SUPPLIMENTARY INFORMATION FOR

Highly Enhanced Thermal Stability of Zn₄Sb₃ Nanocomposites

Hao Yin,^{a,c} Simon Johnsen,^a Kasper Andersen Borup,^a Kenichi Kato,^b Masaki Takata,^b Bo Brummerstedt Iversen^{*a}

^a Centre for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
^b RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
^c TEGnology ApS, Lysholt Alle 10, DK-7100 Veile, Denmark

Experimental

Synthesis.

Zn₄Sb₃ samples with ZnO (0.5 and 1 wt %) or TiO₂ (0.5 and 1 wt %) nano-inclusions were synthesized. The oxide nano-particles were synthesized in a custom continuous flow supercritical reactor.^[1-2] Based on the reports, the resulting particle sizes are 20 ~ 80 nm for ZnO^[3] and ~ 9 nm for TiO₂ (anatase),^[2] and the crystallinities are above 90% and 85%, respectively. For Zn₄Sb₃, the elements (99.99% zinc shots, 99.5% antimony powder) were weighed in stoichiometric ratios. Then, the oxide nano-particle powders were added and mixed in plastic vessels under rotation for 1 h. The mixtures were evacuated and sealed in quartz ampoules. After sealing, the ampoules were placed horizontally in a tube furnace, and heated with a 400 K/h ramp to 973 K under continuous rotation. The

samples were held at this temperature for 2 h before quenching in ice water. This resulted in polycrystalline solids, which were ground in an agate mortar to obtain homogeneous powders. To ensure that the samples were single-phase, PXRD data were recorded using CuK α radiation in a 2 θ -range of 8-84° with a Stoe STADI P diffractometer.

A homogeneous grain size is important for measuring high quality PXRD data. The present samples were sieved, and only the crystallites smaller than 45 µm were used. The powders were then floated with ethanol in a Petri dish, and left for sedimentation. After one minute, the top layer of the ethanol was removed into a new Petri dish, and left for further sedimentation for three minutes. The top layer was again removed into a new Petri dish and the ethanol was evaporated, leaving a sample fraction of homogeneous grain size. The samples were transferred to 0.2 mm capillaries, and held in an ultra sound bath for about five minutes to obtain a dense packing of the powders.

Synchrotron PXRD.

Multi-temperature synchrotron PXRD data were recorded from room temperature to 625 K, using the large Debye-Scherrer camera at beam line BL44B2, SPring8, Japan. The wavelength $\lambda = 0.500105(1)$ Å was determined from Rietveld refinements on a CeO₂ standard. Data sets were recorded at 300, 450, 500, 510, 515, 520, 525, 530, 535, 540, and 625 K. Furthermore, three heating cycles (300 K \rightarrow 625 K \rightarrow 300 K \rightarrow 625 K \rightarrow 300 K) were performed to investigate the stability in a realistic thermal environment, i.e. heating and cooling of a thermoelectric device. All data sets were Rietveld refined with the program FULLPROF^[4] using a pseudo Voigt profile function, and a background modelled with linear interpolation between approximately 60 points.

The structural model of Snyder *et al.* with three interstitial sites^[5] was used as starting model for the refinements. Data outside the range $4^{\circ} < 2\theta < 50^{\circ}$ were excluded because of a very low signal-background ratio.

