9 Hz, 1H), 3.79 – 3.73 (m, 2H), 3.70 (dd, *J* = 10.6, 2.5 Hz, 1H), 3.66 (t, *J* = 6.8 Hz, 1H), 2.42 (dd, *J* = 13.5, 6.4 Hz, 1H), 2.20 (d, *J* = 13.5 Hz, 1H), 2.13 (d, *J* = 13.4 Hz, 1H), 2.05 – 2.00 (m, 1H), 1.80 (s, 3H), 1.76 (dd, *J* = 13.2, 5.6 Hz, 1H), 1.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 142.7, 138.5, 138.2, 128.4, 128.4, 128.3, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 114.7, 100.5, 81.5, 80.1, 76.8, 73.7, 73.5, 73.3, 71.9, 69.2, 49.9, 43.8, 38.9, 27.8, 24.3; ESI-HRMS: m/z calcd for C₃₄H₄₀NaO₅ [M+Na]⁺: 551.2773; found: 551.2768.

(2R,3aR,4R,5S,6R,7aR)-2-[(benzoyl)methyl]-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-

2-methyl-hexahydro-furo[2,3-b]pyran (3c)

Colorless syrup, 39 mg, yield: 66%, $[\alpha]_D^{20}$ +26.7 (*c* 0.20, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.95 (d, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 3H), 7.37 – 7.24 (m, 24H), 7.21 (d, *J* = 6.7 Hz, 3H), 5.41 (d, *J* = 5.1 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 4.69 (d, *J* = 11.1 Hz, 1H), 4.65 (d, *J* = 11.6 Hz, 1H), 4.62 (d, *J* = 12.2 Hz, 2H), 4.52 (dd, *J* = 11.6, 3.1 Hz, 2H), 3.90 (d, *J* = 8.8 Hz, 1H), 3.77 – 3.66 (m, 5H), 3.20 (d, *J* = 2.4 Hz, 2H), 2.43 (d, *J* = 5.9 Hz, 1H), 2.35 (dd, *J* = 13.6, 8.3 Hz, 1H), 2.02 (dd, *J* = 13.8, 5.8 Hz, 1H), 1.44 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.6, 138.3, 138.2, 138.1, 137.5, 133.2, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.9, 127.8, 127.6, 100.5, 80.7, 79.8, 77.1, 73.6, 73.5, 73.2, 69.2, 49.8, 43.6, 38.4, 29.7, 28.6; ESI-HRMS: m/z calcd for C₃₈H₄₀NaO₆ [M+Na]⁺: 615.2717; found: 615.2717.

(2R,3aR,4R,5S,6R,7aR)-2-[(acetyl)methyl]-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2methylhexahydro-furo[2,3-b]pyran (3d)

Colorless syrup, 46 mg, yield: 86%, $[\alpha]_D^{20}$ +39.2 (*c* 0.26, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.43 – 7.08 (m, 15H), 5.46 (d, *J* = 5.1 Hz, 1H), 4.76 (d, *J* = 11.7 Hz, 1H), 4.69 (d, *J* = 11.1 Hz, 1H), 4.67 – 4.61 (m, 2H), 4.54 (d, *J* = 3.7 Hz, 1H), 4.52 (d, *J* = 4.8 Hz, 1H), 3.91 – 3.86 (m, 1H), 3.76 (dd, *J* = 10.6, 3.8 Hz, 1H), 3.75 – 3.71 (m, 1H), 3.69 (dd, *J* = 10.6, 2.5 Hz, 1H), 3.65 (t, *J* = 6.8 Hz, 1H), 2.66 (d, *J* = 14.9 Hz, 1H), 2.56 (d, *J* = 14.9 Hz, 1H), 2.46 – 2.39 (m, 1H), 2.17 (s, 3H), 2.14 (dd, *J* = 13.6, 8.4 Hz, 1H), 1.89 (dd, *J* = 13.6, 5.5 Hz, 1H), 1.33(s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.4, 138.3, 138.1, 138.1, 128.5, 128.4, 128.3, 128.1, 127.9, 127.9, 127.8, 127.8, 127.6, 100.6, 79.9, 79.8, 77.1, 73.7, 73.5, 73.3, 72.0, 69.1, 54.8, 43.6, 38.8, 31.9, 28.0; ESI-HRMS: m/z calcd for C₃₃H₃₈NaO₆ [M+Na]⁺: 553.2550; found:553.2561.

(2R,3aR,4R,5S,6R,7aR)-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2-(1-cyclohexanon-2-yl)-

2-methylhexahydro-furo[2,3-b]pyran (3e)

Colorless syrup, 43.9 mg, yield: 88%, $[\alpha]_D^{20}$ +88.0 (*c* 0.09, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.35 – 7.21 (m, 15H), 5.40 (d, *J* = 5.0 Hz, 1H), 4.81 (d, *J* = 11.5 Hz, 1H), 4.75 (d, *J* = 11.0 Hz, 1H), 4.69 (d, *J* = 11.4 Hz, 1H), 4.62 (d, *J* = 12.1 Hz, 1H), 4.58 (d, *J* = 10.9 Hz, 1H), 4.53 (d, *J* = 12.1 Hz, 1H), 3.90 – 3.87 (m, 1H), 3.79 (dd, *J* = 10.5, 3.6 Hz, 1H), 3.73 – 3.68 (m, 3H), 2.57 (dd, *J* = 12.7, 5.0 Hz, 1H), 2.31(1H, s), 2.29 – 2.25 (m, 3H), 2.15 – 2.06 (m, 3H), 2.01 (dd, *J* = 14.2, 3.6 Hz, 1H), 1.65 – 1.62 (m, 3H), 1.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 211.6, 138.4, 138.2, 138.1, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 101.6, 82.1, 81.4, 77.6, 74.2, 73.9, 73.6, 72.1, 69.0, 62.2, 44.6, 43.5, 36.1, 29.3, 28.9, 28.3, 25.3; ESI-HRMS: m/z calcd for C₃₂H₃₆NaO₇ [M+Na]⁺: 522.2256; found: 522.2251.

(2R,3aR,4R,5S,6R,7aR)-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2-[(2,2-dimethylpropionyl)methyl]-2-methylhexahydro-furo[2,3-b]pyran (3f)

Colorless syrup, 40.1 mg, yield: 70%, $[\alpha]_D^{20}$ +50.7 (*c* 0.31, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.39 – 7.26 (m, 14H), 7.22 (d, *J* = 6.7 Hz, 1H), 5.46 (d, *J* = 5.0 Hz, 1H), 4.80 – 4.77 (m, 1H), 4.72 (d, *J* = 11.1 Hz, 1H), 4.67 (d, *J* = 11.5 Hz, 1H), 4.63 (d, *J* = 12.2 Hz, 1H), 4.54 (dd, *J* = 14.5, 11.8 Hz, 2H), 3.90 (dd, *J* = 5.8, 3.1 Hz, 1H), 3.80 – 3.76 (m, 1H), 3.76 – 3.72 (m, 1H), 3.72 – 3.67 (m, 2H), 2.84 (d, *J* = 17.4 Hz, 1H), 2.68 (d, *J* = 17.4 Hz, 1H), 2.39 (d, *J* = 12.6 Hz, 1H), 2.25 (dd, *J* = 13.8, 8.3 Hz, 1H), 2.01 (dd, *J* = 14.5, 5.6 Hz, 1H), 1.36 (s, 3H), 1.12 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 214.1, 138.3, 138.1, 128.4, 128.4, 128.3, 128.3, 128.2, 128.0, 127.9, 127.8, 127.8, 127.7, 127.5, 100.5, 80.3, 80.2, 77.3, 73.8, 73.5, 73.5, 72.0, 69.1, 47.8, 44.6, 43.9, 38.8, 29.7, 27.9, 26.2; ESI-HRMS: m/z calcd for C₃₆H₄₄NaO₆ [M+Na]⁺: 595.3030; found: 595.3049.

(2S,3aR,4R,5S,6R,7aR)-6-[(acetyloxy)methyl]-2-allyl-4,5-bis(benzyloxy)-2-methyl-

Colorless syrup, 40 mg, yield: 85%, $[\alpha]_D^{20}$ +51.0 (*c* 0.31, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.31 (dt, *J* = 24.2, 11.7 Hz, 10H), 5.78 (td, *J* = 17.3, 7.3 Hz, 1H), 5.42 (d, *J* = 5.1 Hz, 1H), 5.08 (t, *J* = 12.9 Hz, 2H), 4.76 (d, *J* = 11.8 Hz, 1H), 4.71 (d, *J* = 11.2 Hz, 1H), 4.65 (d, *J* = 11.8 Hz, 1H), 4.52 (d, *J* = 11.1 Hz, 1H), 4.30 (t, *J* = 4.2 Hz, 2H), 4.01 – 3.95 (m, 1H), 3.69 (t, *J* = 6.2 Hz, 1H), 3.55 (dd, *J* = 8.7, 6.1 Hz, 1H), 2.51 – 2.44 (m, 1H), 2.21 (dd, *J* = 16.8, 10.3 Hz, 2H), 2.07 – 2.04 (s, 3H), 1.97 (dd, *J* = 13.2, 8.6 Hz, 1H), 1.77 (dd, *J* = 13.2, 6.2 Hz, 1H), 1.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 170.9, 138.2, 137.7, 134.1, 128.5, 128.0, 128.0, 127.9, 118.3, 100.2, 81.4, 79.4, 73.5, 73.1, 70.2, 63.7, 46.8, 43.6, 37.7, 27.6, 20.9; ESI-HRMS: m/z calcd for C₂₈H₃₄NaO₆ [M+Na]⁺: 489.2248; found: 489.2253.

(2R,3aR,4R,5S,6R,7aR)-6-[(acetyloxy)methyl]-4,5-bis(benzyloxy)-2-methyl-2-(2-methylallyl)hexahydro-furo[2,3-b]pyran (3h)

Colorless syrup, 40 mg, yield: 83%, $[\alpha]_D^{20}$ +35.5 (*c* 0.15, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.45 – 7.17 (m, 10H), 5.41 (d, *J* = 5.2 Hz, 1H), 4.87 (s, 1H), 4.76 (d, *J* = 11.8 Hz, 1H), 4.71 (d, *J* = 11.1 Hz, 1H), 4.69 (s, 1H), 4.65 (d, *J* = 11.8 Hz, 1H), 4.52 (d, *J* = 11.2 Hz, 1H), 4.31 (dd, *J* = 11.7, 4.8 Hz, 1H), 4.29 – 4.25 (m, 1H), 3.97 (d, *J* = 3.8 Hz, 1H), 3.69 (t, *J* = 6.1 Hz, 1H), 3.55 (dd, *J* = 8.7, 6.1 Hz, 1H), 2.47 (dd, *J* = 13.4, 6.9 Hz, 1H), 2.19 (d, *J* = 13.5 Hz, 1H), 2.13 (d, *J* = 13.5 Hz, 1H), 2.10 – 1.97 (m, 5H), 1.80 (s, 3H), 1.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 170.9, 142.69, 138.2, 137.7, 133.1, 128.5, 128.5, 128.0, 127.9, 114.8, 100.1, 81.9, 79.4, 73.5, 73.1, 70.1, 63.7, 49.7, 43.5, 38.6, 29.7, 27.8, 24.3, 20.9; ESI-HRMS: m/z calcd for C₂₉H₃₆NaO₆ [M+Na]⁺: 503.2404; found: 503.2390.

