Supplementary Material for:

Patterned Recognition of Amines and Ammonium Ions by a StimuliResponsive Foldamer-Based Hexameric Oligophenol Host

Chang Sun, ${ }^{a}$ Changliang Ren, ${ }^{a}$ Yuchen Wei, ${ }^{b}$ Bo Qin, ${ }^{b}$ and Huaqiang Zeng**
${ }^{\text {a }}$ Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore 117543
${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China 400030
Corresponding Author: chmzh@nus.edu.sg

1. General Remarks S2
2. Scheme S1. Synthetic Route that Affords Pentamer 3 and Hexamers 4-7. S3
3. Synthetic Procedures \& Characterization. S5
4. X-Ray Crystallography Data Sheet for Pentamer 3 S33
5. Figure S1. Computationally optimized structures for neutral $\mathbf{3}$ and anionic $\mathbf{3}$ S34
6. Figure S2. Fluorescence quenching extents of 4-6 by amines S34
7. Table S1. Relative energies of various anionic isomers S35
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S36

1. General Remarks

All the reagents were obtained from commercial suppliers and used as received unless otherwise noted. Aqueous solutions were prepared from distilled water. The organic solutions from all liquid extractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for a minimum of 15 minutes before filtration. Reactions were monitored by thin-layer chromatography (TLC) on silica gel precoated glass plates (0.25 mm thickness, 60F-254, E. Merck). Flash column chromatography was performed using pre-coated 0.2 mm silica plates from Selecto Scientific. Chemical yields refer to pure isolated substances. Mass spectra were obtained using the Instrumentation includes Finnigan MAT95XL-T and Micromass VG7035. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker ACF-300 (300 MHz) or AVF500 spectrometers (500 MHz). The solvent signal of CDCl_{3} was referenced at $\delta=7.26$. Coupling constants (J values) are reported in Hertz (Hz). ${ }^{1} \mathrm{H}$ NMR data are recorded in the order: chemical shift value, multiplicity (s , singlet; d , doublet; t , triplet; q , quartet; m, multiplet; br, broad), number of protons that gave rise to the signal and coupling constant, where applicable. ${ }^{13} \mathrm{C}$ spectra are proton-decoupled and recorded on Bruker ACF300 $(300 \mathrm{MHz})$ and ACF500 spectrometers $(500 \mathrm{MHz})$. The solvent, CDCl_{3}, was referenced at $\delta=$ 77 ppm and $\mathrm{DMSO}-\mathrm{d}_{6}$ was referenced at $\delta=39.5 . \mathrm{CDCl}_{3}\left(99.8 \%\right.$-Deuterated) and DMSO-d ${ }_{6}$ (99.8\%-Deuterated) was purchased from Aldrich and used without further purification. UV-vis absorption and fluorescence spectra were recorded on a Shimadzu UV-1700 spectrometer and a RF-5301 fluorometer respectively.
2. Scheme S1a. Synthetic Route that Affords Pentamer 3.

2. Scheme S1b. Synthetic Route that Affords Hexamers 4, 5, 6 and 7

3. Experimental Procedures and Compound Characterizations

Methyl 2-methoxy-3-nitrobenzoate (3b)

Compound 3a ($6.00 \mathrm{~g}, 30.4 \mathrm{mmol}$) was dissolved in DMF (125 mL) to which anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(15.6 \mathrm{~g}, 112.9 \mathrm{mmol})$ and iodomethane $(6.98 \mathrm{~mL}$, 112 mmol) were added. The mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 4 hours. The 3b reaction mixture was then filtered and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with water $(2 \times 50 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a pure light yellow solid 3a. Yield: $6.41 \mathrm{~g}, 82 \% ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.8), 7.90(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.8), 7.26(\mathrm{~m}, 1 \mathrm{H})$, $3.99(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,152.9,145.17,135.3,128.0$, 127.1, 123.5, 63.9, 52.4. HRMS-EI: calculated for $[M]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}\right)$: m / z 211.0481, found: m / z 211.0480 .

2-methoxy-3-nitrobenzoic acid (3c)

Compound 3b ($4.00 \mathrm{~g}, 19.0 \mathrm{mmol}$) was dissolved in hot methanol (10 mL)

3c to which $1 \mathrm{M} \mathrm{NaOH}(40 \mathrm{~mL}, 40 \mathrm{mmol})$ was added. The mixture was heated under reflux for 2 hours and then quenched with water (100 mL). The aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(80 \mathrm{~mL})$ until the pH was at least 1. The precipitated crude product was collected by filtration, which was recrystallized from hot methanol to give a pure white solid 3c. Yield: $3.45 \mathrm{~g}, 92.0 \%,{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.8), 8.03(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.8), 7.36(\mathrm{t}, 1 \mathrm{H}, J=7.9)$, $4.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,151.9,144.5,134.7,127.3,126.8,122.8,63.1$.

Methyl 2-(allyloxy)-3-nitrobenzoate (3d)

3d

Compound 3a ($6.00 \mathrm{~g}, 30.4 \mathrm{mmol}$) was dissolved in DMF (125 mL) to which anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(8.4 \mathrm{~g}, 60.8 \mathrm{mmol})$ and allyl bromide $(3.12 \mathrm{~mL}$, $36 \mathrm{mmol})$ were added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 4 hours. The reaction mixture was then filtered and the solvent was removed in vacuo.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with water ($2 \times 50 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a pure light yellow solid 3d. Yield: $5.85 \mathrm{~g}, 81 \% ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{ddt}, J=16.4,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dq}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}$, $J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.65-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.9,151.7,145.8,135.5,132.5,128.4,127.9,123.9,119.3,77.7,52.8$. HRMSESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{Na}\right)$: $m / z 260.0535$, found: $m / z 260.0539$.

2-(allyloxy)-3-nitrobenzoic acid (3e)

3 e

Compound 3d (5.0 g, 21.0 mmol) was dissolved in hot methanol (10 mL) to which $1 \mathrm{M} \mathrm{NaOH}(42 \mathrm{~mL}, 42 \mathrm{mmol})$ was added. The mixture was heated under reflux for 2 hours and then quenched with water (100 mL). The aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(80 \mathrm{~mL})$ until the pH was at least 1. The precipitated crude product was collected by filtration, which was recrystallized from hot methanol to give a pure white solid 3e. Yield: $4.10 \mathrm{~g}, 87.0 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{ddt}, J=16.7,10.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,152.3,145.6$,
136.7, 131.9, 129.8, 126.1, 124.3, 120.6, 78.3. HRMS-ESI: calculated for [M] ${ }^{-}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{5}\right): m / z$ 222.0402, found: $m / z 222.0398$.

