#### **Supporting Information**

# **Copper Catalyzed Oxidative Coupling of Amines with Formamides: A New Approach for the Synthesis of Unsymmetrical Urea Derivatives**

G. Sathish Kumar, R. Arun Kumar, P. Santhosh Kumar, N. Veera Reddy, K. Vijaya Kumar, M. Lakshmi Kantam, S. Prabhakar and K. Rajender Reddy

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Tarnaka, and Hyderabad 500 607, India, Fax: +91-040-27160921. e-mail: <u>rajender@iict.res.in</u>; <u>rajenderkallu@yahoo.com</u>

### Table of Contents

| 1. General Information                                                        | 2   |
|-------------------------------------------------------------------------------|-----|
| 2. Optimization studies                                                       | .3  |
| 3. Experimental section                                                       | .4  |
| 4. Spectroscopic data for products                                            | .5  |
| 5. Copies of <sup>1</sup> H, <sup>13</sup> C, ESI & HRMS spectra for products | .14 |
| 6. HPLC data for the 3k & 3l compounds                                        | 70  |

#### **1. General Information :**

All chemicals were purchased from Sigma-Aldrich and S.D Fine Chemicals, AVRA chemicals Pvt. Ltd. India and used as received. ACME silica gel (100–200 mesh) was used for column chromatography and Thin layer chromatography (TLC) was carried out on TLC Silica gel 60  $F_{254}$  and compounds were visualized by UV light,  $I_2$  vapors, phosphomolybdic acid stain, ninhydrin stain. All the other chemicals and solvents were obtained from commercial sources and purified using standard methods.. The IR values are reported in reciprocal centimeters (cm<sup>-1</sup>). All <sup>1</sup>H, <sup>13</sup>C {<sup>1</sup>H} NMR spectra were recorded on a Avance-300, Inova-400, Inova-500 MHz Spectrometer. Chemical shifts ( $\delta$ ) are reported in ppm, using TMS ( $\delta$  =0) as an internal standard in CDCl<sub>3</sub>. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quintet; dd, doublet of doublet; dt, doublet of triplet. The coupling constants (*J*), are reported in Hertz (Hz). Mass spectral data were compiled using MS (ESI), HRMS mass spectrometers. HPLC data recorded on SHIMAZDU HPLC Instrument equipped with DIODE ARRAY detector; Mobile phase: methanol :water = 90% +10% (1.5% acetic acid in HPLC water); Flow rate: 0.5 ml/min.; Column: LUX5M AMYLOSE-2 (phenomenox).; UV-range : 190 nm.

# 2.Optimization of raction conditions : <sup>a</sup>

| $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & $ |                                      |                               |                  |                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|------------------|------------------------|--|
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | catalyst                             | Oxidant                       | Reaction<br>time | yield <sup>b</sup> (%) |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cul                                  | TBHP in Decane                | 4 h              | 48                     |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CuBr                                 | TBHP in Decane                | 4 h              | 47                     |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CuCl                                 | TBHP in Decane                | 4 h              | 43                     |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CuBr <sub>2</sub>                    | TBHP in Decane                | 4 h              | 64                     |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CuCl <sub>2</sub>                    | TBHP in Decane                | 4 h              | 45                     |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cu(CH <sub>3</sub> COO) <sub>2</sub> | TBHP in Decane                | 4 h              | 24                     |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CuBr <sub>2</sub>                    | TBHP in Water                 | 4 h              | 55                     |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CuBr <sub>2</sub>                    | H <sub>2</sub> O <sub>2</sub> | 4 h              | N.R                    |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CuBr <sub>2</sub>                    | ТВРВ                          | 4 h              | N.R                    |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CuBr <sub>2</sub>                    | TBP                           | 4 h              | N.R                    |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CuBr <sub>2</sub>                    | TAP                           | 4 h              | N.R                    |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CuBr <sub>2</sub>                    | -                             | 4 h              | N.R                    |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                    | TBHP in Decane                | 4 h              | N.R                    |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CuBr <sub>2</sub>                    | TBHP in Decane                | 24 h             | 55                     |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CuBr <sub>2</sub>                    | TBHP in Decane                | 1 h              | 65                     |  |
| 16 <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuBr <sub>2</sub>                    | TBHP in Decane                | 1 h              | 52                     |  |
| 17 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CuBr <sub>2</sub>                    | TBHP in Decane                | 1 h              | 59                     |  |