(2*R*,3*aR*,4*R*,5*S*,6*R*,7*aR*)-6-[(acetyloxy)methyl]-2-[(benzoyl)methyl]-4,5-bis(benzyloxy)-2methyl-hexahydro-furo[2,3-*b*]pyran (3i)

Colorless syrup, 39 mg, yield: 71%, $[\alpha]_D^{20}$ +34.7 (*c* 0.26, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.96 (t, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (dd, *J* = 14.4, 6.8 Hz, 1H), 7.39 – 7.23 (m, 11H), 5.37 (d, *J* = 5.2 Hz, 1H), 4.71 (dd, *J* = 11.3, 8.7 Hz, 2H), 4.65 (d, *J* = 11.7 Hz, 1H), 4.50 (d, *J* = 11.2 Hz, 1H), 4.28 (qd, *J* = 12.0, 3.8 Hz, 2H), 4.01 – 3.94 (m, 1H), 3.72 (t, *J* = 6.0 Hz, 1H), 3.54 (dd, *J* = 8.7, 5.9 Hz, 1H), 3.20 (s, 2H), 2.61 (s, 1H), 2.49 (dt, *J* = 12.2, 6.3 Hz, 1H), 2.37 (dd, *J* = 13.6, 8.5 Hz, 1H), 2.04 (s, 3H), 1.47 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 198.6, 170.9, 138.0, 137.6, 137.5, 133.3, 133.1, 130.1, 128.6, 128.5, 128.3, 128.0, 128.0, 127.9, 127.7, 100.2, 81.2, 79.0, 73.5, 73.0, 70.3, 63.7, 49.5, 43.3, 38.1, 29.7, 28.6, 20.9; ESI-HRMS: m/z calcd for C₃₅H₃₆NaO₇[M+Na]⁺: 567.2348; found: 567.2353.

(2*R*,3*aR*,4*R*,5*S*,6*R*,7*aR*)-2-[(acetyl)methyl]-6-[(acetyloxy)methyl]-4,5-bis(benzyloxy)-2methyl-hexahydro-furo[2,3-*b*]pyran (3j)

Colorless syrup, 31 mg, yield: 64%, $[\alpha]_D^{20}$ +22.5 (*c* 0.04, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.51 – 7.01 (m, 10H), 5.47 (d, *J* = 5.8 Hz, 1H), 4.68 (d, *J* = 12.2 Hz, 1H), 4.58 (d, *J* = 12.2 Hz, 1H), 4.36 (s, 2H), 4.30 (dd, *J* = 12.0, 6.4 Hz, 1H), 4.20 (d, *J* = 11.9 Hz, 1H), 3.97 (s, 1H), 3.53 (s, 1H), 3.47 (d, *J* = 6.8 Hz, 1H), 3.31 (d, *J* = 10.4 Hz, 1H), 3.26 – 3.21 (m, 1H), 2.08 – 2.00 (m, 8H), 1.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 205.3, 171.0, 138.0, 137.4, 128.5(2), 128.1, 127.9, 97.6, 81.1, 75.8, 74.8, 71.9, 71.5, 69.9, 63.7, 60.9, 42.8, 31.0, 29.7, 24.3, 20.9; ESI-HRMS: m/z calcd for C₂₈H₃₄NaO₇[M+Na]⁺: 505.2197; found: 505.2195.

(2*R*,3*aR*,4*R*,5*S*,6*R*,7*aR*)-4,5-bis(benzyloxy)-6-[(acetyloxy)methyl]-2-(1-cyclohexanon-2-yl)-2-methylhexahydro-furo[2,3-*b*]pyran (3k)

Colorless syrup, 44.4 mg, yield: 85%, $[\alpha]_D^{20}$ +30.9 (*c* 0.14, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.39 – 7.28 (m, 10H), 5.37 (d, *J* = 5.2 Hz, 1H), 4.78 (dd, *J* = 12.5, 8.2 Hz, 2H), 4.70 (d, *J* = 11.5 Hz, 1H), 4.56 (d, *J* = 11.2 Hz, 1H), 4.31 (dd, *J* = 9.8, 3.7 Hz, 2H), 3.98 (dd, *J* = 8.8, 2.8 Hz, 1H), 3.74 (t, *J* = 7.3 Hz, 1H), 3.55 – 3.51 (m, 1H), 2.58 (dd, *J* = 12.8, 4.9 Hz, 1H), 2.29 (ddd, *J* = 22.2, 16.5, 10.7 Hz, 3H), 2.15 (dd, *J* = 14.2, 8.6 Hz, 1H), 2.10 – 2.00 (m, 6H), 1.94 – 1.92 (m, 1H), 1.66 – 1.60 (s, 3H), 1.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 211.5, 170.9, 138.1, 137.7, 128.5, 128.5, 128.1, 128.0, 127.9, 101.1, 82.5, 80.8, 74.1, 73.7, 70.5, 63.5, 62.0, 44.5, 43.5, 36.0, 29.7, 29.4, 28.9, 28.3, 25.3, 20.9; ESI-HRMS: m/z calcd for C₃₁H₃₈NaO₇[M+Na]⁺: 545.2510; found: 545.2510.

(2R,3aR,4R,5S,6R,7aR)-6-[(acetyloxy)methyl]-4,5-bis(benzyloxy)-2-[(2,2-dimethyl-propionyl)methyl]-2-methylhexahydro-furo[2,3-*b*]pyran (31)

Colorless syrup, 37.7 mg, yield: 72%, $[\alpha]_D^{20}$ +41.2 (*c* 0.20, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.39 – 7.24 (m, 10H), 5.41 (d, *J* = 5.1 Hz, 1H), 4.74 (dd, *J* = 13.5, 11.4 Hz, 2H), 4.67 (d, *J* = 11.6 Hz, 1H), 4.52 (d, *J* = 11.1 Hz, 1H), 4.32 – 4.26 (m, 2H), 4.00 – 3.93 (m, 1H), 3.71 (t, *J* = 6.6 Hz, 1H), 3.54 (dd, *J* = 8.9, 6.5 Hz, 1H), 2.83 (d, *J* = 17.3 Hz, 1H), 2.67 (d, *J* = 17.3 Hz, 1H), 2.48 – 2.41 (m, 1H), 2.27 (dd, *J* = 13.7, 8.4 Hz, 1H), 2.05 (s, 3H), 2.00 (dd, *J* = 13.5, 7.7 Hz, 1H), 1.37 (s, 3H), 1.11 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 214.1, 170.9,138.1, 137.7, 128.5, 128.5, 128.0, 128.0, 127.9, 100.2, 80.6, 79.7, 73.7, 73.4, 70.3, 63.6, 47.5, 44.7, 43.6, 38.6, 27.9, 26.2, 20.9; ESI-HRMS: m/z calcd for C₃₁H₄₀NaO₇ [M+Na]⁺: 547.2666; found: 547.2645.

(2S,3aR,4R,5S,6R,7aR)-2-allyl-4,5-bis(benzyloxy)-6-[(methanesulfonyloxy)methyl]

2-methylhexahydro-furo[2,3-b]pyran (3m)

Colorless syrup, 45 mg, yield: 90%, $[\alpha]_D^{20}$ +29.9 (*c* 0.26, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.49 – 7.15 (m, 16H), 5.76 (td, *J* = 17.3, 7.3 Hz, 1H), 5.41 (d, *J* = 5.4 Hz, 1H), 5.08 (t, *J* = 13.4 Hz, 2H), 4.74 (d, *J* = 11.9 Hz, 1H), 4.72 (d, *J* = 11.2 Hz, 1H), 4.64 (d, *J* = 11.8 Hz, 1H), 4.58 (d, *J* = 11.1 Hz, 1H), 4.45 (dd, *J* = 11.4, 4.5 Hz, 1H), 4.39 (dd, *J* = 11.3, 2.3 Hz, 1H), 4.00 – 3.95 (m, 1H), 3.68 (t, *J* = 5.9 Hz, 1H), 3.59 (dd, *J* = 9.0, 5.6 Hz, 1H), 3.04 (s, 4H), 2.50 (dt, *J* = 12.2, 6.1 Hz, 1H), 2.19 (d, *J* = 13.6 Hz, 2H), 1.96 (dd, *J* = 13.3, 8.5 Hz, 1H), 1.75 (dd, *J* = 13.3, 6.7 Hz, 1H), 1.26 (d, *J* = 2.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 139.0, 138.0, 137.5, 133.9, 128.6(2), 128.1(2), 128.0, 118.4, 100.3, 81.7, 78.8, 76.5, 73.6, 73.0, 70.1, 69.2, 46.7, 43.3, 37.8, 37.5, 29.7, 27.5; ESI-HRMS: m/z calcd for C₂₇H₃₄NaO₇S[M+Na]⁺: 525.1917 found: 525.1903.

(2*S*,3*aR*,4*R*,5*R*,6*R*,7*aR*)-2-allyl-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2-methylhexahydro-furo [2,3-*b*]pyran (3n)

Colorless syrup, 43.7 mg; Yield: 85%, $[\alpha]_D^{20}$ +23.5 (*c* 0.17, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.27 (m, 15H), 5.81 – 5.73 (m, 1H), 5.38 (d, *J* = 4.3 Hz, 1H), 5.05 (t, *J* = 12.6 Hz, 2H), 4.87 (d, *J* = 11.6 Hz, 1H), 4.69 (d, *J* = 11.8 Hz, 1H), 4.65 (d, *J* = 11.6 Hz, 1H), 4.47 (t, *J* = 9.6 Hz, 2H), 4.39 (d, *J* = 11.8 Hz, 1H), 4.02 (s, 2H), 3.68 (t, *J* = 8.6 Hz, 1H), 3.60 (dd, *J* = 8.9, 5.2 Hz, 1H), 3.46 (d, *J* = 8.4 Hz, 1H), 2.47 (s, 1H), 2.23 – 2.16 (m, 2H), 2.00 (dd, *J* = 13.3, 8.0 Hz, 1H), 1.65 (d, *J* = 13.5 Hz, 1H), 1.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 138.7, 138.0, 137.8, 134.2, 128.5, 128.4, 128.3, 128.0, 128.0, 127.8, 127.6, 125.8, 118.4, 118.2, 100.8, 79.6, 78.9, 74.1, 73.5, 73.3, 71.7, 70.7, 70.1, 68.5, 47.5, 40.4, 37.9, 29.7, 28.1; ESI-HRMS: m/z calcd for C₃₃H₃₈NaO₅ [M + Na]⁺: 537.2611; found: 537.2608.

(2R,3aR,4R,5R,6R,7aR)-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2-methyl-

(2-oxo-2-phenylethyl)hexahydro-furo[2,3-b]pyran (30)

Colorless syrup, 47.4 mg; Yield: 80%, $[\alpha]_D^{20}$ +16.1 (*c* 0.23, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.7 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.40 – 7.27 (m, 15H), 5.38 (d, *J* = 4.2 Hz, 1H), 4.88 (d, *J* = 11.6 Hz, 1H), 4.70 (d, *J* = 11.9 Hz, 1H), 4.64 (d, *J* = 11.6 Hz, 1H), 4.48 (d, *J* = 9.5 Hz, 2H), 4.43 (d, *J* = 11.7 Hz, 1H), 4.02 (s, 2H), 3.66 (d, *J* = 7.6 Hz, 1H), 3.59 (dd, *J* = 17.9, 8.9 Hz, 1H), 3.49 (d, *J* = 9.5 Hz, 1H), 3.26 – 3.18 (m, 2H), 2.50 (d, *J* = 20.4 Hz, 1H), 2.31 (dd, *J* = 13.7, 7.9 Hz, 1H), 1.98 (d, *J* = 13.6 Hz, 1H), 1.26 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 138.7, 138.0, 137.8, 134.2, 128.5, 128.4, 128.3, 128.0, 127.8, 127.6, 125.8, 118.4, 118.2, 100.8, 79.6, 78.9, 74.1, 73.5, 73.3, 71.7, 70.7, 70.1, 68.5, 47.5, 40.4, 37.9, 29.7, 28.1; ESI-HRMS: m/z calcd for C₃₈H₄₀NaO₆ [M+H]⁺: 615.2717; found: 615.2722.

(2R,3aR,4R,5R,6R,7aR)-4,5-bis(benzyloxy)-6-[(benzyloxy)methyl]-2-methyl-

(2-oxopropyl)hexahydro-furo[2,3-b]pyran (3p)

Colorless syrup, 39.2 mg, Yield: 74%, $[\alpha]_D^{20}$ +37.1(*c* 0.14, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.29 (m, 15H), 5.03 (d, *J* = 3.5 Hz, 1H), 4.86 (d, *J* = 11.5 Hz, 1H), 4.68 (d, *J* = 11.4 Hz, 1H), 4.64 (d, *J* = 12.0 Hz, 1H), 4.55 (d, *J* = 11.6 Hz, 1H), 4.51 (d, *J* = 11.8 Hz, 1H), 4.45 (d, *J* = 11.8 Hz, 1H), 4.43 – 4.38 (m, 2H), 3.98 – 3.94 (m, 2H), 3.67 – 3.63 (m, 2H), 3.56 (dd, *J* = 9.2, 5.8 Hz, 1H), 2.96 (dd, *J* = 11.5, 3.2 Hz, 1H), 2.76 (dd, *J* = 17.0, 5.4 Hz, 1H), 2.44 (dd, *J* = 17.0, 8.6 Hz, 1H), 2.02 (s, 3H), 1.55 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.8, 138.8, 138.1, 137.9, 128.6, 128.4, 128.4, 128.4, 128.2, 128.0, 127.9, 127.8, 127.7, 127.7 127.5, 126.5, 98.4, 78.4, 77.5, 74.4, 73.5, 71.8, 71.4, 69.8, 69.4, 41.9, 36.8, 30.4, 30.0, 29.7.