Methyl 2-methoxy-3- (2-methoxy-3-nitrobenzamido)benzoate (3f)

3f

To a solution of $\mathbf{3 b}(3.16 \mathrm{~g}, 15 \mathrm{mmol})$ and iron ($3.36 \mathrm{~g}, 60 \mathrm{mmol}$) in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid $(15 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Remove of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the amine product used for the next step reaction without purification. Acid 3c (3.00 g, 15.2 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ to which 4- methylmorpholine, NMM (2.2 mL , 17.9 mmol) and ethyl chloroformate ($1.96 \mathrm{~mL}, 16.4 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for at least 15 min then a solution of methyl 3-amino-2-methoxybenzoate dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added. The reaction mixture was allowed to stir continuously for 6 hours at room temperature. The reaction mixture was washed with $1 \mathrm{M} \mathrm{KHSO}_{4}$, followed by saturated NaHCO_{3} and saturated NaCl . Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo gave the crude product, which was recrystallized from methanol to give the pure product $\mathbf{3 f}$ as a white solid. Yield: $3.49 \mathrm{~g}, 71 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, 1 \mathrm{H}, J=$ $8.2,1.6), 8.45(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.8), 7.99(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.8), 7.63(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.6), 7.41$ $(\mathrm{t}, 1 \mathrm{H}, J=8.1), 7.24(\mathrm{t}, 1 \mathrm{H}, J=8.1), 4.10(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.9,161.3,151.5,149.4,136.5,132.7,128.8,126.6,124.6,123.5,64.5,62.6$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}\right)$: $m / z 383.0850$, found: $m / z 383.0856$.

Methyl 3-(3-(2-(allyloxy)-3-nitrobenzamido)-2-methoxybenzamido)-2-methoxybenzoate (3g)

To a solution of $3 \mathbf{f}(5.00 \mathrm{~g}, 13.9 \mathrm{mmol})$ and iron $(3.11 \mathrm{~g}$,

$3 g$ $55.6 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid (14 $\mathrm{mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-(allyloxy)-3-nitrobenzoic acid $3 \mathbf{e}(3.70 \mathrm{~g}, 16.7 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(10.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine product and DIEA $(4.75 \mathrm{~mL}, 28 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{3 g}$ as a white solid. Yield: $5.50 \mathrm{~g}, 74 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}), 8.84$ (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}$, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{ddt}, J=16.8,10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.36(\mathrm{dd}, J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H})$, 3.93 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,162.8,161.7,149.6,149.3,147.4,144.8$, $136.3,133.1,131.8,131.1,130.0,128.8,126.9,126.7,126.2,125.7,125.1,124.9,124.6,124.4$, 123.5, 121.8, 78.6, 63.1, 62.5, 52.3. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}\right)$: m / z 558.1488, found: $m / z 558.1494$.

benzamido)-2-methoxybenzoate (3h)

To a solution of $3 \mathrm{~g}(4.00 \mathrm{~g}, 7.47 \mathrm{mmol})$ and iron $(1.67 \mathrm{~g}$, $30.0 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid (7.50 $\mathrm{mL})$. The reaction was heated at $60{ }^{\circ} \mathrm{C}$ for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-methoxy-3-nitrobenzoic acid (3c) $(1.77 \mathrm{~g}, 9.0 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine product and DIEA $(3.0 \mathrm{~mL}, 18 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $3 \mathbf{h}$ as a white solid. Yield: $4.04 \mathrm{~g}, 79 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.21$ (s, 1 H , amide proton), $10.09(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.84(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.78(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $8.42(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.03(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.92-7.87(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton), $7.61(\mathrm{dd}, J$ $=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.39(\mathrm{t}, J=6.5 \mathrm{~Hz}$, 1 H , aromatic proton), $7.36(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 6.10 (ddt, $J=16.7,10.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$, allyl proton), $5.33(\mathrm{dd}, J=17.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, allyl proton), $5.27(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$, allyl proton), $4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, methylene proton), 4.10 (s, 3 H , methoxyl or methyl ester protons), 3.95 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl or methyl ester protons), 3.94 (s ,

3 H , methoxyl or methyl ester protons), 3.93 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl or methyl ester protons). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 165.9,163.2,162.9,161.5,151.3,149.3,147.2,145.7,144.4,136.4,133.1$, $132.3,132.1,131.1,129.3,128.9,127.5,126.7,126.6,126.5,126.2,125.9,125.8,125.1,124.9$, $124.9,124.7,124.4,123.4,121.5,77.3,64.4,63.0,62.4,52.4$. HRMS-ESI: calculated for [M+Na] ${ }^{+}\left(\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{Na}\right): m / z 707.1965$, found: $m / z 707.1968$.

Methyl 3-(3-(2-(allyloxy)-3-(2-methoxy-3-(2-methoxy-3-nitrobenzamido) benzamido)
benzamido)-2-methoxybenzamido)-2-methoxybenzoate (3i)

To a solution of $3 \mathrm{~h}(3.00 \mathrm{~g}, 4.40 \mathrm{mmol})$ and iron $(1.00 \mathrm{~g}$, $17.60 \mathrm{mmol})$ in $\mathrm{EtOH}(80 \mathrm{~mL})$ was added acetate acid (4.40 $\mathrm{mL})$. The reaction was heated at $60{ }^{\circ} \mathrm{C}$ for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-methoxy-3-nitrobenzoic acid (3c) $(1.04 \mathrm{~g}, 5.30 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine product and DIEA ($1.8 \mathrm{~mL}, 10.6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $3 \mathbf{i}$ as a white solid. Yield: $2.67 \mathrm{~g}, 73 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.23$ (s, 1 H , amide proton), $10.22(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.86(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.79(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.83(\mathrm{~m}, 4 \mathrm{H}$, aromatic proton), $8.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 7.93 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.92-7.86$ (m, 2H, aromatic proton), 7.63 (d,
$J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton $), 7.40(\mathrm{dt}, J=12.6,8.0$ $\mathrm{Hz}, 3 \mathrm{H}$, aromatic proton), $7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $6.15(\mathrm{ddt}, J=16.6,10.4,6.1$ $\mathrm{Hz}, 1 \mathrm{H}$, allyl proton), 5.39 (d, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$, allyl proton), $5.30(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$, allyl proton), 4.61 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}$, methylene proton), 4.15 (s, 3 H , methoxyl or methyl ester protons), 4.03 (s, 3 H , methoxyl or methyl ester protons), 3.95 (s, 3 H , methoxyl or methyl ester protons), 3.92 (s, 3 H , methoxyl or methyl ester protons), 3.90 (s, 3H, methoxyl or methyl ester protons). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,163.5,163.3,163.0,161.5,151.6,149.5,147.5$, $147.3,145.8,144.4,136.8,133.2,132.6,132.2,132.2,131.7,129.3,129.1,127.6,127.0,126.7$, $126.7,126.6,126.4,126.3,126.0,125.9,125.8,125.2,125.1,125.1,124.9,124.9,124.6,123.5$, 120.8, 64.6, 63.3, 63.1, 62.5, 52.3. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]{ }^{-}\left(\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{13}\right): m / z$ 832.2544, found: $m / z 832.2500$.