Physical Properties Measurement

Physical properties were measured on pellets compacted by Spark Plasma Sintering (SPS). A heating ramp of ~125 K/min up to 673 K with five minutes holding period was applied to the samples. Samples were compacted in a graphite die with a diameter of 12.7 mm under a pressure of 100 MPa. Hall coefficient was measured with a 2 T field using the van der Pauw method. Scanning electron microscopy was performed on a FEI NOVA (nano 600) Scanning Electron Microscopy (SEM). High temperature electrical transport properties were measured on a ZEM-3 ULVAC. The high temperature thermal conductivity was measured on a Netszch LFA 457 and obtained as the product of the thermal diffusivity $D_{\rm T}$, the density and the specific heat capacity $C_{\rm p}$. The sample densities were measured using the Archimedes technique. The lattice contribution to the thermal conductivity can be obtained by subtracting the electronic component from the total thermal conductivity ($\kappa_{\rm L} = \kappa - \kappa_{\rm e}$), where $\kappa_{\rm e}$ is estimated via the Wiedemann-Franz relationship $\kappa_{\rm e} = LT/\rho$. With the assumption of transport dominated by acoustic scattering and a single parabolic band, *L* can be calculated using reduced Fermi energies obtained from experimental Seebeck coefficients.^[6]

Figure S1. Refinement of starting material Zn_4Sb_3 at 300 K without (upper) and with (lower) nano-composite phase for 1 % ZnO and 1 % TiO₂ samples, respectively.

Figure S2. SEM images of SPS pressed pellets of pure Zn_4Sb_3 (top), 1 wt % ZnO (middle) and 1 wt % TiO₂ (bottom).

Figure S3. Powder X-ray diffraction patterns of 0.5 wt % ZnO sample (upper) and 0.5 wt % TiO2 sample (lower) after heating to 573 K during the electrical properties measurement.

Figure S4. Temperature dependence of Seebeck coefficient of pure Zn_4Sb_3 and nano-composites.

Figure S5. Electrical resistivity changes as a function of temperature.

Figure S6. Thermal conductivity as a function of temperature.

Figure S7. The lattice thermal conductivity as a function of temperature.

(a)	0.5%ZnO-start	0.5%ZnO-after	1%ZnO-start	1%ZnO-after
<i>T</i> (K)	300	300	300	300
t_{\exp} (min)	5	5	5	5
No. of points	7797	7805	7797	7805
No. of reflns	3506	7269	3152	7143
No. of params	89	100	90	101
$R_{\rm F}$ (%)	1.45	2.07	2.32	2.00
$R_{ m Bragg}$ (%)	1.41	1.96	3.11	3.02
$R_{\rm p}$ (%)	5.65	6.07	7.64	7.03
$R_{ m wp}$ (%)	6.20	3.88	8.39	7.97
χ^2	2.70	4.70	5.18	6.56
a = b (Å)	12.2318(1)	12.2400(1)	12.2332(1)	12.2398(1)
<i>c</i> (Å)	12.4211(1)	12.4333(1)	12.4275(1)	12.4356(1)
X	0.298(2)	0.106(3)	0.227(4)	0.0733(5)
Y	0.0187(1)	0.007(5)	0.0164(4)	0.0082(5)
B _{iso} Sb1	1.00(2)	0.87(3)	1.17(3)	0.98(3)
B _{iso} Sb2	0.83(2)	0.77(3)	0.88(3)	0.89(3)
$B_{iso} \ Zn$	1.71(5)	1.75(5)	1.31(5)	1.69(5)
Occ Zn1	0.912(3)	0.934(4)	0.923(3)	0.905(4)
Occ Zn2	0.047(2)	0.043(3)	0.054(2)	0.048(2)
Occ Zn3	0.047(2)	0.030(2)	0.031(2)	0.049(2)
Occ Zn4	0.045(2)	0.037(2)	0.034(2)	0.058(2)
$V(\text{\AA}^3)$	1609.44(2)	1613.18(1)	1610.61(2)	1613.43(1)
Wt% ZnSb	0	28.97(13)	0	27.37(35)
Wt% ZnO	2.62(13)	6.34(19)	0.95(12)	3.22(22)
Wt% Sb	0	2.59(5)	0	0.12(1)

Table ST1. Crystallographic details and refinement residuals for the nanocomposite samples. "Start" refers to refinements of the data sets recorded before heating, and "after" refers to refinements of the data sets recorded at 300 K after three heating cycles.