(2R,3aS,4R,5R,6aS)-4-(benzyloxy)-5-[(benzyloxy)methyl]-2-methyl-2-(2-oxo-2-

phenylethyl)hexahydro-furo[2,3-b]furan (3q)

Colorless syrup; 35.0 mg; Yield: 78%, $[\alpha]_D^{20}$ -2.9 (*c* 0.64, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 7.8 Hz, 1H), 7.56 (t, *J* = 6.9 Hz, 1H), 7.45 (dd, *J* = 13.2, 7.3 Hz, 2H), 7.37 – 7.22 (m, 11H), 5.46 (d, *J* = 5.4 Hz, 1H), 4.63 – 4.59 (m, 1H), 4.54 (d, *J* = 11.7 Hz, 2H), 4.44 (d, *J* = 11.7 Hz, 1H), 4.16 (d, *J* = 4.9 Hz, 2H), 3.85 (d, *J* = 10.1 Hz, 1H), 3.75 (dd, *J* = 10.3, 5.8 Hz, 1H), 3.23 (d, *J* = 15.1 Hz, 1H), 3.14 (d, *J* = 15.1 Hz, 1H), 3.04 (s, 1H), 2.30 – 2.20 (m, 2H), 1.51 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.8, 138.3, 137.9, 137.7, 133.1, 128.6, 128.5, 128.4, 128.3, 128.3, 127.8, 127.7, 127.6, 127.5, 127.5, 108.6, 86.9, 80.2, 78.5, 73.4, 72.9, 69.5, 49.5, 47.4, 34.6, 29.7, 28.7; ESI-HRMS: m/z calcd for C₃₀H₃₂O₅ [M + H]⁺: 495.2142; found: 495.2140.

(2R,3aS,4R,5R,6aS)-4-(benzyloxy)-5-[(benzyloxy)methyl]-2-methyl-

(2-oxocyclohexyl)hexahydrofuro[2,3-b]furan (3r)

Colorless syrup, 32.9 mg; Yield: 73%, $[\alpha]_D^{20}$ -15.7 (*c* 0.60, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36 - 7.22 (m, 10H), 5.53 (d, *J* = 5.0 Hz, 1H), 4.60 (d, *J* = 12.0 Hz, 1H), 4.55 (dd, *J* = 12.8, 6.7 Hz, 2H), 4.43 (t, J = 11.3 Hz, 1H), 4.13 (dt, J = 17.6, 6.3 Hz, 2H), 3.85 (dt, J = 9.3, 4.7 Hz, 1H), 3.75 (dd, J = 10.2, 6.3 Hz, 1H), 2.90 (dd, J = 11.4, 5.3 Hz, 1H), 2.58 (dd, J = 12.5, 4.8 Hz, 1H), 2.38 – 2.21 (m, 3H), 2.06 (s, 1H), 1.99 (t, J = 11.8 Hz, 2H), 1.93 (t, J = 11.9 Hz, 2H), 1.64 (s, 2H), 1.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 211.8, 138.3, 137.9, 128.4, 128.3, 127.8, 127.7, 127.5, 108.8, 88.7, 80.3, 79.7, 78.6, 78.5, 73.4, 73.0, 72.9, 69.5, 69.4, 60.9, 48.5, 43.7, 32.3, 29.3, 28.7, 28.5, 25.2; ESI- HRMS: m/z calcd for C₂₈H₃₄NaO₅ [M + Na]⁺: 473.2298; found: 473.2308.

(2R,3aS,4R,5R,6aS)-4-(benzyloxy)-5-[(benzyloxy)methyl]-(3,3-dimethyl-2-oxo-tert-

-butyl)-2-methylhexahydro-furo[2,3-b]furan (3s)

Colorless syrup; 29.4 mg; 0.065 mmol; Yield: 65%, $[\alpha]_D^{20}$ -4.1 (*c* 0.45, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.30 (dd, *J* = 14.4, 7.0 Hz, 10H), 5.55 (d, *J* = 5.2 Hz, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 4.55 (d, *J* = 10.7 Hz, 2H), 4.44 (d, *J* = 11.6 Hz, 1H), 4.16 (d, *J* = 4.8 Hz, 2H), 3.85 (d, *J* = 8.5 Hz, 1H), 3.75 (s, 1H), 3.08 (s, 1H), 2.82 (d, *J* = 17.1 Hz, 1H), 2.69 (d, *J* = 17.2 Hz, 1H), 2.18 (dd, *J* = 17.7, 8.7 Hz, 2H), 1.41 (s, 3H), 1.12 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 214.1, 138.3, 137.9, 128.4, 128.3, 127.8, 127.7, 127.5, 108.6, 86.7, 80.1, 78.5, 73.4, 72.9, 69.4, 47.6, 47.4, 34.9, 29.7, 26.2; ESI-HRMS: m/z calcd for C₂₈H₃₆NaO₅ [M + Na]⁺: 475.2455; found: 475.2471.

5. The Catalystic Hydrogenation of the product 3a

To a solution of **3a** (0.26 g, 0.51 mmol) in MeOH 10 mL was added 10% Pd-C 0.026 g and HCOOH 0.5 mL. The mixture was stirred at 50 °C under atmosphere of H₂ overnight. The mixture was cooled to room temperature, filter over diatomaceous earth, and concentrated in vacuo, purified by silica gel flash column chromatography (ethyl acetate/ MeOH = 20:1) to afford compound **4** (0.11 g, 0.46 mmol, 90%) as a colourless solid; $[\alpha]_D^{20}$ +30.9 (*c* 0.14, CHCl₃); ¹H NMR (600 MHz, MeOH-d₄): δ 5.36 (d, *J* = 4.5

Hz, 1H), 3.78 (dd, J = 11.9, 2.6 Hz, 1H), 3.74 (dd, J = 11.9, 4.9 Hz, 1H), 3.64 (ddd, J = 9.4, 4.8, 2.6 Hz, 1H), 3.56 (t, J = 8.8 Hz, 1H), 3.35 (t, J = 9.1Hz, 1H), 2.10 – 2.05 (m, 1H), 2.02 (dd, J = 13.1, 7.6 Hz, 1H), 1.97 (dd, J = 13.2, 2.2 Hz, 1H), 1.49 (ddd, J = 16.3, 11.0, 4.8 Hz, 2H), 1.39 (ddd, J = 16.4, 12.2, 6.2 Hz, 2H), 1.35 (s, 3H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, MeOH-d₄): δ 100.8, 80.5, 74.5, 74.0, 69.9, 61.3, 45.3, 45.2, 38.5, 26.5, 17.3, 13.5; ESI-HRMS: m/z calcd for C₁₂H₂₂NaO₅[M+Na]⁺: 269.1359 found: 269.1362.

6. The parallel experiments to verify our hypothesis mechanism:

In order to further test our hypothesis, some parallel experiments were designed as follows. Firstly, promoter BiCl₃ was replaced with trimethylsilyl chloride (TMSCl).³ Under the same condition, the 2-*C*-branched hemiacetal as the exclusive product was isolated (eq 1), and the addition of BiCl₃ to the hemiacetal gave the cyclization product with good yield (eq 2). Then, some other protic acid and catalytic amounts of BiCl₃ were used. Interestingly, in the presence of protic acids including HCl, H_2SO_4 , TsOH, HBr, HOAc, only the 2-*C*-branched hemiacetal **11**was obtained. While catalytic amounts of BiCl₃ furnished the bicyclo-product **3a** with lower yield because of lower conversion. The later experiments seem to support the first reaction pathway (path-1). So it is also possible that the reaction was proceed via one-step process.

Table 2. The reaction of 1,2-cyclopropaneacetylated sugar 1a using different Lewis acid promoted ^a

1	HCl	11	Quant.
2	H_2SO_4	11	Quant.
3	33%HBr-HOAc	11	Quant.
4	TsOH	11	50
5	TFA	11	Quant.
6 ^c	BiCl ₃	3 a	30
7 ^d	BiCl ₃	3 a	54

[a] All reaction were carried out using 0.1 mmol 1,2-cyclopropaneacetylated sugar, 0.4 mmol nucleophile and 2.5 equiv. promoter in 1 mL toluene unless otherwisenoted. [b] Isolated yield. [c] 0.1 equiv. BiCl₃ was used. [d] 0.5 equiv. BiCl₃ was used.

Then, we examined the reaction by the stepwise procedure. It was found that hydrolysis of the 1,2-cyclopropaneacetylated sugar consumed 1.2 equiv. of BiCl₃, while the cyclization from hemiacetal needed 2.0 equiv. of BiCl₃ in order to maintain good yield (eq.4).

The mechanism of perhydrofuran formation has been investigated: ⁴⁻¹¹

 Firstly, it is well know that the BiCl₃ can react with the water to form the BiOCl and HCl as showed in eq5.¹²

$$BiCl_3 + H_2O \longrightarrow BiOCI + 2HCI$$
(5)

2) When we added 2,6-lutidine in our reaction system, only the starting material 1,2-cyclopropanated sugar was recovered (2,6-lutidine has been extensively used as a proton scavenger in the synthesis of sugar orthoesters and some other reactions in which a acid proton was produced¹³).

- 3) We isolated also the hydrolyzed product of the cyclopropanated sugar, while the hydrolyzed product was exposed to the BiCl₃, the fused bicyclic product was obtained (see: the supporting information).
- 4) The commercial BiCl₃ obviously containing acid proton as detected by ¹H-NMR (see NMR spectra), though we described anhydrous conditions in the experimental procedure, the commercial BiCl₃ still worked very well in the reaction. Besides, we tried to dry the BiCl₃ by using SOCl₂ overnight and used it in the glove-box, but it still contained acid proton as detected. From the ¹H-NMR, we obviously observed the presence of the acid proton in 14.3 ppm (see NMR spectra). Thus, it is possible that this acid proton also take part in the reaction.

Commercial BiCl₃ reacted with 0.5 eq 2,6-lutidine in acetone-d₆

BiCl₃ dried by using SOCl₂ reacted with 0.5 eq 2,6-lutidine in acetone-d₆

On the basis of the above results, we considered that the H_2O was taken part in the reaction, and a plausible mechanism is proposed for the formation of perhydrofuro[2,3-*b*]pyran (and furan) derivatives under the BiCl₃ promoted conditions (Scheme S1).

Scheme S1. Plausible mechanism of BiCl₃ promoted cyclization via oxocarbenium ion intermediates

7. Reference:

- 1) Z. X. Wang, L. I. Wiebe, J. Balzarini, E. De Clercq, E. E. Knaus, J. Org. Chem., 2000, 65, 9214.
- 2) F. García-Tellado, P. De Armas, J. J. Marrero-Tellado, Angew. Chem. Int. Ed., 2000, 39, 2727;
- 3) Evans and co-workers has demonstrated that in the presence of H₂O, BiBr₃ and trimethylsilyl bromide could generate HBr, which then catalyzed cyclization δ-trialkylsilyloxy aldehydes and ketones built substituted tetrahydropyrans. See: P. A. Evans, J. Cui, S. J. Gharpure, R. J. Hinkle, *J. Am. Chem. Soc.*, 2003, **125**, 11456.
- L. Hernández-García, L. Quintero, H. Höpfl, M. Sosa, F. Sartillo-Piscil, *Tetrahedron*, 2009, 65, 139.
- 5) B. Xu, M. Shi, Org. Lett., 2003, 5, 1415.
- 6) G. Lemière, B. Cacciuttolo, E. Belhassen, E. Duñach, Org. Lett., 2012, 14, 2750.
- 7) J. Yin, T. Linker, Tetrahedron, 2011, 67, 2447.
- 8) H. W. Shao, S. Ekthawatchai, C.-S. Chen, S.-H. Wu and Wei Zou, J. Org. Chem., 2005, 70,4726.
- 9) H. C. Li, Y. Y. Qiao, Int. J. Quantum. Chem, 2013, DOI:10.1002/qua.24422.
- 10) Q. Tian, L. Dong, X. F. Ma, L. Y. Xu, C. W. Hu and H. W. Shao, J. Org. Chem., 2011, 76, 1045.