Methyl 3-(3-(2-hydroxy-3-(2-methoxy-3-(2-methoxy-3-nitrobenzamido) benzamido) benzamido)-2-methoxybenzamido)-2-methoxybenzoate (3)

To a solution of $3 \mathbf{i}(0.083 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$, $\mathrm{Pd} / \mathrm{C}(0.008 \mathrm{~g}, 10 \%)$ and $\mathrm{KOH}(0.011 \mathrm{~g}, 2 \mathrm{mmol})$ were added. The reaction was allowed to proceed for 24 hours. The reaction mixture was then filtered and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), washed with $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{x} 5 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a pure product $\mathbf{3}$ as light yellow solid. Yield: 0.06 g , 75%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 15.09(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $11.05(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $10.53(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $10.51(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.84(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 8.30 (dd, $J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$,
aromatic proton), $8.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.86(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 7.58 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.55-7.52(\mathrm{~m}, 1 \mathrm{H}$, aromatic proton), $7.52-7.50(\mathrm{~m}, 1 \mathrm{H}$, aromatic proton), $7.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.35(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic proton), $7.27(\mathrm{dt}, J=14.8,8.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $6.17(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 1 H , aromatic proton), 4.02 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl or methyl ester protons), 4.00 (s, 3 H , methoxyl or methyl ester protons), 3.99 (s, 3 H , methoxyl or methyl ester protons), 3.84 (s, 3 H , methoxyl or methyl ester protons), 3.81 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl or methyl ester protons). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 167.7,166.0,164.1,163.9,163.8,161.4,150.5,150.2,149.8,148.0,144.3,135.4$, $134.5,133.3,132.5,132.1,131.9,128.6,128.6,127.4,127.3,127.1,126.8,126.1,125.4,125.2$, $124.9,124.7,124.6,124.4,124.3,123.3,119.9,116.4,107.9,64.0,62.8,62.7,62.4,52.6$. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{13}\right)$: $m / z 792.2231$, found: $m / z 792.2151$.

1-(benzyloxy)-2-nitrobenzene (4b)

Compound 4a ($7.00 \mathrm{~g}, 50.4 \mathrm{mmol}$) was dissolved in DMF (150 mL) to which anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(17.4 \mathrm{~g}, 126 \mathrm{mmol})$ and benzyl bromide $(7.19 \mathrm{~mL}, 60.5 \mathrm{mmol})$ were added. The mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 4 hours. The reaction mixture was 4b then filtered and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL), washed with water (2 x 50 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a pure light yellow solid $\mathbf{4 b}$. Yield: $9.8 \mathrm{~g}, 85 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=17.4,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.9,140.2,135.6,134.1,128.7,128.2,127.0,125.6,120.6,115.2,71.1$.

Methyl 2-methoxybenzoate (4d)

Compound 4c ($7.00 \mathrm{~g}, 50.7 \mathrm{mmol}$) was dissolved in DMF $(100 \mathrm{~mL})$ to which

4d anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(14 \mathrm{~g}, 101.4 \mathrm{mmol})$ and iodomethane $(3.78 \mathrm{~mL}, 60.8 \mathrm{mmol})$ were added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 4 hours. The reaction mixture was then filtered and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with water (2 x 50 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a pure light yellow solid. 1b. Yield: $6.20 \mathrm{~g}, 74 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.37$ $(\mathrm{m}, 1 \mathrm{H}), 7.04-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.7, 159.1, 133.5, 131.6, 120.1, 112.1, 56.0, 52.0. HRMS-EI: calculated for [M] $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}\right)$: m/z 166.0630, found: m/z 166.0631.

2-methoxybenzoic acid (4e)

4e

Compound $4 \mathrm{~d}(5.00 \mathrm{~g}, 30.0 \mathrm{mmol})$ was dissolved in hot methanol $(10 \mathrm{~mL})$ to which $1 \mathrm{M} \mathrm{NaOH}(60 \mathrm{~mL}, 60 \mathrm{mmol})$ was added. The mixture was heated under reflux for 2 hours and then quenched with water (100 mL). The aqueous layer was neutralized by addition of 1 M HCl until the pH was at least 1 . The precipitated crude product was collected by filtration, which was recrystallized from hot methanol to give a pure white solid 4e. Yield: $4.30 \mathrm{~g}, 94 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.9,135.0,133.8,122.2,117.5,111.5,56.6$. MS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right): \mathrm{m} / \mathrm{z}$ 151.0, found: m / z 151.0.

N-(2-(benzyloxy)phenyl)-2-methoxy-3-nitrobenzamide (4f)

To a solution of $\mathbf{4 b}(8.00 \mathrm{~g}, 34.9 \mathrm{mmol})$ and iron $(7.82 \mathrm{~g}, 140.0 \mathrm{mmol})$ in EtOH $(400 \mathrm{~mL})$ was added acetate acid $(35 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-methoxy-3-nitrobenzoic acid (3c) ($8.27 \mathrm{~g}, 42 \mathrm{mmol}$) in $\mathrm{SOCl}_{2}(20.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine product and DIEA ($14.2 \mathrm{~mL}, 84 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{4 f}$ as a white solid. Yield: $10.69 \mathrm{~g}, 81 \%$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (dd, $J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.15-6.96(\mathrm{~m}, 3 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9,151.5,147.8,144.3,136.5,136.0,129.4,128.8,128.6$, 128.4, 128.0, 127.9, 124.5, 124.4, 121.5, 120.7, 111.4, 71.0, 63.8. HRMS-ESI: calculated for [M-$\mathrm{H}]^{-}\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}\right): \mathrm{m} / \mathrm{z} 377.1137$, found: $\mathrm{m} / \mathrm{z} 377.1143$.

2-(benzyloxy)-N-(3-(2-(benzyloxy)phenylcarbamoyl)-2-methoxyphenyl)-3-nitrobenzamide (4h)

To a solution of $\mathbf{4 f}(5.00 \mathrm{~g}, 13.2 \mathrm{mmol})$ and iron $(2.96 \mathrm{~g}, 52.9$
 $\mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid $(13 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-(benzyloxy)-3-nitrobenzoic acid ($\mathbf{4 g}$) ($4.32 \mathrm{~g}, 15.8 \mathrm{mmol}$) in $\mathrm{SOCl}_{2}(8.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine and DIEA ($5.4 \mathrm{~mL}, 31.6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{4 h}$ as a white solid. Yield: $5.34 \mathrm{~g}, 78 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.72$ $-8.57(\mathrm{~m}, 2 \mathrm{H}), 8.33(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.01(\mathrm{~m}, 8 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.08$ (s, 2H), 3.17 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,161.6,149.4,147.8,147.3,145.0$, $136.1,135.9,133.8,131.4,130.9,129.6,129.2,128.7,128.6,128.5,128.4,128.0,127.0,126.4$, $125.3,124.2,124.0,121.4,120.9,111.0,80.5,77.4,77.0,76.6,70.8,62.2$ HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}\right)$: $\mathrm{m} / \mathrm{z} 726.1903$, found: $\mathrm{m} / \mathrm{z} 626.1908$.