(b)	0.5%TiO2-start	0.5%TiO2-after	1%TiO2-start	1%TiO ₂ -after
<i>T</i> (K)	300	300	300	300
t_{\exp} (min)	5	5	5	5
No. of points	7795	7804	7795	7806
No. of reflns	3428	7132	3425	7166
No. of params	93	95	95	102
$R_{\rm F}$ (%)	4.56	5.56	3.20	3.61
$R_{ m Bragg}$ (%)	6.69	6.82	5.46	5.92
$R_{\rm p}$ (%)	11.0	13.9	8.83	9.91
$R_{ m wp}$ (%)	13.2	14.4	9.91	11.3
χ^2	12.52	18.75	15.23	22.89
a = b (Å)	12.2286(1)	12.2327(1)	12.2285(1)	12.2325(1)
<i>c</i> (Å)	12.4208(1)	12.4272(1)	12.4240(1)	12.4280(1)
X	0.078(7)	0.036(5)	0.078(5)	0.033(5)
Y	0.008(1)	0.008(1)	0.009(1)	0.009(5)
B _{iso} Sb1	1.00(3)	0.89(3)	0.88(3)	0.83(3)
B_{iso} Sb2	0.80(3)	0.80(4)	0.83(3)	0.82(3)
B _{iso} Zn	1.91(7)	1.95(6)	1.66(5)	1.59(5)
Occ Zn1	0.897(4)	0.909(5)	0.932(3)	0.926(4)
Occ Zn2	0.055(3)	0.033(3)	0.080(2)	0.071(3)
Occ Zn3	0.094(3)	0.097(3)	0.035(2)	0.035(3)
Occ Zn4	0.078(3)	0.075(3)	0.044(2)	0.030(2)
$V(Å^3)$	1608.54(5)	1610.45(11)	1608.94(32)	1610.50(11)
Wt% ZnSb	0	0	0	2.5(11)
Wt% Sb	0	0.21(4)	0	1.44(21)
Wt% TiO ₂	0.75(14)	1.27(31)	1.27(19)	0.08(3)

Sample	pure	ZnO		TiO ₂	
		0.5%	1%	0.5%	1%
$n (10^{19} \mathrm{cm}^{-3})$	5.2	3.1	1.0	4.42	6.03
$\mu (\text{cm}^2 \text{V}^{-1} \text{s}^{-1})$	30.4	72	134	112	31.3

Table ST2. Carrier concentration and Hall mobility of the all samples.

Table ST3: Selected crystallographic details and weight fractions of impurity phases from high temperature Rietveldrefinement of the 0.5 wt % ZnO composite

T(K)	300	450	500	510	515	520
t _{exp} (min)	5	5	5	5	5	5
# points	7797	7797	7797	7797	7797	7797
# refl	3506	3504	3183	3176	3161	3156
# par	89	89	98	98	98	98
R _F (%)	1.45	1.60	1.75	1.87	2.01	1.97
R _{Bragg} (%)	1.41	1.41	1.50	1.57	1.66	1.65
R _p (%)	5.65	5.63	5.16	5.40	5.46	5.52
Rwp (%)	6.20	6.12	5.52	5.82	5.85	5.97
χ^2	2.70	2.37	1.96	2.23	2.252	2.35
a = b (Å)	12.2318(1)	12.2618(1)	12.2724(1)	12.2754(1)	12.2769(1)	12.2782(1)
c (Å)	12.4211(1)	12.4538(1)	12.4662(1)	12.4696(1)	12.4714(1)	12.4729(1)
Х	0.298(2)	0.289(3)	0.243(3)	0.215(2)	0.196(2)	0.187(2)
Y	0.0187(1)	0.0124(1)	0.007(1)	0.006(1)	0.006(1)	0.006(1)
Biso Sb1	1.00(2)	1.37(2)	1.51(2)	1.52(2)	1.57(2)	1.59(2)
Biso Sb2	0.83(2)	1.18(2)	1.29(2)	1.32(2)	1.36(2)	1.38(2)
Biso Zn	1.71(5)	2.72(5)	3.08(5)	3.19(5)	3.24(5)	3.31(5)
Occ. Zn1	0.912(3)	0.932(3)	0.935(3)	0.938(3)	0.934(3)	0.937(3)
Occ. Zn2	0.047(2)	0.053(2)	0.055(2)	0.056(2)	0.059(2)	0.059(2)
Occ. Zn3	0.047(2)	0.034(2)	0.032(2)	0.030(2)	0.029(2)	0.030(2)
Occ. Zn4	0.045(2)	0.042(2)	0.044(1)	0.045(1)	0.047(1)	0.049(2)
$V(Å^3)$	1609.44(2)	1621.59(2)	1626.02(1)	1627.25(1)	1627.87(1)	1628.44(1)
Wt% ZnSb	0	0	5.55(8)	7.25(8)	7.99(8)	8.44(8)
Wt% ZnO	2.62(13)	3.31(14)	3.22(12)	3.23(12)	3.27(12)	3.31(12)
Wt% Sb	0	0	1.75(5)	2.40(5)	2.71(4)	2.87(4)