Some other H₂O participated cyclopropyl ketones rearrangement reactions, see: (a) P. J. Ranfaing,
G. Combaut, L. Giral, *Bull. Soc. Chim. Fr.*, 1974, 1048; (b) C. U., Jr. Pittman, S. P. McManus, *J. Am. Chem. Soc.*, 1969, *91*, 5915; (c) T. Nakai, E. Wada, M. Okawara, *Tetrahedron Lett.*, 1975, *16*, 1531; (d)
Y. H. Yang, M. Shi, *J. Org. Chem.*, 2005, *70*, 10082; (e) Y. H. Yang, M. Shi, *Eur. J. Org. Chem.*, 2006, 5394; (f) Y. H. Yang, M. Shi, *Org. Lett.*, 2006, *8*, 1709; (g) M. Shi, X.Y.Tang, Y. H. Yang, *Org. Lett.*, 2007, *9*, 4017; (h) M. Shi, X. Y. Tang, Y. H. Yang, *J. Org. Chem.*, 2008, *73*, 5311; (i) X. Y. Tang, M. Shi, *Tetrahedron*, 2009, *65*, 9336.

- H. Suzuki, Y. Matano, Eds. *Organobismuth Chemistry*; Elsevier: Amsterdam, 2001. 11 and some other reaction involved the BiX₃ and H₂O, see: P. A. Evans, J. Cui, S. J. Gharpure and R. J. Hinkle, *J. Am. Chem. Soc.*, 2003, 125, 11456.
- 13) 2,6-lutidine has been extensively used as a proton scavenger in the synthesis of sugar orthoesters and some other reactions in which a acid proton was produced selected examples: (a) F.-Z. Kong, *Carbohydr. Res.*, 2007, **342**, 345; (b) H.-C. Xu, K. D. Moeller, *J. Am. Chem. Soc.*, 2008, **130**, 13542; (c) A. Sutterer, K. D. Moeller, *J. Am. Chem. Soc.*, 2000, **122**, 5636.

8. DFT calculation

To rationalize the selectivity in this reaction, density functional theory $(DFT)^1$ studies have been performed with the GAUSSIAN09 program² at the B3LYP³/6-31+G** level. The structures were optimized with SMD⁴ method in toluene. For all calculated structures, harmonic vibration frequency calculations were carried out and thermal corrections were made. All structures were shown to be transition states (with one imaginary frequency) or stationary points (with no imaginary frequency).

1). INT1 and INT2

Figure S1. The optimized structures of INT1 and INT2. The relative free energies in solvent G_{sol} are in kcal/mol. Calculated at B3LYP³/6-31+G** level.

2). The transition states

As shown in Figure S2, four convex and four concave transition states were located.

Figure S2. The optimized transition states. The Bn groups were omitted for clarity. The selected bond lengths are in angstroms, and the relative free energies in solvent G_{sol} are in kcal/mol. Calculated at B3LYP/6-31+G** level.

In **TS-concave**, hydrogen atom H_a on the trimethylsilyl nucleophile is very close to H_b on the six-membered ring (1.936 Å), which is shorter than the Van de Waals distance between two hydrogen atoms (2.18 Å), indicating there is steric repulsion, thus, the nucleophile will approach the **INT1** from convex face to offer one diastereomeric perhydrofuro[2,3-*b*]pyran and (furan) derivatives.

3). References:

- (1) (a) P. Hohenberg, W. Kohn, *Phys. Rev.*, 1964, *136*, 864. (b) W. Kohn, L. Sham, J. *Phys. Rev.*, 1965, *140*, 1133.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, M. J. Frisch, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R.Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.Voth, P. Salvador, J. J. Dannengerg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03*, Revision D.01; Gaussian, Inc., Wallingford CT, 2004.
- (3) (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev., 1988, B37, 785.
- (4) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem B., 2009, 113, 6378.

4). Calculated Total Energies and Geometrical Coordinates

INT1

E(RB3LYP) = -1539.06562810 Hartree Sum of electronic and thermal Free Energies= -1538.562375 Hartree

C,0,0.1514838759,-0.4291943589,-0.7165544955 C,0,1.0356334269,-1.081657493,-1.8036370379 C,0,0.2658921208,-3.2641088781,-1.0526090555 C,0,-0.8695469796,-2.691592182,-0.2283177782 C,0,-1.1639074595,-1.2117713814,-0.5779528739 H,0,0.5646518899,-1.0241458979,-2.790948772 H,0,0.7115154329,-0.4707008394,0.2220287171 H,0,0.658887633,-4.23154988,-0.7366959378 H,0,-0.5725200006,-2.7726833312,0.8220927599 H,0,-1.6826601858,-1.1849067822,-1.5446025527 O,0,1.2342830629,-2.5171645607,-1.5251727343 C,0,2.4315354338,-0.489034812,-1.8881631049 H,0,3.0252607956,-1.0755727302,-2.6060656057 H,0,2.3483194509,0.5377486142,-2.2726904008 O,0,-0.0212731586,0.9571739455,-0.965887869 O,0,-2.108067702,-0.6564998437,0.3216085368 O,0,-0.699536926,-3.8654148282,-2.377032663 C,0,-2.0761474039,-3.5950939864,-0.5307970589 H,0,-2.096064433,-4.5021996415,0.0913611608 H,0,-3.0393523268,-3.0966165751,-0.3891567934 C.0.-1.867780258,-4.0317094725,-1.9501118511 C,0,-2.9146235122,-4.6211143619,-2.8105094133 H,0,-3.704860993,-3.8741522176,-2.9627019283 H,0,-2.5138595557,-4.9452191907,-3.7710682921 H,0,-3.3858955015,-5.4605437335,-2.2852410501 O,0,3.0145206715,-0.5078629163,-0.6021158936 C,0,4.3401218857,0.0485237107,-0.5671427242 H,0,5.0113706167,-0.5755981039,-1.1751337731 H,0,4.3212070388,1.0570763889,-1.0040367679 C,0,4.8048701072,0.103005475,0.8645432409 C,0,4.577373731,1.2493247929,1.6391572819 C,0,5.4463386058,-0.9971011903,1.4510185245 C,0,4.9803875752,1.2953776685,2.9759980147 H,0,4.084851095,2.1091847242,1.1915324436 C,0,5.849600326,-0.9550861489,2.7880615279 H,0,5.6341830308,-1.8878472183,0.8562917972 C,0,5.6162304208,0.1919829785,3.5530761252 H,0,4.8031223483,2.1915957559,3.5638049248 H,0,6.3510136112,-1.811482471,3.2301050885 H,0,5.9349642467,0.2284157753,4.5909500373 C,0,-0.9349533163,1.3540693918,-2.0161270384 H,0,-1.9443418006,1.0003290959,-1.7802871946 H,0,-0.6230844297,0.9198776172,-2.9753090122 C,0,-1.6345629624,-0.2628346283,1.6341911208 H,0,-1.1003220455,-1.0973200339,2.1084299355 H,0,-0.943738745,0.5803080985,1.5352926863 C,0,-0.9277208537,2.8583931971,-2.1062389746 C,0,0.0183576323,3.5233941532,-2.8989802399 C,0,-1.8681816738,3.6147027454,-1.3932533229 C,0,0.0295871414,4.9178910076,-2.974086985 H,0,0.7472198718,2.9472810653,-3.4639371162 C,0,-1.8606948519,5.0099459388,-1.4667769169 H,0,-2.6121167373,3.10829912,-0.7833260563 C,0,-0.9105915644,5.6637516509,-2.2564968665 H,0,0.7653228116,5.4210902354,-3.5949081334 H,0,-2.5977912674,5.5848472994,-0.9134554072

 $\begin{array}{l} \text{H},0,-0.9062862784,6.7481978226,-2.317419736}\\ \text{C},0,-2.8275219587,0.130346982,2.4660772723}\\ \text{C},0,-3.6563264852,-0.8483747385,3.0340357421}\\ \text{C},0,-3.127332996,1.4815605271,2.6824363074}\\ \text{C},0,-4.7678343198,-0.4846306353,3.7960744758}\\ \text{H},0,-3.4266798039,-1.900749271,2.8835858421}\\ \text{C},0,-4.2376198306,1.8498644666,3.4479222406}\\ \text{H},0,-2.4842731114,2.2473930022,2.2565580923}\\ \text{C},0,-5.0609998829,0.8675742889,4.0035574814}\\ \text{H},0,-5.3996559321,-1.2517419928,4.23478222466}\\ \text{H},0,-4.456267059,2.9010699626,3.6123365959}\\ \text{H},0,-5.922280239,1.1520058476,4.6010922166}\\ \end{array}$

E(RB3LYP) = -1539.05289615 Hartree Sum of electronic and thermal Free Energies = -1538.548535 Hartree C,0,0.8385150324,-0.4834982937,-1.5116482633 C,0,0.8597244112,-0.130002874,-0.0051996978 C,0,0.7458503028,1.4021008629,0.3100706278 C,0,1.2459092305,2.1726212651,-0.9113557287 C,0,2.3159775017,1.3649187723,-1.6132269329 O,0,1.8558746812,0.2685732447,-2.2756278748 C,0,-0.5208681745,-0.3485076444,-2.2055577618 O,0,-0.5763620494,1.8447224711,0.5559757794 C,0,-2.3976543804,2.2366818337,2.0747820653 C,0,-3.5849731669,1.4954306811,2.0166760458 C,0,-4.8227288362,2.1215731276,2.191484183 C,0,-4.8835633534,3.4980554695,2.4233527061 C,0,-3.7030518704,4.2464590221,2.4840390871 C,0,-2.4688305486,3.6173824982,2.3135329302 C,0,-1.0617870329,1.5672506457,1.8883407149 O,0,2.1045899259,-0.5362047088,0.5649804563 C,0,3.5875031404,-2.200279399,1.4419030715 C,0,3.9327403834,-2.0323521844,2.7900457574 C,0,5.2400285504,-2.2691699129,3.2231332877 C,0,6.216691643,-2.676568679,2.3095683852 C,0,5.8813863213,-2.8485921824,0.9628636331 C,0,4.5735734202,-2.6119906823,0.5336795635 C,0,2.1857975643,-1.9227824129,0.9670522988 O,0,-1.3572393291,-1.3476412179,-1.649873752 C,0,-3.4573997701,-2.51506408,-1.6539110673 C,0,-4.5399077894,-2.1803921513,-0.8301929343 C,0,-5.3038345063,-3.1779779596,-0.2166173572 C,0,-4.9874205662,-4.5234714286,-0.4194299613