<sup>a</sup> Reaction conditions: **1a** (1 equiv), catalyst (5 mol%), DMF **2a** (2 mL, 27 equiv.), Oxidant (1.5 equiv.), r.t., 4 h. <sup>b</sup> Isolated yields. <sup>c</sup> 20 equivalents of DMF has taken in 2 mL of CH<sub>3</sub>CN solvent and reaction time 1 h. <sup>d</sup> 0.2 mL of pyridine was added as an additive.

## 2. Experimental section:

## General procedure for the synthesis of aliphatic urea derivatives (Scheme 2, 3a-3v).

A solution of Amine (1a-l) (1.0 mmol), CuBr<sub>2</sub> (11 mg, 5 mol%) in 2 mL of the respective formamide (2ad) was stirred at room temperature. To the same solution, a 5-6 M TBHP solution in decane (1.5 mmol) was added drop wise and stirred for 1hr. After completion of reaction time, formamide was either evaporated was removed under reduced pressure or directly proceeded for the conventional work up with ethyl acetate water mixture. The organic layer was separated and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel (hexane/ethyl acetate 4:6).

## General procedure for the synthesis of aromatic or hetero aromatic ureas (Scheme 3, 5a-5f).

A solution of 2-carbonyl-substituted anilines (4**a-f**) (1.0 mmol),  $Cu(OTf)_2$  (18 mg, 5 mol%) in 2 mL of dimethyl formamide **2a** was stirred at room temperature. To the same solution, 5-6 M TBHP solution in decane (1.5 mmol) was added drop wise, temperature raised to 80° C, and stirred for 3 h. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel (hexane/ethyl acetate 8:2).

4. Spectroscopic data for the products:



## *N*, *N*-dimethyl-4-phenylpiperidine-1-carboxamide : (scheme 2, entry1, 3a)

Isolated yield = 65%; IR cm<sup>-1</sup>: 2931, 1643, 1491, 1451, 1392, 1193, 1064, 904, 757, 700. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3)$  7.18 – 7.33 (m, 5H), 3.75 – 3.84 (m, 2H), 2.81 – 2.9 (m, 8H), 2.66 (tt, *J* = 3.7, 11.8 Hz, 1H), 1.82 – 1.91 (m, 2H), 1.63 – 1.76 (m, 2H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl3): 165, 145.7, 128.3, 126.6, 126.2, 47.4, 42.8, 38.4, 33.1. MS (ESI): m/z = 233 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>14</sub>H<sub>21</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 233.16484, found = 233.16449.



#### 1, 1, 3-trimethyl-3-phenethylurea : (scheme 2, entry 2, 3b)

Isolated yield = 52% ; IR cm<sup>-1</sup>: 2926, 1641, 1496, 1454, 1383, 1167, 1122, 747, 700. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3)$  7.28-7.3 (m, Ar, 2H), 7.18-7.24 (m, Ar, 3H), 3.4 (t, *J* = 7.5 Hz, 2H), 2.85 (t, *J* = 7.5 Hz, 2H), 2.81 (s, 3H), 2.74 (s, 6H). <sup>13</sup>C NMR  $\delta(75 \text{ MHz}, \text{CDCl}_3)$ : 165.1, 139.2, 128.5, 128.2, 126, 51.7, 38.4, 36.8, 33.9. MS (ESI): m/z = 207 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>12</sub>H<sub>19</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 207.14919, found = 207.14900.