2-(benzyloxy)-N-(3-(2-(benzyloxy)phenylcarbamoyl)-2-methoxyphenyl)-3-(2-methoxy-3-

 nitrobenzamido)benzamide (4i)

To a solution of $\mathbf{4 h}(4.00 \mathrm{~g}, 6.6 \mathrm{mmol})$ and iron $(1 . .48 \mathrm{~g}, 26.5$ $\mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid $(7 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-methoxyl-3-nitrobenzoic acid (3c) $(1.56 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(20.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine and DIEA ($2.7 \mathrm{~mL}, 16 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{4 i}$ as a white solid. Yield: $4.32 \mathrm{~g}, 72 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.03(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.92(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.32(\mathrm{~s}, 1 \mathrm{H}$, amide proton), 8.79 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.79(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.45-7.28(\mathrm{~m}, 5 \mathrm{H}$, aromatic proton), $7.21(\mathrm{~m}, 4 \mathrm{H}$, aromatic proton), $7.12-7.01(\mathrm{~m}, 6 \mathrm{H}$, aromatic proton), $6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $5.14(\mathrm{~s}$, 2 H , methylene proton), $5.00(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $3.82(\mathrm{~s}, 3 \mathrm{H}$, methoxyl proton), $3.47(\mathrm{~s}$, 3 H , methoxyl proton). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,162.6,161.4,151.1,147.6,147.2$, $145.8,144.4,136.4,136.2,134.3,132.5,131.9,129.4,129.2,128.6,128.6,128.5,128.4,128.2$,
$128.1,127.4,126.9,126.5,126.2,125.8,125.4,124.9,124.3,124.2,124.1,121.6,120.8,111.6$, 79.3, 70.7, 64.1, 62.4. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Na}\right): \mathrm{m} / \mathrm{z} 775.2380$, found: m/z 775.2374.

Methyl 2-(benzyloxy)-3-(2-methoxybenzamido) benzoate (4k)

To a solution of methyl 2-(benzyloxy)-3-nitrobenzoate (4j) (2.87 g, $10.0 \mathrm{mmol})$ and iron ($2.24 \mathrm{~g}, 40.0 \mathrm{mmol}$) in EtOH (100 mL) was added acetate acid $(10 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-methoxybenzoic acid (4e) (1.82 g, 12.0 mmol$)$ in SOCl_{2} $(10.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine and DIEA ($0.92 \mathrm{~mL}, 24 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $4 \mathbf{k}$ as a white solid. Yield: $2.97 \mathrm{~g}, 76 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{~s}$, $1 \mathrm{H}), 8.84(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0$, $163.3,157.3,148.2$ 136.7, 133.8, 133.3, 132.4, 128.3, 128.2, 125.8, 125.3, 124.4, 123.7, 121.2, 121.2, 111.2, 76.8, 55.2, 52.2. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 414.1312, found: $\mathrm{m} / \mathrm{z} 414.1296$.

2-(benzyloxy)-3-(2-methoxybenzamido) benzoic acid (4l)

Compound $\mathbf{4 k}(3.90 \mathrm{~g}, 10.0 \mathrm{mmol})$ was dissolved in hot methanol $(10 \mathrm{~mL})$ to which $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL}, 20 \mathrm{mmol})$ was added. The mixture was heated under reflux for 2 hours and then quenched with water $(100 \mathrm{~mL})$. The aqueous layer was neutralized by addition of

1 M HCl until the pH was at least 1 . The precipitated crude product was collected by filtration, which was recrystallized from hot methanol to give a pure white solid 4l. Yileld: $3.13 \mathrm{~g}, 83 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.59(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=6.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (dd, $J=9.8,4.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,163.6,157.4,148.8,136.1,133.7,133.6,132.6$, $128.8,128.6,128.5,126.9,126.8,124.9,122.7,121.4,121.2,111.3,77.5,55.4$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}\right): \mathrm{m} / \mathrm{z} 400.1161$, found: $\mathrm{m} / \mathrm{z} 400.1151$.

2-(benzyloxy)-3-(3-(2-(benzyloxy)-3-(2-methoxybenzamido)benzamido)-2-methoxybenzamido)-N-(3-(2-(benzyloxy)phenylcarbamoyl)-2-methoxyphenyl)benzamide (4m)

To a solution of $4 \mathrm{i}(1.00 \mathrm{~g}, 1.3 \mathrm{mmol})$ and iron $(0.30 \mathrm{~g}, 5.2 \mathrm{mmol})$ in EtOH (20 mL) was added acetate acid $(1.3 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of $41(0.75 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.0 \mathrm{~mL})$ was heated at reflux
for 2 hours. After removal of the SOCl 2 , the amine product and DIEA $(0.68 \mathrm{~mL}, 4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography to give $\mathbf{4 m}$ as a white solid. Yield: $1.04 \mathrm{~g}, 73 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.33$ (s, 1H, amide proton), $9.94(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.73(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.28(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.08(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.70(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.58(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.28(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.79-7.70(\mathrm{~m}, 3 \mathrm{H}$, aromatic proton), $7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.43-$ $7.29(\mathrm{~m}, 4 \mathrm{H}$, aromatic proton), $7.24(\mathrm{~s}, 1 \mathrm{H}$, aromatic proton), $7.20-6.91(\mathrm{~m}, 18 \mathrm{H}$, aromatic proton), $6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $4.99(\mathrm{~s}, 4 \mathrm{H}$, methylene proton), $4.95(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), 3.61 (s, 3H, methoxyl proton), 3.49 (s, 3H, methoxyl proton), 3.36 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl proton). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,163.8,163.5,163.3,162.5,157.1,147.5$, $147.1,147.1,146.1,145.7,136.2,134.8,134.8,134.6,133.6,133.1,132.7,132.6,132.0,131.8$, $129.0,129.0,129.0,128.5,128.5,128.3,128.1,128.1,127.5,126.8,126.7,126.4,126.0,125.7$, $125.7,125.6,125.5,125.5,125.4,124.9,124.4,124.2,124.1,121.7,121.6,121.4,120.6,111.4$, 111.4, 78.7, 78.4, 70.6, 62.6, 62.3, 55.6. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{65} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 1104.3796, found: $\mathrm{m} / \mathrm{z} 1104.3779$.

2-hydroxy-3-(3-(2-hydroxy-3-(2-methoxybenzamido) benzamido)-2-methoxybenzamido)-N-

(3-(2-hydroxyphenylcarbamoyl)-2-methoxyphenyl) benzamide (4)