C,0,-3.9084889332,-4.8679144715,-1.2411433187 C,0,-3.1520098536,-3.8694939628,-1.8572695976 C,0,-2.6318490119,-1.439509535,-2.3105924834 C,0,1.8909067451,3.5639087934,-0.8522391199 C,0,2.6485032368,3.5660093927,-2.1447960333 O,0,2.841392027,2.3974605336,-2.6186961053 C,0,3.1453924742,4.7369235872,-2.8758358935 H,0,1.1515152435,-1.524080288,-1.6179969393 H,0,0.0207830354,-0.6591680542,0.4618067844 H,0,1.3823111901,1.5843351244,1.1872357947 H,0,0.4011761705,2.2381510672,-1.6072465385 H,0,3.2114209263,1.1536381403,-1.0150537018 H,0,-0.3732701286,-0.5092138306,-3.2843885635 H,0,-0.9693263398,0.6458420326,-2.0669246793 H,0,-3.5398765726,0.4235688742,1.8404405533 H.0,-5.7364180455,1.5354557315,2.1516097091 H,0,-5.8442579856,3.9849937797,2.5641243149 H,0,-3.7454629398,5.3150577629,2.6748441048 H,0,-1.5519122281,4.1989444616,2.3736040004 H,0,-1.1542909216,0.4841462522,2.0367494097 H,0,-0.3299778246,1.9501995861,2.6139565586 H,0,3.1742059521,-1.7209504441,3.5040916541 H,0,5.4942548036,-2.1426137749,4.2716725974 H,0,7.2318923509,-2.8670757426,2.6459073905 H,0,6.6343963575,-3.1747684006,0.2510633413 H,0,4.3134324003,-2.7544197746,-0.512541567 H,0,1.4546982024,-2.1009312293,1.766879653 H,0,1.9351369054,-2.5773812462,0.1233045246 H,0,-4.7903170471,-1.1339737826,-0.6745314271 H,0,-6.1449210111,-2.9050937827,0.4144574776 H,0,-5.5807141412,-5.3004486616,0.0541494338 H,0,-3.663322691,-5.9131348248,-1.407217953 H,0,-2.3195131618,-4.1412182799,-2.5014116796 H,0,-2.4638723247,-1.6691654238,-3.3736675642 H,0,-3.1473009908,-0.4703840378,-2.2496559435 H,0,1.2066333965,4.4125782309,-0.7785806079 H,0,2.6282448659,3.6614894507,-0.0383437323 H,0,3.7910512235,4.4604405091,-3.7097015183 H,0,2.2734428742,5.2952082361,-3.2482664547 H,0,3.6591470365,5.4108989181,-2.1802601423

TS-convex

E(RB3LYP) = -2065.67266783 Hartree

Sum of electronic and thermal Free Energies= -2064.999332 Hartree

C,0,-1.407894294,0.1216024545,-0.6056767756 C,0,-1.1415915435,1.2117634788,-1.6684022417 C,0,1.1895486454,1.302571419,-1.0000969143 C,0,1.083390304,0.0549946234,-0.1214766769 C,0,-0.1712533278,-0.7793713435,-0.4689258425 H,0,-1.0045918721,0.7592261393,-2.6588281278 H,0,-1.608789532,0.6356818001,0.3380434187 H,0,1.8820322535,2.0509799645,-0.6033430678 H,0,1.0504118289,0.3577384313,0.9280731925 H,0,0.0039139429,-1.259623135,-1.4393159909 O,0,0.0583103583,1.9669753105,-1.3464236855 C,0,-2.2660957356,2.2292037282,-1.7729907761 H,0,-1.9698726035,3.0134473117,-2.4868489062 H,0,-3.1574753755,1.7234789966,-2.1706631826 O,0,-2.6110611152,-0.588075143,-0.8851385094 O,0,-0.3177437644,-1.8773482656,0.4249113214 O,0,1.8728992736,0.7449783245,-2.2331999513 C,0,2.3838271893,-0.7050699567,-0.4621232126 H,0,3.1842767812,-0.4823502673,0.245890986 H,0,2.2448884277,-1.7907572168,-0.4553889743 C,0,2.7078329982,-0.2222266917,-1.8770373249 C,0,3.0561243406,-1.1794503308,-2.9793670248 H,0,2.1441436469,-1.7370311447,-3.2317459569 H,0,3.3923635951,-0.6593808432,-3.8787435422 H,0,3.8144932403,-1.8938678078,-2.6561001168 O,0,-2.5288033047,2.7808154416,-0.4964207938 C,0,-3.6248386204,3.7056787865,-0.506021352 H,0,-3.3893030021,4.5470863539,-1.1747561303 H,0,-4.5211722429,3.2014173712,-0.896986923 C,0,-3.8680910635,4.1977310509,0.8971407309 C,0,-4.6906038796,3.4709855564,1.769998851 C,0,-3.2656224464,5.3766920253,1.3564234438 C,0,-4.9055517281,3.9128938879,3.0774536661 H,0,-5.1654029235,2.5574199206,1.4205889845 C,0,-3.479290409,5.8229555246,2.6635518929 H.0,-2.6294578057.5.9495706194,0.686086764 C,0,-4.3001988345,5.0909994546,3.5265192825 H,0,-5.5495664705,3.3438905016,3.7421430643 H,0,-3.0117053858,6.7421070872,3.0054850281 H,0,-4.4726406406,5.4390515101,4.5410935693 C,0,-2.5860394978,-1.588515241,-1.9263539892 H,0,-1.9288205812,-2.4139870713,-1.629869954

H,0,-2.2077789943,-1.159583319,-2.8638780511 C,0,-0.8876390956,-1.6032727881,1.7253419168 H,0,-0.3868410558,-0.7422787864,2.1867979913 H,0,-1.9508921866,-1.3662046182,1.6137615991 C,0,-3.9903884202,-2.100207501,-2.1259957369 C,0,-4.8653836743,-1.4699059858,-3.0220459108 C,0,-4.4439362679,-3.2160975901,-1.409274933 C,0,-6.170428685,-1.9381940886,-3.1918430741 H,0,-4.5233973476,-0.6107274543,-3.5938761922 C,0,-5.7482754176,-3.6882107931,-1.5762546498 H,0,-3.7698472811,-3.7190975167,-0.7206670271 C,0,-6.6147338002,-3.0482522632,-2.466952081 H,0,-6.8375994468,-1.4421050643,-3.8910795644 H,0,-6.085547401,-4.5555471474,-1.0159041201 H,0,-7.62832273,-3.4154658235,-2.5998223636 C.0.-0.7089698677.-2.8249332441.2.5900631766 C,0,0.4967260523,-3.0474972192,3.2711484991 C,0,-1.7432670752,-3.7607429723,2.7235501476 C,0,0.6702618298,-4.1858969047,4.0607131333 H,0,1.3015706104,-2.3206879688,3.1873193878 C,0,-1.5745798862,-4.9012561938,3.5137486219 H,0,-2.687354173,-3.5919884177,2.2121914081 C,0,-0.3666660882,-5.1168022311,4.1823507379 H,0,1.6074078444,-4.3436417748,4.5874067484 H,0,-2.3859505524,-5.6169734098,3.6108759511 H,0,-0.2351039983,-6.0005988937,4.7999706531 C,0,5.4895901766,0.0206269188,-1.4325854682 C,0,4.4758129851,0.9232783958,-1.6957324889 H,0,5.9403314519,-0.4856702371,-2.286909089 H,0,4.1328925947,1.569306333,-0.8909249469 H,0,4.3840476138,1.3233175719,-2.7006201167 C,0,6.015207408,-0.3261603601,-0.1301773032 H,0,5.3641136347,-0.0316748337,0.7003938235 H,0,6.2972927667,-1.3827367422,-0.0523781678 Si,0,7.7164410157,0.6290842826,0.2249379008 C,0,8.2323939411,0.0367636518,1.9345362095 H,0,7.4774028275,0.2729352093,2.6931129243 H,0,8.4098758415,-1.0445555317,1.956303195 H,0,9.1649662263,0.5296739893,2.2359998017 C,0,7.3611342461,2.4763132671,0.2060121187 H,0,6.5833401669,2.7495787564,0.9290108041 H,0,8.2661953363,3.0335620117,0.4784866592 H,0,7.0466129145,2.8306407461,-0.7821164226 C,0,8.9661208243,0.1386442118,-1.092230408

H,0,9.1222684758,-0.9460836508,-1.1235686584 H,0,8.669157223,0.4690612001,-2.0942927301 H,0,9.937811867,0.5994769455,-0.8750746929

TS-convex2

E(RB3LYP) = -2065.67343296 Hartree Sum of electronic and thermal Free Energies= -2064.998846 Hartree

C,0,1.1247807655,0.0856620585,0.3876640962 C,0,0.1126754553,0.9643622829,1.1578433872 C,0,-1.706267625,0.0334396091,-0.1396783169 C,0,-0.839170822,-1.0837922612,-0.7212789198 C,0,0.4795647987,-1.2716111013,0.0675094109 H,0,-0.1550697522,0.4974395953,2.1144464318 H,0,1.3712026803,0.6155699006,-0.5366773686 H,0,-2.4650050814,0.3933061468,-0.84066777 H,0,-0.6106814846,-0.8455938415,-1.7628368054 H,0,0.2392516379,-1.7645105375,1.0178911833 O,0,-1.1073037667,1.1324287233,0.3842887951 C,0,0.6281691693,2.3634548898,1.4505010616 H,0,-0.1814789797,2.9483608415,1.9147267636 H,0,1.452089525,2.2875914883,2.1743160268 O,0,2.3640278535,-0.0103388906,1.0831357315 O,0,1.3284291664,-2.2086999006,-0.5859419124 O,0,-2.4794741864,-0.7054320783,0.9385883877 C,0,-1.7556401709,-2.3209064158,-0.6051108156 H,0,-2.2903625497,-2.5287672626,-1.5322871402 H,0,-1.1977824893,-3.227800361,-0.3490655041 C,0,-2.6914609535,-1.9526369494,0.553357895 C,0,-2.9631501057,-2.9276380872,1.6613276402 H,0,-1.9994354734,-3.1579771327,2.1359377535 H,0,-3.6244651628,-2.5059561102,2.419835574 H,0,-3.3764319142,-3.8628539685,1.2791248466 O,0,1.0673815108,2.9733556235,0.2523041172 C,0,1.6253202413,4.2766800997,0.4704179761 H,0,0.8582558854,4.9359719946,0.9037088049 H,0,2.452081887,4.1994510956,1.1926395071 C,0,2.1180609829,4.8320843344,-0.8404716231 C,0,3.3820441912,4.4734523075,-1.3318093324 C,0,1.3194761439,5.702896081,-1.5936778535 C,0,3.8368016953,4.9730477318,-2.554121472 H,0,4.0111889325,3.8022403878,-0.7522402935 C,0,1.772263145,6.2071887176,-2.8162039253

H,0,0.3402848314,5.9910748435,-1.2186266444 C,0,3.0321774481,5.8419611262,-3.2986159765 H,0,4.8195775032,4.6914970149,-2.9218933309 H,0,1.1457215635,6.8865378496,-3.3873958395 H,0,3.3882704142,6.2369016898,-4.2459798588 C,0,2.4353701001,-0.8793869899,2.234283165 H,0,2.3543715049,-1.9244390156,1.9125115608 H,0,1.6153372717,-0.6633949256,2.9316104158 C,0,2.0697911512,-1.7422050112,-1.7365760434 H,0,1.4058121758,-1.2103532635,-2.4302856688 H,0,2.8518433763,-1.0495922634,-1.4073776878 C,0,3.7591852211,-0.6495796395,2.9193624918 C,0,3.8808775849,0.3011803087,3.942412046 C,0,4.8936396708,-1.3767850453,2.5334071881 C,0,5.1107439082,0.5243379086,4.566232135 H.0,3.0067633242,0.8664664811,4.2570293631 C,0,6.1258255835,-1.1563117245,3.1536927579 H,0,4.8096644904,-2.1227846088,1.7472159548 C,0,6.236829636,-0.2039440717,4.1711168813 H,0,5.1892767581,1.2609014672,5.3608886799 H,0,6.9962999433,-1.7291698423,2.84671665 H,0,7.1932282686,-0.0348568624,4.6575764261 C,0,2.6766396016,-2.9374788261,-2.4254544798 C,0,1.9850925954,-3.6015683338,-3.4484432712 C,0,3.9413099463,-3.4083001336,-2.0470390948 C,0,2.5421374281,-4.7173176497,-4.0780045101 H,0,1.0081913107,-3.2379095193,-3.7598128822 C,0,4.5015612866,-4.5249591087,-2.672342138 H,0,4.4909706826,-2.8927761875,-1.2637391339 C,0,3.8022080696,-5.1819395256,-3.6889425824 H,0,1.9995426892,-5.217969393,-4.8750429843 H,0,5.4844692229,-4.8767221705,-2.3718857436 H,0,4.2401117582,-6.0459000106,-4.1806875297 C,0,-5.4240510869,-1.5371541422,0.4818387517 C,0,-4.5493370104,-1.9018940055,-0.5205787664 H,0,-5.8713480291,-2.3370874689,1.0731406535 H,0,-4.5349294578,-2.9338081442,-0.8592534687 H,0,-4.2387817651,-1.1537439987,-1.245940333 C,0,-5.775123079,-0.184190298,0.8559646027 H,0,-5.8726201838,-0.0690989765,1.9424320179 H,0,-5.0937470154,0.570405726,0.4494150877 Si,0,-7.5675366522,0.3189805763,0.198141008 C,0,-7.873247543,2.0300894048,0.9187986399 H,0,-7.8737255263,2.0138759222,2.0149017088