T(K)	525	530	535	540	625
t _{exp} (min)	5	5	5	5	5
# points	7799	7799	7800	7800	7801
# refl	3152	3152	3152	3152	3143
# par	98	98	98	98	98
R_{F} (%)	1.95	2.02	2.07	2.03	2.78
R _{Bragg} (%)	1.68	1.66	1.70	1.73	2.06
R _p (%)	5.79	5.90	5.99	6.03	6.56
R _{wp} (%)	6.22	6.40	6.49	6.47	6.93
χ^2	2.58	2.74	2.83	2.83	3.18
a = b (Å)	12.2796(1)	12.2812(1)	12.2828(1)	12.2841(1)	12.3007(1)
<i>c</i> (Å)	12.4744(1)	12.4762(1)	12.4779(1)	12.4794(1)	12.5001(1)
Х	0.178(2)	0.173(2)	0.168(2)	0.163(2)	0.113(2)
Y	0.007(1)	0.006(1)	0.006(1)	0.006(1)	0.007(1)
Biso Sb1	1.63(3)	1.63(3)	1.64(3)	1.67(2)	2.05(3)
Biso Sb2	1.41(2)	1.41(3)	1.43(3)	1.46(3)	1.79(3)
Biso Zn	3.39(6)	3.40(4)	3.44(6)	3.36(6)	4.03(8)
Occ. Zn1	0.937(3)	0.935(3)	0.935(3)	0.933(3)	0.920(4)
Occ. Zn2	0.060(2)	0.061(2)	0.062(2)	0.060(2)	0.073(2)
Occ. Zn3	0.029(2)	0.030(2)	0.031(2)	0.030(2)	0.031(2)
Occ. Zn4	0.049(2)	0.049(2)	0.048(2)	0.047(2)	0.049(2)
$V(\text{\AA}^3)$	1628.99(1)	1629.65(1)	1630.30(1)	1630.83(1)	1637.96(1)
Wt% ZnSb	8.79(8)	9.14(9)	9.46(9)	9.85(9)	18.48(10)
Wt% ZnO	3.27(12)	3.33(12)	3.34(12)	3.37(12)	3.96(13)
Wt% Sb	3.01(5)	3.12(5)	3.20(5)	3.27(4)	2.68(4)

Table ST3 continued: Selected crystallographic details and weight fractions of impurity phases from high temperatureRietveld refinement of the 0.5 wt % ZnO composite

 Table ST4:
 Selected crystallographic details and weight fractions of impurity phases from high temperature Rietveld refinement of the 1 wt % ZnO composite