Compound $\mathbf{4 m}(0.50 \mathrm{~g}, 0.05 \mathrm{mmol})$ was going through hydrogenolysis at $40^{\circ} \mathrm{C}$ in 12 ml THF and 4 ml MeOH using $\mathrm{Pd} / \mathrm{C}(1.0 \mathrm{~g}, 200 \%)$ as catalyst for 3 hours. The reaction mixture was then

filtered and the residue was washed with DMF. DMF was removed under vacuo to give the solid. CHCl_{3} was added to the solid and stirred for 1 hour then filter to give product 4 as white solid. Yield: $0.29 \mathrm{~g}, 80 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1: 1\right) \delta 13.07$ (s, 1 H , hydroxyl proton), 13.03 ($\mathrm{s}, 1 \mathrm{H}$, hydroxyl proton), 10.71 ($\mathrm{s}, 3 \mathrm{H}$, amide or hydroxyl proton), $10.64(\mathrm{~s}, 1 \mathrm{H}$, amide or hydroxyl proton), $10.45(\mathrm{~s}, 1 \mathrm{H}$, amide or hydroxyl proton), $10.15(\mathrm{~s}, 1 \mathrm{H}$, amide or hydroxyl proton), 8.58 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.32(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 8.09 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.92(\mathrm{~m}, 6 \mathrm{H}$, aromatic proton), $7.58(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic proton), $7.39(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton), $7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.06(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton), $6.94(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $6.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $4.06(\mathrm{~s}, 3 \mathrm{H}$, methoxyl proton), 3.93 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl proton), 3.89 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl proton). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 168.7,168.7,162.7,162.5,161.6,157.2,152.2,152.2,150.8,150.3,146.6,133.6$, $131.3,131.2,131.0,130.5,130.4,128.7,128.6,128.3,127.9,126.9,126.8,126.8,124.7,124.4$, $124.0,123.9,122.8,122.3,121.0,121.0,120.2,119.1,118.8,114.9,114.8,114.6,112.5,62.1$, 62.0, 56.4. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{44} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 834.2387, found: m / z 834.2404.

N-(2-(benzyloxy)phenyl)-2-methoxy-3-(2-methoxy-3-nitrobenzamido)benzamide (5a)

To a solution of $4 \mathrm{f}(3.78 \mathrm{~g}, 10.0 \mathrm{mmol})$ and iron $(2.24 \mathrm{~g}, 40.0 \mathrm{mmol})$ in EtOH (100 mL) was added acetate acid $(10 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was

evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of $3 \mathbf{c}(2.36 \mathrm{~g}, 12.0 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(10.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl 2 , the amine and DIEA ($4.0 \mathrm{~mL}, 24 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $5 \mathbf{5 a}$ as a white solid. Yield: $4.16 \mathrm{~g}, 79 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 9.93(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-$ $7.01(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2$, $161.1,150.9,147.7,147.1,144.4,136.3,135.9,131.6,129.2,128.7,128.5,128.0,127.9,126.8$, 126.6, 125.3, 124.9, 124.2, 123.9, 121.3, 120.7, 111.1, 70.8, 64.4, 62.6. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7}\right): \mathrm{m} / \mathrm{z} 526.1693$, found: $\mathrm{m} / \mathrm{z} 526.1604$.

2-(benzyloxy)-N-(3-(3-(2-(benzyloxy)phenylcarbamoyl)-2-methoxyphenylcarbamoyl)-2-methoxyphenyl)-3-nitrobenzamide (5b)

To a solution of $5 \mathrm{a}(2.63 \mathrm{~g}, 5.0 \mathrm{mmol})$ and iron $(1.12 \mathrm{~g}, 20.0$ $\mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added acetate acid $(5 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of $\mathbf{4 g}(1.64 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(20.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine and DIEA $(2.0 \mathrm{~mL}, 12 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{5 b}$ as a white solid. Yield: $2.74 \mathrm{~g}, 73 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.96(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.64(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.54(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.74-8.68(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton), $8.62(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.37(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.06(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 7.88 (ddd, $J=12.6,7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$, aromatic proton), $7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 7.27-7.25 (m, 2 H , aromatic proton), $7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.16(\mathrm{dd}, J=5.7,4.1 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.11-6.92(\mathrm{~m}, 4 \mathrm{H}$, aromatic proton), $5.16(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $5.13(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), 3.56 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl proton), $3.40\left(\mathrm{~s}, 3 \mathrm{H}\right.$, methoxyl proton). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,162.7,161.9,149.5,147.7,147.2,147.2,144.9,136.3,136.3,136.2$, $134.0,131.9,131.5,131.0,129.4,129.3,128.7,128.5,128.1,128.0,127.7,126.9,126.9,126.6$, $126.5,125.6,125.4,125.4,124.8,124.5,124.1,121.6,120.9,111.5,80.3,70.8,62.7,62.6$. HRMS-ESI: calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{43} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{9}\right): \mathrm{m} / \mathrm{z} 751.2482$, found: $\mathrm{m} / \mathrm{z} 751.2383$.

2-(benzyloxy)-3-(2-(benzyloxy)-3-(2-methoxybenzamido)benzamido)-N-(3-(3-(2-(benzyloxy)phenylcarbamoyl)-2-methoxyphenylcarbamoyl)-2-methoxyphenyl)benzamide (5c)

To a solution of $5 \mathbf{b}(1.50 \mathrm{~g}, 2.0 \mathrm{mmol})$ and iron $(0.45 \mathrm{~g}, 8.0$ $\mathrm{mmol})$ in EtOH (40 mL) was added acetate acid (2 mL). The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of $\mathbf{4 l}(1.13 \mathrm{~g}, 3.0$ $\mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, the amine product and DIEA ($1.0 \mathrm{~mL}, 6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product 5 c as a white solid. Yield, $1.47 \mathrm{~g}, 68 \%$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.36(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.84(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.59(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.53(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.32(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.78(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $8.75-8.67(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton), $8.57(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 8.30 (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 7.88 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 7.83 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.56(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.51-7.45(\mathrm{~m}$, 1 H , aromatic proton), $7.40(\mathrm{dt}, J=12.2,8.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.30(\mathrm{td}, J=8.0,4.3 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.25(\mathrm{~s}, 1 \mathrm{H}$, aromatic proton), $7.21-6.97(\mathrm{~m}, 17 \mathrm{H}$, aromatic proton), $6.94(\mathrm{dd}, J=$ $7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 4.97 (s, 2H, methylene
proton), $4.92(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $4.90(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $3.58(\mathrm{~s}, 3 \mathrm{H}$, methoxyl proton), $3.53\left(\mathrm{~s}, 3 \mathrm{H}\right.$, methoxyl proton), 3.42 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl proton). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.9,163.7,163.5,163.3,162.7,157.2,147.6,147.3,147.2,146.1,145.9,136.2$, $135.1,134.8,133.8,133.1,132.6,132.5,132.1,129.1,128.9,128.7,128.5,128.5,128.2,128.0$, $127.9,127.8,127.7,127.0,126.8,126.3,126.2,126.1,125.9,125.7,125.6,125.5,125.2,125.2$, $125.1,125.0,124.5,124.2,121.7,121.6,121.3,120.8,111.6,111.5,78.8,78.2,70.8,65.9,62.7$, 62.6, 55.6. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{65} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}\right): \mathrm{m} / \mathrm{z} 1104.3796$, found: m / z 1104.3831.