H,0,-7.1189681053,2.7549334949,0.5913532067 H,0,-8.851977909,2.4062723101,0.5955630377 C,0,-8.8123170328,-0.9365345996,0.843871443 H,0,-8.7612853397,-1.0398362617,1.9344816011 H,0,-9.8321859366,-0.6162823653,0.5970953062 H,0,-8.6711426072,-1.9291930649,0.4008799391 C,0,-7.5196246932,0.35166666663,-1.6824848082 H,0,-6.7494518828,1.0342492383,-2.0608772813 H,0,-7.3365055982,-0.6403938839,-2.1112496211 H,0,-8.4825573532,0.7014556997,-2.0749425986

TS-convex3

E(RB3LYP) = -2065.67259686 Hartree Sum of electronic and thermal Free Energies= -2064.998975 Hartree

C.0.-1.407822475,0.1439546481,-0.4991152354 C,0,-0.9336469107,1.3022001535,-1.4049268946 C,0,1.2307162682,1.2808714537,-0.3022338013 C,0,0.958717963,-0.0532375681,0.399458385 C,0,-0.2331274598,-0.8094447855,-0.2348925057 H,0,-0.6119354501,0.9252967635,-2.3844903866 H,0,-1.7507167551,0.5925234965,0.4374877515 H,0,1.8197059344,1.9728248721,0.3064747669 H,0,0.7490948433,0.138721736,1.4547229435 H,0,0.1003482274,-1.2148376089,-1.1978195885 O,0,0.1884214001,1.9971164669,-0.7952957054 C,0,-2.0039279726,2.3560994148,-1.637944161 H,0,-1.5661211902,3.1834194264,-2.2180978364 H,0,-2.8113298722,1.9081786027,-2.2348084213 O,0,-2.5663380394,-0.4923638877,-1.0288348177 O,0,-0.5590423813,-1.9721302334,0.5188824413 O,0,2.1569757972,0.8604216942,-1.4236888811 C,0,2.286407702,-0.8205893318,0.2091453425 H,0,2.9306617092,-0.7561341564,1.0862111421 H,0,2.1208304699,-1.8849858768,0.0129310948 C,0,2.908524853,-0.1560708326,-1.0234653359 C.0.3.5006881898,-0.9585275337,-2.1408907301 H,0,2.6737882094,-1.4825510827,-2.63872326 H,0,3.9878612964,-0.3224682421,-2.8830164213 H,0,4.2028835177,-1.7064582276,-1.7716203166 O,0,-2.4928058964,2.8175103053,-0.3929667504 C,0,-3.5364677444,3.791077749,-0.5313066268 H,0,-3.1568880007,4.655794031,-1.0962775816

H,0,-4.3704306193,3.3531909261,-1.0995959746 C,0,-3.9958861652,4.2167185757,0.8390344717 C,0,-5.0290017647,3.5277504455,1.4898597526 C,0,-3.3829990534,5.2949696678,1.4925938049 C,0,-5.4409709575,3.9072221814,2.770001884 H,0,-5.5133033222,2.6923351429,0.9899691298 C,0,-3.7916582268,5.6772570588,2.7727548035 H,0,-2.584062324,5.8387388077,0.994077668 C.0.-4.8223274531,4.9832854487,3.4139362114 H,0,-6.2463938465,3.3686795774,3.2615306419 H,0,-3.3118096134,6.5182065571,3.2657594706 H,0,-5.1454237128,5.2832815132,4.406884566 C,0,-2.4006066424,-1.4033883838,-2.1371155097 H,0,-1.8326807649,-2.2819837765,-1.8096307127 H,0,-1.8556989024,-0.9196739427,-2.9580559702 C.0.-1.3123795456.-1.7801596264.1.7371701463 H,0,-0.8408877995,-1.005906228,2.3568673219 H,0,-2.3284913483,-1.4540922112,1.4916661097 C,0,-3.7697031631,-1.8224727348,-2.6102827396 C,0,-4.4115496488,-1.1404929552,-3.6532578995 C,0,-4.4266341925,-2.9014472946,-2.002051949 C,0,-5.6870188639,-1.5233490363,-4.0766686241 H,0,-3.9096519293,-0.3084101323,-4.1417843573 C,0,-5.702310438,-3.2862186816,-2.4206369607 H,0,-3.9327897597,-3.4444235896,-1.2003693895 C,0,-6.3356927642,-2.5964823345,-3.4588582857 H,0,-6.171646668,-0.9886298677,-4.8887025998 H,0,-6.1986545646,-4.1255463556,-1.941695708 H,0,-7.3262410785,-2.8973752359,-3.7879731845 C,0,-1.3473388214,-3.0882693043,2.4850230989 C,0,-0.2510226376,-3.4969509722,3.2587873011 C,0,-2.4753288756,-3.9165074215,2.4204192091 C,0,-0.2767851066,-4.7116541941,3.9461528125 H,0,0.625281822,-2.8564613464,3.3272790574 C,0,-2.5063848737,-5.1330496835,3.1086092133 H,0,-3.3361891233,-3.6045049942,1.8345587393 C,0,-1.4065826905,-5.5333661547,3.8716050496 H,0,0.5772002703,-5.0136504208,4.5461276832 H,0,-3.3892768792,-5.7634054085,3.0530337484 H,0,-1.4307248548,-6.4762455738,4.410360098 C,0,5.5331557748,-0.013785852,0.0453913523 C,0,4.5659979104,0.9212117182,-0.2762031378 H,0,5.4414875687,-0.5221758911,1.0068553113 H,0,3.9970951531,1.3632250389,0.5372566672

H,0,4.7113894315,1.5459609299,-1.1539222191 C,0,6.6677703653,-0.3860043797,-0.7709205553 H,0,6.9357510733,-1.4440965895,-0.6724321966 H,0,6.563540636,-0.1014275954,-1.8231910074 Si,0,8.2987903134,0.5621779711,-0.1634188917 C,0,9.678264858,-0.1552372439,-1.2220453443 H,0,9.812184865,-1.2287615183,-1.0461615907 H,0,9.4912788283,-0.0066163876,-2.2917933029 H.0,10.628906439,0.3380574936,-0.9837657753 C,0,8.5588777789,0.194884183,1.6637249084 H,0,8.5580027264,-0.8822894774,1.868382325 H,0,9.5304064577,0.5850956999,1.99102643 H,0,7.7936485752,0.662101044,2.2943139545 C,0,8.0512348713,2.3988550105,-0.4835793539 H,0,7.8341942085,2.6041843597,-1.5385732949 H.0,7.2378634901,2.8192965737,0.1185081692 H,0,8.9635858988,2.951121756,-0.2264939733

TS-convex4

E(RB3LYP) = -2065.67245180 Hartree Sum of electronic and thermal Free Energies= -2064.997925 Hartree

C,0,1.0974598038,0.0992890129,0.4104334282 C,0,0.0501538011,0.9249311044,1.1902932042 C,0,-1.7262191565,-0.0810895365,-0.1193776535 C,0,-0.8048497167,-1.1430601811,-0.7216760759 C,0,0.5135025854,-1.2805291491,0.0760014232 H,0,-0.1886088633,0.4468603456,2.1487849596 H,0,1.3182961419,0.6513313239,-0.50695849 H,0,-2.5043361015,0.2531621241,-0.8119160297 H,0,-0.5829694413,-0.8767905265,-1.7580637572 H,0,0.2823348162,-1.7858592026,1.0216053921 O,0,-1.1821125307,1.0370515999,0.4245251242 C,0,0.5038944194,2.3469348587,1.47831102 H,0,-0.3309745125,2.8993805783,1.93713395 H,0,1.3282791201,2.3082834505,2.2045390306 O.0.2.3423140548.0.0490687966.1.1004329992 O,0,1.4092280865,-2.1764747941,-0.5712719722 O,0,-2.4596787048,-0.8780601019,0.9436612546 C,0,-1.659975484,-2.4255037829,-0.6322870307 H,0,-2.1914486443,-2.6284947535,-1.5626534966 H,0,-1.0578410411,-3.3118415351,-0.4097635061 C,0,-2.6042610406,-2.1296177663,0.5400838197

C,0,-2.818481918,-3.1352092545,1.6286666153 H,0,-1.8428708193,-3.305347743,2.1049632653 H,0,-3.5116782667,-2.7756770556,2.390518099 H,0,-3.1617924362,-4.0916439484,1.2299735904 O,0,0.9232226362,2.9659305056,0.2772930928 C,0,1.4761043158,4.2720028897,0.4867668743 H,0,0.7026761221,4.9412504084,0.8916923433 H,0,2.2871141629,4.2037868245,1.2276496415 C.0.2.0021610618,4.8038054029,-0.8217199561 C,0,3.2245790695,4.3402543659,-1.3311616623 C,0,1.2825421578,5.7591288099,-1.5509986175 C,0,3.7146602581,4.8190336336,-2.5475702155 H,0,3.7934476637,3.6036238119,-0.7692262887 C,0,1.7724356061,6.2445246923,-2.7674640521 H,0,0.3363647944,6.128170283,-1.1628086368 C.0.2.9891107678,5.7742374558,-3.2681215917 H,0,4.6644988983,4.4553333291,-2.9295618735 H,0,1.2073791019,6.9901810316,-3.3198059 H,0,3.374325332,6.1533879936,-4.2105656297 C,0,2.4624128167,-0.8401860913,2.231547546 H,0,2.3763769617,-1.8803064371,1.8974320553 H,0,1.6684057078,-0.6407489414,2.96343693 C,0,2.1476223128,-1.6700998872,-1.7066829804 H,0,1.4705351562,-1.1606716541,-2.4050784269 H,0,2.894448475,-0.9465820371,-1.3628895164 C,0,3.8111469797,-0.6175543284,2.8687614588 C,0,3.9928972234,0.3877989949,3.8291143129 C,0,4.9068775211,-1.412737654,2.5058965651 C,0,5.2444915485,0.5995266258,4.411383113 H,0,3.1494256775,1.0060644377,4.1266713837 C,0,6.160733125,-1.2054757973,3.0871766518 H,0,4.7754546724,-2.2009291483,1.7688165372 C,0,6.331819083,-0.1977839918,4.0404711091 H,0,5.3705193869,1.3800798368,5.1563663442 H,0,7.0006947439,-1.8318521302,2.8003308875 H,0,7.3045770473,-0.0378516887,4.4967706214 C,0,2.8173384428,-2.8327147905,-2.3940780641 C,0,2.1046708037,-3.6334775585,-3.2986764218 C,0,4.1613552339,-3.1340146973,-2.13718097 C,0,2.7196027449,-4.7163774288,-3.9298857695 H,0,1.0637893708,-3.4033344556,-3.5142651628 C,0,4.7816694993,-4.2163085384,-2.7682110093 H,0,4.7260444615,-2.5139831904,-1.4455880225 C,0,4.0613511808,-5.0100353645,-3.6645990852 H,0,2.1582067167,-5.3251597159,-4.6331428729 H,0,5.8258603493,-4.4356026256,-2.5641130907 H,0,4.5431954246,-5.8482026906,-4.1599311934 C,0,-5.4138897431,-1.8975427001,0.4432714978 C,0,-4.470170637,-2.1820643544,-0.5226649836 H,0,-5.5492750707,-0.849011565,0.7121490425 H,0,-4.3983783659,-3.194759944,-0.912666227 H,0,-4.169831088,-1.3846146282,-1.1959598549 C,0,-6.2401810506,-2.8549083501,1.1474870167 H,0,-5.8736758287,-3.8845205994,1.0766391505 H,0,-6.4153148096,-2.5721600327,2.1922796516 Si,0,-8.0633371928,-2.9156089411,0.3799670212 C,0,-8.9925011869,-4.1354392642,1.4698589032 H,0,-8.5321927238,-5.1301359157,1.4549769765 H,0,-9.0390078257,-3.7985621592,2.5118260918 H.0,-10.0243260523,-4.2456762693,1.113765776 C,0,-7.9285535411,-3.5316606665,-1.3935814984 H,0,-7.3991446907,-4.4901573013,-1.4515875762 H,0,-8.9295610005,-3.6882312081,-1.8143554215 H,0,-7.4100737766,-2.8174280259,-2.0432825172 C,0,-8.8095771383,-1.1902191512,0.4670801733 H,0,-8.7871881662,-0.7840022029,1.4853863252 H,0,-8.2947254124,-0.4826917259,-0.1931509209 H,0,-9.8604445565,-1.2189258789,0.1531370311