T(K)	300	450	500	510	515	520
t _{exp} (min)	5	5	5	5	5	5
# points	7797	7797	7798	7798	7798	7799
# refl	3152	3159	3152	3152	3152	3149
# par	90	90	99	99	99	99
R _F (%)	2.32	2.58	2.56	2.42	2.45	2.30
R _{Bragg} (%)	3.11	2.89	2.33	2.68	2.74	2.65
R _p (%)	7.64	7.62	7.19	7.10	7.02	7.10
R _{wp} (%)	8.39	8.16	7.71	7.60	7.52	7.60
χ^2	5.18	4.60	4.04	4.00	3.91	3.96
a = b (Å)	12.2332(1)	12.2603(1)	12.2711(1)	12.2739(1)	12.2753(1)	12.2765(1)
c (Å)	12.4275(1)	12.4530(1)	12.4657(1)	12.4692(1)	12.4708(1)	12.4722(1)
Х	0.227(4)	0.208(3)	0.189(3)	0.180(3)	0.173(3)	0.163(3)
Y	0.016(1)	0.011(1)	0.007(1)	0.005(1)	0.005(1)	0.005(1)
Biso Sb1	1.17(3)	1.56(3)	1.64(3)	1.69(3)	1.71(3)	1.72(3)
Biso Sb2	0.89(3)	1.24(3)	1.36(3)	1.37(3)	1.36(3)	1.42(3)
Biso Zn	1.31(6)	2.33(7)	2.68(7)	2.68(6)	2.84(6)	2.92(6)
Occ. Zn1	0.833(5)	0.860(5)	0.870(5)	0.875(5)	0.876(5)	0.884(4)
Occ. Zn2	0.055(2)	0.056(2)	0.061(2)	0.061(2)	0.061(2)	0.062(2)
Occ. Zn3	0.099(4)	0.082(4)	0.073(3)	0.069(3)	0.068(3)	0.064(3)
Occ. Zn4	0.071(2)	0.065(2)	0.065(2)	0.064(2)	0.065(2)	0.065(2)
$V(Å^3)$	1610.61(2)	1621.09(2)	1625.60(1)	1626.79(1)	1627.38(1)	1627.90(1)
Wt% ZnSb	0	0	2.62(12)	3.55(11)	4.08(10)	4.51(10)
Wt% ZnO	0.95(12)	0.97(12)	1.31(16)	1.06(12)	1.08(13)	1.05(12)
Wt% Sb	0	0	0.37(7))	0.56(6)	0.67(6)	0.72(5)

 Table ST4 continued:
 Selected crystallographic details and weight fractions of impurity phases from high temperature

 Rietveld refinement of the 1 wt % ZnO composite
 Selected crystallographic details and weight fractions of impurity phases from high temperature

T(K)	525	530	535	540	625
t _{exp} (min)	5	5	5	5	5
# points	7799	7799	7800	7801	7801
# refl	3148	3146	3146	3147	3150
# par	99	99	99	99	100
R_{F} (%)	2.44	2.40	2.52	2.50	3.59
R_{Bragg} (%)	2.72	2.76	2.80	2.80	3.13
R_{p} (%)	7.20	7.21	7.12	7.13	8.10
R _{wp} (%)	7.76	7.76	7.70	7.68	8.36
χ^2	4.19	4.20	4.17	4.15	4.68
a = b (Å)	12.2782(1)	12.2796(1)	12.2810(1)	12.2824(1)	12.2988(1)
<i>c</i> (Å)	12.4740(1)	12.4757(6)	12.4773(1)	12.4789(1)	12.4992(1)
Х	0.160(3)	0.156(3)	0.152(2)	0.149(2)	0.066(6)
Y	0.005(1)	0.005(1)	0.004(1)	0.005(1)	0.009(1)
Biso Sb1	1.75(3)	1.77(3)	1.76(3)	1.78(3)	2.26(4)
Biso Sb2	1.44(3)	1.45(3)	1.46(3)	1.48(3)	1.88(4)
Biso Zn	3.08(7)	3.10(7)	3.10(7)	3.13(7)	3.93(8)
Occ. Zn1	0.891(4)	0.891(4)	0.888(4)	0.888(4)	0.882(5)
Occ. Zn2	0.063(2)	0.064(2)	0.064(2)	0.063(2)	0.070(3)
Occ. Zn3	0.061(2)	0.061(2)	0.063(3)	0.061(2)	0.057(2)
Occ. Zn4	0.067(2)	0.066(2)	0.066(2)	0.066(2)	0.070(2)
$V(\text{\AA}^3)$	1628.56(1)	1629.16(1)	1629.74(1)	1630.33(1)	1637.34(1)
Wt% ZnSb	4.86(10)	5.24(10)	5.60(9)	5.98(9)	13.68(8)
Wt% ZnO	0.96(11)	0.95(10)	1.03(11)	1.00(10)	1.08(11)
Wt% Sb	0.82(5)	0.91(5)	0.96(5)	1.00(5)	0.59(6)