2-hydroxy-3-(2-hydroxy-3-(2-methoxybenzamido)benzamido)-N-(3-(3-(2-

hydroxyphenylcarbamoyl)-2-methoxyphenylcarbamoyl)-2-methoxyphenyl)benzamide (5)

Compound $5 \mathrm{c}(0.50 \mathrm{~g}, 0.05 \mathrm{mmol})$ was going through hydrogenolysis at $40{ }^{\circ} \mathrm{C}$ in 12 ml THF and 4 ml MeOH using $\mathrm{Pd} / \mathrm{C}(1.0 \mathrm{~g}, 200 \%)$ as catalyst for 3 hours. The reaction mixture was then filtered and the solid was washed with DMF. DMF was removed in vacuo to give the solid. CHCl_{3} was added to the solid and stirred for 1 hour then filter to give product 5 as white solid. Yield, $29 \mathrm{mg}, 72 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.25(\mathrm{~s}, 1 \mathrm{H}$, hydroxyl proton), $12.11(\mathrm{~s}, 1 \mathrm{H}$, hydroxyl proton), $11.03(\mathrm{~s}, 1 \mathrm{H}$, amide or hydroxyl proton), $10.75(\mathrm{~s}, 1 \mathrm{H}$, amide or hydroxyl proton), $10.52(\mathrm{~s}, 1 \mathrm{H}$, amide or hydroxyl proton), 10.37 (s, 1H, amide or hydroxyl proton), 10.22 (s, 1H, amide or hydroxyl proton), 10.16 (s, 1 H , amide or hydroxyl proton), $8.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1 H , aromatic proton), $8.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$,
aromatic proton), $8.11(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.78-7.67(\mathrm{~m}, 3 \mathrm{H}$, aromatic proton), $7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.36(\mathrm{q}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.14(\mathrm{dt}, J=20.4$, $7.7 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $6.95(\mathrm{dt}, J=14.4,7.4 \mathrm{~Hz}$, 2 H , aromatic proton), $6.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $4.06(\mathrm{~s}, 3 \mathrm{H}$, methoxyl proton), 3.97 (s, 3 H , methoxyl proton), 3.93 (s, 3 H , methoxyl proton). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ $169.2,165.7,163.8,162.6,162.3,157.2,152.9,149.4148 .8,146.9,133.7,131.9,131.5,131.3$, $128.3,128.1,127.8,127.2,126.9,126.5,126.1,126.0,125.7,124.5,124.4,124.3,123.5,122.3$, $121.1,121.0,120.7,119.2,118.9,118.4,118.3,114.9,114.7,112.6,62.6,62.4,56.5,39.7,39.5$, 39.3. HRMS-ESI: calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{11}\right): \mathrm{m} / \mathrm{z} 810.2490$, found: $\mathrm{m} / \mathrm{z} 810.2427$. Methyl 2-methoxy-3-(2-methoxybenzamido)benzoate (6b)

To a solution of $\mathbf{6 a}(2.11 \mathrm{~g}, 10.0 \mathrm{mmol})$ and iron $(2.24 \mathrm{~g}, 40.0$ $\mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid $(10 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of $4 \mathbf{e}(1.82 \mathrm{~g}$, $12.0 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(10.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl 2 , the amine and DIEA ($4.1 \mathrm{~mL}, 24 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{6 b}$ as a white solid. Yield: $2.42 \mathrm{~g}, 77 \%$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.75(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$
(dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{ddd}, J=8.4,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,163.3,157.4,149.4,133.7,133.4,132.6,125.6,125.0,124.4,123.5$, 121.6, 111.6, 105.0, 62.1, 56.1, 52.2. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 338.0999, found: m/z 338.1012 .

2-methoxy-3-(2-methoxybenzamido)benzoic acid (6c)

Compound $\mathbf{6 b}(1.58 \mathrm{~g}, 5.0 \mathrm{mmol})$ was dissolved in hot methanol (5

6c mL) to which $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL}, 10 \mathrm{mmol})$ was added. The mixture was heated under reflux for 2 hours and then quenched with water. The aqueous layer was neutralized by addition of 1 M HCl until the pH was at least 1 . The precipitated crude product was collected by filtration, which was recrystallized from hot methanol to give a pure white solid 6c. Yield, $1.31 \mathrm{~g}, 87 \%$. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4,157.4,133.7,132.7$, $126.8,126.7,126.7,125.2,125.2,122.0,121.9,121.8,121.4,111.6,62.5,56.14$. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{5}\right): ~ \mathrm{~m} / \mathrm{z} 300.0872$, found: $\mathrm{m} / \mathrm{z} 300.0881$.

2-(benzyloxy)-N-(2-(benzyloxy)-3-(3-(2-(benzyloxy)phenylcarbamoyl)-2-methoxyphenylcarbamoyl)phenyl)-3-nitrobenzamide (6d)

To a solution of $\mathbf{4 h}(3.02 \mathrm{~g}, 5.0 \mathrm{mmol})$ and iron $(1.12 \mathrm{~g}, 20.0 \mathrm{mmol})$ in EtOH $(50 \mathrm{~mL})$ was added acetate acid $(5 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The

organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of 2-(benzyloxy)-3nitrobenzoic acid $\mathbf{4 g}(1.64 \mathrm{~g}, 6 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, amine and DIEA ($2.0 \mathrm{~mL}, 12 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product 6d as a white solid. Yield, $2.53 \mathrm{~g}, 61 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.93(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.43(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.40(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.68(\mathrm{ddd}, J=8.1,2.7,1.7 \mathrm{~Hz}$, 2 H , aromatic proton), $8.63-8.50(\mathrm{~m}, 1 \mathrm{H}$, aromatic proton), $8.18(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.99(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.87(\mathrm{td}, J=8.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.47-6.87(\mathrm{~m}, 21 \mathrm{H}$, aromatic proton), $5.08(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $5.02(\mathrm{~s}$, 2 H , methylene proton), 4.68 ($\mathrm{s}, 2 \mathrm{H}$, methylene proton), 3.40 (s, 3 H , methoxyl proton). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,162.7,161.7,149.3,147.6,147.3,146.0,144.9,136.3,135.8,134.4$, $134.0,132.1,131.9,131.0,129.5,129.3,128.9,128.9,128.6,128.5,128.5,128.3,128.1,128.0$, $127.8,127.2,126.9,126.6,126.6,125.7,125.4,125.2,124.5,124.4,124.1,121.6,120.9,111.7$, 80.1, 78.9, 70.6, 62.4. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{9}\right)$: m/z 827.2717, found: m/z 827.2709.

2-(benzyloxy)-3-(2-(benzyloxy)-3-(2-methoxy-3-(2-
methoxybenzamido)benzamido)benzamido)-N-(3-(2-(benzyloxy)phenylcarbamoyl)-2methoxyphenyl)benzamide (6e)

To a solution of $\mathbf{6 d}(1.66 \mathrm{~g}, 2.0 \mathrm{mmol})$ and iron $(0.45 \mathrm{~g}, 8.0$ $\mathrm{mmol})$ in EtOH (50 mL) was added acetate acid $(2 \mathrm{~mL})$. The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of acid $\mathbf{6 c}(0.9 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl 2 , amine DIEA ($1.0 \mathrm{~mL}, 6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{6 d}$ as a white solid. Yield, $1.38 \mathrm{~g}, 64 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.40(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.86(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.65(\mathrm{~s}$, 1 H , amide proton), $9.24(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.16(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $8.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2 H , aromatic proton), $8.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.65(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.58(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.33(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.84(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.76(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.69(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.64(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.53-7.48(\mathrm{~m}, 1 \mathrm{H}$, aromatic proton), $7.35(\mathrm{ddt}, J=30.8,11.0,8.0 \mathrm{~Hz}, 4 \mathrm{H}$, aromatic proton), $7.25-6.91(\mathrm{~m}, 20 \mathrm{H}$, aromatic proton), $5.00(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $4.97(\mathrm{~s}$,