TS-concave

E(RB3LYP) = -2065.66873022 Hartree Sum of electronic and thermal Free Energies= -2064.995704 Hartree

 $\begin{array}{l} C,0,1.0760639029,-0.4074656738,-0.28092038\\ C,0,1.4460083858,-1.4617820765,-1.3499913328\\ C,0,0.5782861521,-3.2147905418,0.1006415777\\ C,0,-0.1230842326,-2.2116177139,1.0208376498\\ C,0,-0.2455059804,-0.8054798671,0.3920749353\\ H,0,0.6903070086,-1.4944333901,-2.1460151682\\ H,0,1.8872483397,-0.3977807085,0.4521100419\\ H,0,1.0097882706,-4.0549646071,0.6504991957\\ H,0,0.4620500214,-2.1392865263,1.9413796857\\ H,0,-1.016104713,-0.8384485486,-0.3823650233\\ O,0,1.5343520395,-2.784622819,-0.7581414716\\ C,0,2.7980145036,-1.1977397361,-1.9948955777\\ H,0,3.0386902978,-2.0316642371,-2.672548398\\ H,0,2.725094731,-0.2790139914,-2.5944001664 \end{array}$

O,0,1.077014784,0.9103218774,-0.8222307078 O,0,-0.7643306647,0.1417759229,1.3200128401 O,0,-0.5807192716,-3.8822929575,-0.6416682752 C,0,-1.4741180347,-2.8998287859,1.2827970101 H,0,-1.4043150071,-3.5889676257,2.1358434957 H,0,-2.2839816207,-2.2032818307,1.5026364551 C,0,-1.7090207211,-3.7620735256,0.0489671772 C,0,-2.535366729,-5.0149567505,0.1376188139 H.0.-3.4899407264.-4.8271439272.0.6321829918 H,0,-2.7045951768,-5.4656407289,-0.8421202981 H,0,-1.9662391168,-5.7341470816,0.7416029211 O,0,3.779615229,-1.0649592567,-0.9856575968 C,0,5.0756120841,-0.7303355592,-1.500793438 H,0,5.4079614512,-1.5152463694,-2.1963334277 H,0,5.0109595308,0.2152091883,-2.0599013157 C,0,6.0409964437,-0.6013523444,-0.3508717472 C,0,6.1681825262,0.6138548698,0.3371913806 C,0,6.8138621168,-1.6968657885,0.0578171102 C,0,7.0469892453,0.7306457691,1.4167617596 H,0,5.5774048464,1.4710306566,0.0234073745 C,0,7.6949673836,-1.5836908671,1.1365580639 H,0,6.7256369481,-2.6418040988,-0.4727648868 C,0,7.8128437645,-0.3686919449,1.8178279806 H,0,7.1406332691,1.6787574866,1.9388834845 H,0,8.2921383769,-2.4389953291,1.4400521528 H,0,8.5020663845,-0.2770060933,2.6525388299 C,0,-0.0133588935,1.293795883,-1.684047596 H,0,-0.9501182466,1.3118179266,-1.1143694029 H,0,-0.1193514184,0.5781669492,-2.5103892006 C,0,0.1393343791,0.6659375907,2.3208137945 H,0,0.6096467003,-0.1549411902,2.8776427917 H,0,0.9255418809,1.2517602615,1.8336104398 C,0,0.2742381142,2.6680939974,-2.2346166762 C,0,1.1084461285,2.8307495018,-3.3502311993 C,0,-0.2871992812,3.8047441052,-1.6377523538 C,0,1.3836170121,4.1036318666,-3.8533835186 H,0,1.5432604483,1.9570074909,-3.829451943 C,0,-0.017192345,5.0806618406,-2.1404735165 H,0,-0.9411841835,3.6900968767,-0.7770331655 C,0,0.8205192427,5.2320323725,-3.2485334276 H,0,2.0306694013,4.2156322272,-4.71867377 H,0,-0.4613786955,5.9531173064,-1.6698077951 H,0,1.0306875914,6.2224387784,-3.6419125524 C,0,-0.6568205946,1.5371527189,3.258535165

C,0,-1.3528682809,0.9768066489,4.339429927 C,0,-0.7194350984,2.9228431228,3.0578790739 C,0,-2.1016040215,1.7833364212,5.1993119936 H,0,-1.3004718275,-0.0955777265,4.5135708193 C,0,-1.4667695376,3.7337409029,3.9165401728 H,0,-0.1711872664,3.3682858751,2.2316638528 C,0,-2.1608405096,3.164723121,4.9879654687 H,0,-2.6292653092,1.3378170039,6.0380473678 H.0.-1.5005242713,4.8072545624,3.7537330086 H,0,-2.7366328117,3.7942652295,5.6603665239 C,0,-4.0670915999,-2.3910987265,-0.6556174872 C,0,-2.8951753068,-2.6641991228,-1.3377689547 H,0,-4.8260845898,-3.1745918621,-0.634032783 H,0,-2.8845093219,-3.4705884842,-2.0644722616 H,0,-2.2029908636,-1.8511184058,-1.5293187005 C,0,-4.3823303366,-1.1708257802,0.0553368042 H,0,-4.9372144037,-1.3568430873,0.9833031349 H,0,-3.5133141127,-0.5338753398,0.2464776531 Si,0,-5.6404379671,-0.0280825342,-0.9611172787 C,0,-5.8177969875,1.5130019793,0.102319344 H,0,-6.2052961547,1.2779493578,1.1002306978 H,0,-4.8612929311,2.0330955741,0.2267215879 H,0,-6.5175373579,2.2163672793,-0.3657495404 C,0,-7.2691964792,-0.9550813781,-1.1302528642 H,0,-7.6740123729,-1.2449521227,-0.1533465815 H,0,-8.0176151125,-0.3153837042,-1.614096736 H,0,-7.1750290589,-1.8608019463,-1.7402712596 C,0,-4.8764194019,0.3596607526,-2.635959287 H,0,-3.8993757607,0.8468144097,-2.536759205 H,0,-4.7483413195,-0.5391458384,-3.2497863742 H,0,-5.5243225449,1.0459921581,-3.1951435129

TS-concave2

E(RB3LYP) = -2065.66743003 Hartree Sum of electronic and thermal Free Energies= -2064.994059 Hartree

C,0,-0.7421348775,-0.2402836506,-0.2005637741 C,0,-0.0372295347,-1.6108935961,-0.0856730119 C,0,0.6254190267,-1.4436533889,-2.4257930323 C,0,0.340426895,0.0629720802,-2.4646576573 C,0,0.1228600961,0.6874344072,-1.0671618023 H,0,0.9492188927,-1.5026696863,0.3854054427 H,0,-1.7096697468,-0.4178909074,-0.6786597801 H,0,0.327629347,-1.9489293764,-3.3480033235 H,0,-0.5742600782,0.2024071878,-3.0465880791 H,0,1.0933874959,0.7914334868,-0.5727950091 O,0,0.1476771762,-2.1939274723,-1.4025524193 C,0,-0.8316844567,-2.6311288798,0.7149410208 H,0,-0.3047245645,-3.5977019213,0.6789267226 H,0,-0.8709254824,-2.3019372754,1.76378606 O.0.-1.0725079536.0.2956181308.1.0753704047 O,0,-0.3346112694,2.0306539823,-1.1631360378 O,0,2.1517348643,-1.5258881629,-2.5088106204 C,0,1.557052425,0.6240192148,-3.2225649441 H,0,1.368955852,0.6614019444,-4.3040932662 H,0,1.8340720839,1.6337583975,-2.9170840476 C,0,2.6583234018,-0.4130878976,-3.0148396597 C.0.3.7198625979.-0.5971344143.-4.0653202743 H,0,4.2643430714,0.3284418332,-4.2605453329 H,0,4.4132849217,-1.3976566178,-3.8062868606 H,0,3.2024683937,-0.887149314,-4.9903576583 O,0,-2.130741852,-2.7429051911,0.1703787015 C,0,-2.9660450865,-3.6605709783,0.8898639802 H,0,-2.5059424261,-4.660093816,0.877480707 H,0,-3.0473879983,-3.3351487301,1.9376505217 C,0,-4.3248025965,-3.697510992,0.2403185419 C,0,-5.330535106,-2.8086527833,0.6450642553 C,0,-4.5964684401,-4.6057185699,-0.7923253969 C,0,-6.5837186026,-2.8240653263,0.0275948047 H,0,-5.1301063399,-2.1044853887,1.4488262786 C,0,-5.8485234691,-4.6243119467,-1.412232853 H,0,-3.824237741,-5.3022105746,-1.110297071 C,0,-6.8445851352,-3.7323061403,-1.0029524959 H,0,-7.3560388314,-2.1330320985,0.3535770279 H,0,-6.0487687951,-5.3355781766,-2.2087168839 H,0,-7.820254766,-3.7488623002,-1.480405695 C,0,-0.0170022927,0.8811408248,1.8653244732 H,0,0.3894095037,1.7593886019,1.3512377546 H,0,0.7945807082,0.1562860789,2.0193771603 C,0,-1.7173345652,2.2478259687,-1.5257016026 H,0,-1.9375809239,1.7602331524,-2.4846861707 H,0,-2.3738097611,1.8204703272,-0.7608848276 C,0,-0.5925430551,1.291428648,3.1973815524 C,0,-0.725171912,0.3619669239,4.239040578 C,0,-1.0076863264,2.6125944514,3.4118451077 C,0,-1.2648833542,0.7431408937,5.4692590398

H,0,-0.4027100171,-0.6655754476,4.0888104707 C,0,-1.5469236896,2.9986422285,4.642009407 H,0,-0.9036229293,3.34243586,2.6130023825 C,0,-1.677496574,2.0638922063,5.6726084436 H,0,-1.3589664797,0.013958088,6.2690257983 H,0,-1.8612547813,4.0269823855,4.7960579431 H,0,-2.093647129,2.3632296744,6.6302745738 C,0,-1.9445440162,3.7342771974,-1.6347332885 C.0.-1.5110276961,4.4421277238,-2.765616079 C,0,-2.5883050976,4.432044812,-0.6045176671 C,0,-1.7101081238,5.8205490862,-2.8620418331 H,0,-1.0190561974,3.9096139312,-3.5762507957 C,0,-2.7927503396,5.811861198,-0.6988924267 H,0,-2.9378010304,3.8916638998,0.2715203738 C,0,-2.3521501353,6.5086326161,-1.8268027778 H.0.-1.3741889039.6.3568808848.-3.7451166433 H,0,-3.2987164776,6.3395373166,0.1045929593 H,0,-2.5139914202,7.5800016993,-1.9033656212 C,0,4.7985240538,-0.4126459951,-1.2298145762 C,0,3.8104595149,0.5238634034,-1.4507499215 H,0,5.6780767676,-0.3766094987,-1.8736681471 H,0,3.0168988573,0.6242333607,-0.7179684075 H,0,4.0458808828,1.4133603592,-2.0273682329 C,0,4.7748006708,-1.4652325071,-0.2359447047 H,0,3.7794198414,-1.6394363636,0.1856067762 H,0,5.2009528172,-2.4014943416,-0.616792669 Si,0,5.9441010995,-1.0343115841,1.2967547289 C,0,5.934817846,-2.5896342539,2.3553014242 H,0,4.9197849743,-2.8755973114,2.6544734654 H,0,6.3843001153,-3.4396856993,1.8293575475 H,0,6.513443356,-2.4259275328,3.2727421633 C,0,5.2022714022,0.4356723565,2.2070944662 H,0,4.1903101065,0.2231799384,2.5718491903 H,0,5.8156723585,0.6833328691,3.0821972022 H,0,5.1559563073,1.3327044858,1.5789450179 C,0,7.6667537801,-0.653898228,0.6412292128 H,0,8.0457264082,-1.4577407699,-0.0013509254 H,0,7.7000884816,0.2812000337,0.0703048799 H,0,8.3718965099,-0.5484488517,1.4750760617