Table ST5: Selected crystallographic details and weight fractions of impurity phases from high temperature Rietveld refinement of the 0.5 wt % TiO₂ composite

T(K)	300	450	500	510	515	520
t _{exp} (min)	5	5	5	5	5	5
# points	7795	7795	7795	7796	7796	7795
# refl	3109	3121	3130	3131	3131	7797
# par	93	88	90	90	87	90
R _F (%)	4.56	4.45	4.58	4.74	4.76	4.73
R _{Bragg} (%)	6.69	5.53	5.73	5.82	5.74	5.85
R _p (%)	11.9	11.8	11.9	12.0	12.0	12.3
R _{wp} (%)	13.2	12.4	12.4	12.4	12.5	12.6
χ^2	12.52	10.11	9.77	9.89	10.01	10.22
a = b (Å)	12.2286(1)	12.2581(1)	12.2684(1)	12.2706(1)	12.2715(1)	12.2726(1)
c (Å)	12.4208(1)	12.4516(1)	12.4621(1)	12.4657(1)	12.4669(1)	12.4680(1)
Х	0.078(7)	0.148(2)	0.136(2)	0.128(2)	0.125(2)	0.124(2)
Y	0.008(1)	0.0001(1)	0.0001(1)	0.0001(1)	0.0001(1)	0.0001(1)
Biso Sb1	1.00(3)	1.01(3)	1.26(3)	1.28(3)	1.31(3)	1.34(4)
Biso Sb2	0.80(3)	0.92(4)	1.05(4)	1.08(4)	1.12(4)	1.11(4)
Biso Zn	1.91(7)	2.67(7)	3.01(7)	3.07(8)	3.10(8)	3.08(8)
Occ. Zn1	0.897(4)	0.918(4)	0.920(5)	0.918(5)	0.918(5)	0.913(5)
Occ. Zn2	0.055(3)	0.042(3)	0.045(3)	0.047(3)	0.045(3)	0.046(3)
Occ. Zn3	0.094(3)	0.098(3)	0.096(3)	0.098(3)	0.099(3)	0.098(2)
Occ. Zn4	0.078(3)	0.079(3)	0.078(3)	0.078(3)	0.079(3)	0.081(3)
$V(\text{\AA}^3)$	1608.54(5)	1620.33(1)	1624.54(1)	1625.46(1)	1625.86(1)	1626.30(1)
Wt% ZnSb	0	0	0	0	0	0
Wt% Sb	0	0	0	0	0	0.35(7)
Wt% TiO ₂	0.75(14)	0.80(22)	0.85(34)	0.31(26)	0.73(13)	0.91(35)

Table ST5 continued: Selected crystallographic details and weight fractions of impurity phases from high temperatureRietveld refinement of the 0.5 wt % TiO2 composite