2 H , methylene proton), $4.79(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $3.77(\mathrm{~s}, 3 \mathrm{H}$, methoxyl proton), $3.68(\mathrm{~s}$, 3 H , methoxyl proton), 3.36 ($\mathrm{s}, 3 \mathrm{H}$, methoxyl proton). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9$, $163.6,163.5,163.4,162.6,157.2,147.6,147.2,147.0,145.8,145.6,136.2,134.8,133.7,132.9$, $132.8,132.7,132.5,131.8,130.8,129.0,128.9,128.9,128.8,128.6,128.5,128.4,128.3,128.2$, $128.1,128.1,127.6,126.9,126.7,126.4,125.8,125.75,125.7,125.6,125.5,125.4,125.3,125.1$, $124.5,124.4,124.3,124.1,121.9,121.6,121.5,120.8,111.6,111.5,78.9,78.7,70.7,62.4,62.3$, 55.9. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{65} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 1104.3790, found: m / z 1104.3805.

2-hydroxy-3-(2-hydroxy-3-(2-methoxy-3-(2-methoxybenzamido)benzamido)benzamido)-N-

(3-(2-hydroxyphenylcarbamoyl)-2-methoxyphenyl)benzamide (6)

6

Compound 6e ($0.05 \mathrm{~g}, 0.05 \mathrm{mmol}$) was going through hydrogenolysis at $40^{\circ} \mathrm{C}$ in 12 ml THF and 4 ml MeOH using $\mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g}, 200 \%)$ as catalyst for 6 hours. The reaction mixture was then filtered and the solid was washed with DMF. DMF was removed in vacuo to give the solid. CHCl_{3} was added to the solid and stirred for 1 hour then filter to give product 6 as white solid. Yield, $28 \mathrm{mg}, 70 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1: 1\right) \delta 12.76(\mathrm{~s}, 1 \mathrm{H}$, hydroxyl proton), $12.16(\mathrm{~s}, 1 \mathrm{H}$, hydroxyl proton), 10.53 (s, 1H, amide or hydroxyl proton), $10.34(\mathrm{~s}, 1 \mathrm{H}$, amide or hydroxyl proton), 10.28 (s, 1 H , amide or hydroxyl proton), 10.11 (s, 1H, amide or hydroxyl proton), 9.72 (s, 1H, amide or hydroxyl proton), 9.37 (s, 1H, amide or hydroxyl proton), $8.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), $8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), $8.21-8.16(\mathrm{~m}, 2 \mathrm{H}$, , aromatic proton), $8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), 7.95
(d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), $7.85(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), $7.74(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}$, , aromatic proton), $7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton $), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), $7.25(\mathrm{td}, J=8.0,5.2 \mathrm{~Hz}, 2 \mathrm{H}$, , aromatic proton), $7.13-7.07(\mathrm{~m}, 2 \mathrm{H}$, , aromatic proton), 7.01 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), $6.97(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, , aromatic proton), $6.88(\mathrm{dt}, J=7.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}$, , aromatic proton), $6.81-6.77(\mathrm{~m}, 1 \mathrm{H}$, , aromatic proton), $4.11(\mathrm{~s}$, 3 H , methoxyl proton), 3.98 (s, 3 H , methoxyl proton), 3.94 (s, 3 H , methoxyl proton). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}=1: 1\right) \delta 169.8,166.2,164.3,163.1,162.8,157.7,153.4,151.1$, $149.9,149.3,147.4,134.2,132.4,132.2,132.0,131.8,128.7,128.6,128.4,127.7,127.4,127.1$, $126.7,126.5,126.1,125.1,125.0,124.8,124.1,122.8,121.7,121.5,121.2,119.7,119.6,118.9$, $115.4,115.2,113.1,63.1,62.9,57.0$. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{11}\right): \mathrm{m} / \mathrm{z}$ 810.2417, found: m/z 810.2414.

2-(benzyloxy)-3-(2-(benzyloxy)-3-(2-(benzyloxy)-3-(2-
methoxybenzamido)benzamido)benzamido)-N-(3-(2-(benzyloxy)phenylcarbamoyl)-2methoxyphenyl)benzamide (7a)

To a solution of $\mathbf{6 d}(1.66 \mathrm{~g}, 2.0 \mathrm{mmol})$ and iron $(0.45 \mathrm{~g}, 8.0$ mmol) in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added acetate acid (2 mL). The reaction was refluxed for 2 hours. After cooling, the solvent was evaporated and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the amine product used for the next step reaction without purification. A solution of acid $\mathbf{4 l}(1.13 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.0 \mathrm{~mL})$ was heated at reflux for 2 hours. After removal of the SOCl_{2}, amine and

DIEA ($1.0 \mathrm{~mL}, 6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for overnight. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography to give the pure product 7a as a white solid. Yield, $1.20 \mathrm{~g}, 52 \% .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.87(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.30(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.17(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $9.03(\mathrm{~s}, 1 \mathrm{H}$, amide proton), 8.79 (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.63(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.57(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.29(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.84(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.76(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.67(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.52-7.46(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton), $7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.35(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.30(\mathrm{td}, J=8.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.23-6.90(\mathrm{~m}$, 24 H , aromatic proton), $6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 4.96 ($\mathrm{s}, 2 \mathrm{H}$, methylene proton), $4.91(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $4.83(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), $4.81(\mathrm{~s}, 2 \mathrm{H}$, methylene proton), 3.37 (s, 3 H , methoxyl proton), 3.35 (s, 3 H , methoxyl proton). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.0,163.8,163.7,163.5,162.7,157.2,147.6,147.2,146.0,145.8,145.7,136.2,135.0,134.8$, 134.6, 133.6, 133.2, 132.6, 132.6, 132.5, 131.9, 129.0, 128.9, 128.9, 128.8, 128.6, 128.5, 128.5, $128.4,128.3,128.2,128.1,128.0,127.5,126.9,126.4,125.9,125.7,125.6,125.6,125.5,125.3$, $125.0,124.9,124.7,124.5,124.3,124.1,121.7,121.6,121.5,120.8,111.6,111.4,78.7,78.6$, 78.2, 70.7, 62.3, 55.6. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{71} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}\right): \mathrm{m} / \mathrm{z} 1180.4109$, found: m/z 1180.4074.