TS-concave3

E(RB3LYP) = -2065.66891704 Hartree Sum of electronic and thermal Free Energies= -2064.993343 Hartree C,0,-1.0338739902,-0.4515587562,0.0034958139 C,0,-0.9236885187,-1.8942793727,0.5463212907 C,0,0.002053432,-2.6266163109,-1.5804196349 C,0,0.3502721644,-1.1880137359,-1.9950378384 C,0,0.1948656352,-0.1439714717,-0.8640755714 H,0,-0.0173118165,-2.0202537137,1.1555780237 H,0,-1.9454480221,-0.4134333695,-0.5987465081 H,0,-0.3584817123,-3.2256413273,-2.4204885118 H,0,-0.325154487,-0.9113982244,-2.8082247271 H,0,1.0779529474,-0.1903371539,-0.2201739667 O,0,-0.868529069,-2.8339710448,-0.5582777217 C,0,-2.1210957808,-2.3065828594,1.3887555088 H,0,-2.0228119121,-3.3729480684,1.6452608537 H,0,-2.1120742223,-1.7276251569,2.3235517047 O.0,-1.2593250003,0.4972150688,1.0405492053 O,0,0.253095426,1.1817087255,-1.3814910693 O,0,1.3522164626,-3.2662914018,-1.2896572023 C,0,1.7922815479,-1.3271068501,-2.5128099034 H,0,1.7971784225,-1.5910475234,-3.5791933691 H,0,2.3904305809,-0.4226466577,-2.4043901307 C,0,2.3505364022,-2.5390941544,-1.7763594832 C,0,3.4838837148,-3.327308566,-2.3662754144 H,0,4.3308342836,-2.6871816137,-2.6171439002 H,0,3.8069191371,-4.1358420805,-1.7077805198 H,0,3.1089798232,-3.7811433758,-3.2934755772 O,0,-3.3085305185,-2.067617395,0.6597901764 C,0,-4.4945780781,-2.3963500856,1.3957742026 H,0,-4.4853896918,-3.4685258893,1.6437501925 H,0,-4.5072628434,-1.8286204574,2.3381546122 C,0,-5.6997344353,-2.0560082735,0.5581888089 C,0,-6.2703689934,-0.777181434,0.6229710702 C,0,-6.2518909801,-3.002709,-0.3157066766 C,0,-7.3725912337,-0.4491489741,-0.1703832079 H,0,-5.8488762598,-0.0378488441,1.2997150724 C,0,-7.3536923753,-2.678327805,-1.1113959044 H,0,-5.817318009,-3.9978919358,-0.3710494701 C,0,-7.9160502604,-1.4001652062,-1.0396664108 H,0,-7.8094317318,0.5435147538,-0.1066986304 H,0,-7.7756056978,-3.4219898259,-1.7816793421 H,0,-8.7768277802,-1.1484993405,-1.6528551605 C,0,-0.1505089643,0.8679883365,1.8838267341 H,0,0.6333223247,1.3416189084,1.2814505696 H,0,0.2717984145,-0.0185182747,2.3769111422

C,0,-0.9365315681,1.7153910822,-2.0024625176 H,0,-1.2902920552,1.0378440506,-2.7918720125 H,0,-1.7301369029,1.8175311944,-1.2556124424 C,0,-0.6496004764,1.8448889312,2.9190211827 C,0,-1.1106053791,1.4009836531,4.1660182351 C,0,-0.6678768952,3.218655364,2.6390224787 C,0,-1.5859175392,2.3105037905,5.1142840025 H,0,-1.0952084345,0.339048108,4.399428025 C.0.-1.1429325814,4.1309242803,3.5840783699 H,0,-0.3065661505,3.5735860941,1.6769700557 C,0,-1.6039522327,3.6776930568,4.8238649508 H,0,-1.9382705896,1.9536323696,6.0779363649 H,0,-1.1498445128,5.1929064526,3.3554725391 H,0,-1.9710043947,4.3861310609,5.5609144018 C,0,-0.5990876589,3.0628073951,-2.5900790931 C.0.0.2469110439,3.1652194464,-3.7050375056 C,0,-1.1349192845,4.2330091345,-2.0377356305 C,0,0.5557001901,4.4118609396,-4.2510794441 H,0,0.6626140239,2.2639457191,-4.1490640529 C,0,-0.8335859874,5.4835937314,-2.5867797668 H,0,-1.7965173273,4.1655908116,-1.1777921432 C,0,0.014386288,5.5753632264,-3.6926001204 H,0,1.2098141521,4.477746217,-5.1160738069 H,0,-1.2615722339,6.3819702746,-2.1512171489 H,0,0.2487137692,6.5453513568,-4.1216878936 C,0,4.1898949095,-0.967355869,-0.2997292059 C,0,3.2453386307,-1.9241780094,0.0286576946 H,0,3.8410397483,0.0596055204,-0.4205572381 H,0,3.5766816363,-2.9177463851,0.3186293591 H,0,2.3181751493,-1.5944499322,0.4826690026 C,0,5.6038134998,-1.1919503022,-0.501063287 H,0,5.8663011116,-2.2460016574,-0.6381104199 H,0,6.0255505223,-0.5716467477,-1.3007764708 Si,0,6.6338059818,-0.6190922081,1.0945623484 C,0,8.426607044,-0.9618830378,0.6401888349 H,0,8.5973856803,-2.0217353805,0.4183452238 H,0,8.7473208631,-0.3773395293,-0.2296722518 H,0,9.0826179151,-0.6928477666,1.4775822609 C,0,6.0719254802,-1.6589974935,2.5580301456 H,0,6.1621530828,-2.7331703994,2.3577209814 H,0,6.6961980288,-1.4395028091,3.433088325 H,0,5.0334839976,-1.4518303219,2.8402165372 C,0,6.3221444209,1.2140574871,1.3785641877 H,0,6.567869578,1.8133066223,0.4939308742

H,0,5.2816794143,1.4243737826,1.6518115252 H,0,6.9511068629,1.5774910713,2.2007078462

TS-concave4

E(RB3LYP) = -2065.66764818 Hartree Sum of electronic and thermal Free Energies= -2064.991893 Hartree

C,0,-0.9475765826,-0.3397234922,-0.1192264745 C,0,-0.4113610845,-1.7740456059,0.0835126817 C,0,0.5111453034,-1.7444345392,-2.168704487 C,0,0.3932540872,-0.2174976344,-2.2694128659 C,0,0.0761852808,0.4740713646,-0.9225375425 H,0,0.5313978238,-1.7651590731,0.6483277585 H,0,-1.8864832606,-0.4292570028,-0.6724957346 H,0,0.2714778874,-2.2440853169,-3.1108221172 H,0,-0.421788529,-0.0023007251,-2.9651512766 H,0,0.9913392514,0.523703584,-0.3261394248 O,0,-0.1700279424,-2.4070705948,-1.19957566 C,0,-1.3904781969,-2.6749267021,0.8208479038 H,0,-0.9866896853,-3.6991569018,0.8394245541 H,0,-1.4769401033,-2.3216989668,1.858582912 O,0,-1.3212683027,0.2640105323,1.1155136418 O,0,-0.2552931301,1.8449171472,-1.113890756 O,0,2.012311415,-1.9858470385,-2.0493184757 C,0,1.7463239227,0.1854769155,-2.884444565 H,0,1.6950010769,0.1864556562,-3.9818137127 H,0,2.0907386178,1.1766755682,-2.5842811575 C,0,2.6995188479,-0.9452784027,-2.5021989644 C,0,3.8662455493,-1.2687069004,-3.3896700232 H,0,4.480948689,-0.3881771772,-3.5850006955 H,0,4.4802505842,-2.0758571921,-2.9890452107 H,0,3.4484098868,-1.6097869653,-4.3469619966 O,0,-2.6451061033,-2.6368559933,0.1704164727 C,0,-3.65804627,-3.3827849541,0.858840734 H,0,-3.379287691,-4.44667367,0.8858795994 H,0,-3.7292026564,-3.0228329537,1.8965276247 C,0,-4.9723623477,-3.1994608053,0.1449644748 C,0,-5.7300878347,-2.0368566209,0.3498310533 C,0,-5.4500542924,-4.1734249442,-0.7415121609 C,0,-6.9395403648,-1.8494791891,-0.3222389101 H,0,-5.3694755956,-1.27846404,1.0405137637 C,0,-6.6623523361,-3.9908462195,-1.4138018401

H,0,-4.8720672587,-5.0798673923,-0.9050466115 C,0,-7.4085173587,-2.8278112123,-1.2055509339 H,0,-7.5187687182,-0.9462375051,-0.1519002015 H,0,-7.0243768759,-4.7556550167,-2.0952112035 H,0,-8.3523804802,-2.6855955011,-1.7243718343 C,0,-0.2767057397,0.7458468937,1.9863508132 H,0,0.2912919125,1.5374777868,1.4848073195 H,0,0.4102415187,-0.0701167016,2.2498020281 C.0.-1.5876915737.2.1549612535.-1.5791802346 H,0,-1.8009840301,1.6113652728,-2.5094855359 H,0,-2.3223801999,1.8534858072,-0.8257082194 C,0,-0.9166146052,1.2987542549,3.2350603908 C,0,-1.1794629618,0.4711759059,4.3356035366 C,0,-1.2631554341,2.655030854,3.3089092276 C,0,-1.7811054211,0.9863419184,5.4862916391 H,0,-0.9076388771,-0.5809676629,4.2949730827 C,0,-1.8648387655,3.1742922979,4.4578394757 H,0,-1.0546607597,3.3067066355,2.4642512159 C,0,-2.1264492135,2.3397336472,5.5483961576 H,0,-1.9772770802,0.3348400054,6.3331498264 H,0,-2.1255977729,4.2278417828,4.5034325327 H,0,-2.5916782141,2.7427321218,6.4434032793 C,0,-1.6711069006,3.6408874844,-1.8209430538 C,0,-1.0865319044,4.213980152,-2.9601638731 C,0,-2.3370594919,4.4723312468,-0.9112234377 C,0,-1.1590970163,5.5903383058,-3.181545627 H,0,-0.5761011613,3.5784524519,-3.6799143269 C,0,-2.4156083628,5.8509304656,-1.1313819037 H,0,-2.803258631,4.0371506295,-0.0309271894 C,0,-1.8246030489,6.4125181874,-2.2657363739 H,0,-0.7054516633,6.0215071009,-4.0696404599 H,0,-2.9396211658,6.483024108,-0.4200635236 H,0,-1.8866911237,7.4828516168,-2.4402411671 C,0,4.4596507458,-1.1503540995,-0.3299928453 C,0,3.7508637754,-0.0805421125,-0.8412678208 H,0,3.9147695014,-1.8460221596,0.3096518667 H,0,2.8535920713,0.2265307147,-0.3185325221 H,0,4.2801088731,0.7035479214,-1.3773392781 C,0,5.8545020464,-1.4525927498,-0.560175815 H,0,6.0471350627,-2.5293543439,-0.637226789 H,0,6.2905013048,-0.9114074769,-1.4061306869 Si,0,6.9423923113,-0.9134509407,1.0053401372 C,0,8.6825809155,-1.4992955988,0.5989396351 H,0,8.7250805242,-2.5860991586,0.4640809448

 $\begin{array}{l} \text{H}, 0, 9.0687490549, -1.0287095783, -0.3123477704} \\ \text{H}, 0, 9.3659655465, -1.2418080645, 1.4177185194} \\ \text{C}, 0, 6.2602048887, -1.7749715268, 2.5327643522} \\ \text{H}, 0, 6.2019366259, -2.861610359, 2.397971099} \\ \text{H}, 0, 6.9183332152, -1.5904512182, 3.3908123907} \\ \text{H}, 0, 5.2632997883, -1.4119236799, 2.8077642953} \\ \text{C}, 0, 6.8453063176, 0.958531142, 1.1570896844} \\ \text{H}, 0, 7.2106522227, 1.460276994, 0.2532862025} \\ \text{H}, 0, 5.8235238529, 1.3055988524, 1.3484193743} \\ \text{H}, 0, 7.4674238025, 1.3014158004, 1.993083538} \end{array}$