T(K)	525	530	535	540	625
t _{exp} (min)	5	5	5	5	5
# points	7797	7798	7798	7799	7800
# refl	3131	3132	3132	3135	3135
# par	94	94	94	94	93
R_{F} (%)	4.81	4.75	4.96	4.87	6.41
R _{Bragg} (%)	5.91	5.90	5.96	5.93	6.33
R _p (%)	12.7	12.8	12.9	12.8	13.4
R _{wp} (%)	13.2	13.2	13.3	13.2	13.2
χ^2	11.15	11.25	11.59	11.41	10.57
a = b (Å)	12.2736(1)	12.2749(1)	12.2763(1)	12.2774(1)	12.2934(1)
<i>c</i> (Å)	12.4692(1)	12.4707(1)	12.4723(1)	12.4735(1)	12.4937(1)
Х	0.123(2)	0.121(2)	0.121(2)	0.119(2)	0.026(6)
Y	0.0001(1)	0.0001(1)	0.0001(1)	0.0001(1)	0.009(1)
Biso Sb1	1.34(4)	1.36(4)	1.35(4)	1.42(4)	2.01(5)
Biso Sb2	1.11(4)	1.14(4)	1.14(4)	1.17(4)	1.70(5)
Biso Zn	3.09(8)	3.09(8)	3.21(8)	3.15(8)	4.13(9)
Occ. Zn1	0.911(5)	0.907(5)	0.920(5)	0.903(5)	0.903(5)
Occ. Zn2	0.044(3)	0.046(3)	0.047(3)	0.048(3)	0.055(4)
Occ. Zn3	0.096(3)	0.098(3)	0.096(3)	0.098(3)	0.097(3)
Occ. Zn4	0.079(3)	0.081(3)	0.078(3)	0.081(3)	0.084(3)
$V(\text{\AA}^3)$	1626.73(1)	1627.27(1)	1627.85(1)	1628.29(1)	1635.18(1)
Wt% ZnSb	0	0	0	0	0.14(4)
Wt% Sb	0.34(7)	0.36(6)	0.34(6)	0.38(6)	0.28(5)
Wt% TiO ₂	0.91(37)	1.15(41)	1.02(45)	1.02(20)	0.80(14)

Table ST6: Selected crystallographic details and weight fractions of impurity phases from high temperature Rietveld refinement of the 1 wt % TiO_2 composite

T(K)	300	450	500	510	515	520
t _{exp} (min)	5	5	5	5	5	5
# points	7795	7795	7795	7796	7797	7797
# refl	3094	3119	3130	3132	3132	3132
# par	95	91	91	97	96	97
R _F (%)	3.20	3.62	3.73	3.74	3.84	3.87
R _{Bragg} (%)	5.46	5.49	5.66	5.56	5.48	5.61
R _p (%)	8.83	9.39	9.55	9.55	9.42	9.67
R _{wp} (%)	9.91	10.3	10.4	10.4	10.2	10.5
χ^2	15.23	14.57	14.42	14.43	14.01	14.59
a = b (Å)	12.2285(1)	12.2564(1)	12.2665(1)	12.2690(1)	12.2705(1)	12.2718(1)
<i>c</i> (Å)	12.4240(1)	12.4514(1)	12.4625(1)	12.4652(1)	12.4670(1)	12.4685(1)
Х	0.078(5)	0.143(1)	0.132(1)	0.126(2)	0.122(2)	0.123(2)
Y	0.009(1)	0.0001(1)	0.0001(1)	0.0001(1)	0.0001(1)	0.0001(1)
Biso Sb1	0.88(3)	1.12(3)	1.27(3)	1.31(3)	1.34(3)	1.36(3)
Biso Sb2	0.83(3)	1.01(3)	1.14(3)	1.17(3)	1.18(3)	1.21(3)
Biso Zn	1.66(5)	2.00(6)	2.23(7)	2.17(7)	2.27(7)	2.28(7)
Occ. Zn1	0.932(3)	0.904(5)	0.893(6)	0.881(6)	0.882(6)	0.884(6)
Occ. Zn2	0.080(2)	0.090(2)	0.095(2)	0.093(2)	0.094(2)	0.094(2)
Occ. Zn3	0.035(2)	0.041(3)	0.048(4)	0.049(4)	0.051(5)	0.047(4)
Occ. Zn4	0.044(2)	0.041(2)	0.041(2)	0.038(2)	0.040(2)	0.040(2)
$V(\text{\AA}^3)$	1608.94(32)	1619.86(1)	1623.97(1)	1624.99(1)	1625.61(1)	1626.16(1)
Wt% ZnSb	0	0	0	0.49(10)	0.55(11)	0.80(12)
Wt% Sb	0	0	0	0	0	0
Wt% TiO ₂	1.27(19)	1.06(16)	0.98(15)	1.00(15)	0.92(14)	0.96(14)