2-hydroxy-3-(2-hydroxy-3-(2-hydroxy-3-(2-methoxybenzamido)benzamido)benzamido)-N-(3-(2-hydroxyphenylcarbamoyl)-2-methoxyphenyl)benzamide (7)

Compound 7a ($0.046 \mathrm{~g}, 0.04 \mathrm{mmol}$) was going through hydrogenolysis at $40^{\circ} \mathrm{C}$ in 12 ml THF and 4 ml MeOH using $\mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g}, 200 \%)$ as catalyst for 6 hours. The reaction mixture was then filtered and the solid was washed with DMF. Solvent was removed under vacuo to give the solid. CHCl_{3} was added to the solid and stirred for 1 hour then filtered to give product 7 as white solid. Yield, $23 \mathrm{mg}, 72 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.20(\mathrm{~s}, 1 \mathrm{H}$, hydroxyl proton), $12.61(\mathrm{~s}, 1 \mathrm{H}$, hydroxyl proton), 12.38 (s, 1H, hydroxyl proton), $10.87(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $10.75(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $10.71(\mathrm{~s}$, 1 H , amide proton), $10.41(\mathrm{~s}, 1 \mathrm{H}$, amide proton), $10.37(\mathrm{~s}, 1 \mathrm{H}$, amide proton), 10.13 (s, 1H, hydroxyl proton), $8.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), 8.30 $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.16-8.01(\mathrm{~m}, 5 \mathrm{H}$, aromatic proton), 7.88
(dd, $J=10.1,4.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic proton), $7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic
proton), 7.60 (dd, $J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.37(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $7.09(\mathrm{q}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$, aromatic proton), $7.03(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $6.95(\mathrm{ddd}, J=15.4,8.0,4.0 \mathrm{~Hz}$, 2 H , aromatic proton), $6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $4.06(\mathrm{~s}, 3 \mathrm{H}$, methoxyl proton), 3.90 (s, 3H, methoxyl proton). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 169.4, 167.6, 167.3, 163.2, 162.4, $157.8,153.9,152.5,151.3,150.8,147.2,134.2,131.8,131.6,129.6,129.3,128.7,128.2,127.8$, $127.5,127.3,127.2,126.1,126.0,125.1,124.6,124.2,122.9,121.6,121.6,120.9,119.72,119.51$, 119.1, 119.0, 118.2, 117.2, 115.5, 115.3, 113.2, 62.7, 57.0. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}$ $\left(\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{11}\right): \mathrm{m} / \mathrm{z} 796.2260$, found: $\mathrm{m} / \mathrm{z} 796.2255$.

4. X-Ray Crystallography Data Sheet for Pentamer 3

Table S1. Crystal data and structure refinement for Pentamer 3.

CCDC No:
Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

915672
8253
$\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{C}_{16} \mathrm{~N}_{5} \mathrm{O}_{13}$
1032.47

223(2) K
0.71073 Å

Monoclinic
P2(1)/c

$$
\begin{array}{ll}
\mathrm{a}=14.4427(8) \AA & \mathrm{a}=90^{\circ} . \\
\mathrm{b}=21.5076(12) \AA & \mathrm{b}=109.8110(10)^{\circ} . \\
\mathrm{c}=15.8649(8) \AA & \mathrm{g}=90^{\circ} .
\end{array}
$$

4636.4(4) \AA^{3}

4
$1.479 \mathrm{Mg} / \mathrm{m}^{3}$
$0.440 \mathrm{~mm}^{-1}$
2120
$0.56 \times 0.22 \times 0.08 \mathrm{~mm}^{3}$
1.50 to 25.00°.
$-16<=\mathrm{h}<=17,-25<=\mathrm{k}<=25,-18<=1<=18$
26736
$8163[\mathrm{R}(\mathrm{int})=0.0476]$
100.0 \%

Sadabs, (Sheldrick 2001)
0.9657 and 0.7909

Full-matrix least-squares on F^{2}
8163/24/632
1.049
$R 1=0.0708, \mathrm{wR} 2=0.2032$
$\mathrm{R} 1=0.0951, \mathrm{wR} 2=0.2233$
0.708 and $-0.731 \mathrm{e} . \AA^{-3}$

5. Figure S1.

a)

3
b)

3
c)

Anionic 3

Figure S1. (a) Top and side views of crystal structure of pentamer 3, demonstrating the ability of hydroxyl group in red ball to form an alternative H -bonding pattern identical to that in $\mathbf{1}$ in Figure 1. (b) Top and side views of $a b$ initio calculated structure of 3 , illustrating a good planarity around the hydroxyl region and slightly more distorted backbones by methoxy groups. (c) Top and side views of ab initio calculated structure of anionic $\mathbf{3}$ that becomes helically folded upon deprotonating the central hydroxyl group (O -atom in red ball). The computations were carried out at the B3LYP/6-31G level.

6. Figure S2.

Figure S2. Fluorescence quenching extents of 4-6 by 8 equivalents of amines of various types. The fluorescence spectra/data were obtained at 10 uM in THF containing 1% DMSO at room temperature with an excitation wavelength at 351 nm. DMPC $=$ Dimethylaminopropylchloride.

7. Table S1 and General Description of Ab Initio Molecular Modeling

All the calculations were carried out by utilizing the Gaussian 09^{1} program package. The geometry optimizations were performed at the density functional theory (DFT) level, and the Becke's three parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) ${ }^{2}$ method was employed to do the calculations. The $6-31 \mathrm{G}^{3}$ basic from the Gaussian basis set library has been used in all the calculations. The harmonic vibrational frequencies and zero-point energy corrections were calculated at the same level of theory. Single point energy were obtained at the B3LYP level in conjunction with the $6-311+G(2 d, p)$ basis set with the use of the above optimized geometries, i.e., B3LYP/6-311+G(2d,p)//B3LYP/6-31G.

Table S1. Relative stabilities of various anionic isomers ${ }^{\text {a }}$ derived from 7. ${ }^{\text {b }}$

Mono-anionic isomers with one phenolate anion (kcal/mol)					
7a	7 b	7c	7d		
5.39	1.92	0.00	18.99		
Di-anionic isomers with two phenolate anions (kcal/mol)					
7 ab	$7{ }_{\text {bc }}$	7 ac	7 ad	$7{ }_{\text {bd }}$	$7{ }_{\text {cd }}$
13.84	7.64	0.00	16.67	14.51	15.66
Tri-anionic isomers with three phenolate anions (kcal/mol)					
		7 abc	7 abd	7 acd	$7{ }_{\text {bcd }}$
		0.00	11.77	5.50	13.37

[^0][^1]
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

$$
\text { OI- }{ }^{0}
$$

-165.92
-162.83
$\mathcal{C}_{161.71}$
$\mathscr{L}_{149.60}^{149.29}$
-147.39
-144.80
$\Gamma_{-136.28}^{133.07}$
-131.83
-131.04
-120.12
-126.77
-126.69
-126.19
-125.70
-125.12
-124.88
-124.59
-124.35
-123.49
121.76
$\mathcal{C}_{62.50}^{63.11}$
-52.32

[^0]: ${ }^{\text {a }}$ Anionic oligomers are generated by using strong organic base TBAOH. ${ }^{\mathrm{b}}$ Geometrically optimized at the B3LYP/6-31G level with single point energy calculated at the B3LYP/6-311+G(2d,p) level using THF as the explicit solvent.

[^1]: ${ }^{1}$ Frisch, M. J.; et al. Gaussian 09; Gaussian , Inc.: Wallingford CT, 2009.
 ${ }^{2}$ Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
 ${ }^{3}$ Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081; Petersson, G. A.; Bennett, A.;
 Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.