Table ST6 continued: Selected crystallographic details and weight fractions of impurity phases from hightemperature Rietveld refinement of the 1 wt % TiO_2 composite

T(K)	525	530	535	540	625
t _{exp} (min)	5	5	5	5	5
# points	7798	7799	7799	7800	7801
# refl	3135	3137	3138	3139	3148
# par	93	92	97	93	99
R_{F} (%)	3.75	3.72	3.94	3.75	4.32
R_{Bragg} (%)	5.53	5.55	5.74	5.56	5.75
R_{p} (%)	9.71	9.74	10.0	9.82	10.4
R _{wp} (%)	10.7	10.6	11.0	10.8	11.2
χ^2	15.26	14.89	16.30	15.80	15.81
a = b (Å)	12.2732(1)	12.2750(1)	12.2761(1)	12.2776(1)	12.2939(1)
c (Å)	12.4700(1)	12.4720(1)	12.4732(1)	12.4748(1)	12.4952(1)
Х	0.121(2)	0.120(2)	0.117(2)	0.117(2)	0.115(2)
Y	0.0001(1)	0.0001(1)	0.0001(1)	0.0001(1)	0.0001(1)
Biso Sb1	1.37(3)	1.38(3)	1.42(3)	1.43(3)	1.72(3)
Biso Sb2	1.23(3)	1.24(3)	1.28(3)	1.30(3)	1.56(3)
Biso Zn	2.35(7)	2.37(7)	2.41(7)	2.45(7)	2.92(9)
Occ. Zn1	0.883(6)	0.882(6)	0.881(7)	0.877(7)	0.863(7)
Occ. Zn2	0.095(3)	0.097(2)	0.099(3)	0.099(3)	0.109(3)
Occ. Zn3	0.047(4)	0.047(4)	0.050(5)	0.052(5)	0.053(5)
Occ. Zn4	0.041(2)	0.040(2)	0.039(2)	0.040(2)	0.042(2)
$V(Å^3)$	1626.71(1)	1627.46(1)	1627.91(1)	1628.50(1)	1635.51(1)
Wt% ZnSb	0.90(13)	0.81(10)	0.79(14)	0.88(16)	0.85(1)
Wt% Sb	0	0.02(1)	0.02(3)	0.06(0)	0.14(4)
Wt% TiO ₂	0.95(14)	0.90(11)	1.02(15)	0.94(14)	1.02(15)

References

- 1. Adschiri, T.; Kanazawa, K.; Arai, K., J. Am. Ceram. Soc., 1992, 75, 1019-1022.
- 2. Hald, P., *Ph.D dissertation*, **2010**.

3. Søndergaard, M.; Bøjesen, D. E.; Christensen, M.; Iversen, B. B., Crystal Growth & Design, 2011, 11, 4027-4033.

4. Rodríguez-Carvajal, J., FULLPROF 2000, 2001.

5. Snyder, G. J.; Christensen, M.; Nishibori, E.; Caillat, T.; Iversen, B. B., *Nat. Mater.*, **2004**, *3*, 458-463.

6. May, A. F.; Toberer, E. S.; Saramat, A.; Snyder, G. J., Phys. Rev. B, 2009, 80, 125205.