### 4-benzyl-N, N-dimethylpiperidine-1-carboxamide : (scheme 2, entry 3, 3c)

Isolated yield = 49% ; IR cm<sup>-1</sup>: 2922, 2848, 1643, 1493, 1449, 1393, 1059, 746, 701. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.28-7.34 (m, Ar, 2H), 7.12-7.21 (m, Ar, 3H), 3.61-3.66 (m, 2H), 2.8 (s, 6H), 2.62-2.72 (m, 2H), 2.54 (d, *J* = 6.7 Hz, 2H), 1.59-1.71 (m, 3H), 1.15-1.28 (m, 2H). <sup>13</sup>C NMR  $\delta$  (75 MHz,

CDCl3): 165, 140.1, 128.9, 128, 125.7, 46.9, 43, 38.4, 38.2, 31.8. MS (ESI):  $m/z = 247 (M+H)^+$ .HRMS ESI  $(M+H)^+$  m/z calcd for  $C_{15}H_{23}N_2O (M+H)^+ = 247.18049$ , found = 247.17982.



### N, N, 4-trimethylpiperidine-1-carboxamide : (scheme 2, entry 4, 3d)

Isolated yield = 36% ; IR cm<sup>-1</sup>: 2923, 1644, 1493, 1450, 1393, 1135, 1060, 970. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 3.6-3.65 (m, 2H), 2.8 (s, 6H), 2.71 (td, *J* = 2.4, 13 Hz, 2H), 1.6-1.65 (m, 2H), 1.44-1.54 (m, 1H), 1.14 (qd, *J* = 3.9, 12.8 Hz, 2H), 0.94 (d, *J* = 6.4 Hz, 3H). <sup>13</sup>C NMR  $\delta$ (75 MHz CDCl3): 165.1, 47, 38.4, 33.9, 31.1, 21.7. MS (ESI): m/z = 171 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>9</sub>H<sub>19</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 171.14919, found = 171.14894.



## 1, 1-dibutyl-3,3-dimethylurea : (scheme 2, entry 5, 3e)

Isolated yield = 29% ; IR cm<sup>-1</sup>: 2957, 2929, 1648, 1490, 1398, 1200, 1138. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 3.09 (t, *J* = 6.9 Hz, 4H), 2.76 (s, 6H), 1.46 (p, *J* = 6.9 Hz, 4H), 1.22-1.3 (m, 4H), 0.89 (t, *J* = 6.9 Hz, 6H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 165.5, 47.7, 38.6, 30, 20, 13.7. MS (ESI): m/z = 201 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>11</sub>H<sub>25</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 201.19614, found = 201.19582.



### N,N-dimethylpyrrolidine-1-carboxamide : (scheme 2, entry 6, 3f)

Isolated yield = 21% ; IR cm<sup>-1</sup>: 2930, 2873, 1632, 1453, 1387, 1347, 1064, 777. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 3.3-3.37 (m, 4H), 2.83 (s, 6H), 1.79-1.84 (m, 4H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 163.5, 48.3, 38.1, 25.4. MS (ESI): m/z = 143 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>7</sub>H<sub>15</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 143.11789, found = 143.11758.



## N, N-dimethylmorpholine-4-carboxamide : (scheme 2, entry 7, 3g)

Isolated yield = 34%; IR cm<sup>-1</sup>: 2854, 1643, 1494, 1392, 1203, 1115, 895. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 4.26 (m, 1H), 3.69 (t, *J* = 4.9 Hz, 4 H), 3.23 (t, *J* = 4.9 Hz, 4 H), 2.84 (s, 6H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 164.5, 66.4, 47, 38.1. MS (ESI): m/z = 159 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>7</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> = 159.11280, found = 159.11266.



## N, N-dimethyl-4-phenylpiperidine-1-carboxamide : (scheme 2, entry 8, 3h)

Isolated yield = 63%; IR cm<sup>-1</sup>: 2971, 2931, 1641, 1418, 1374, 1274, 1243, 755, 700. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.3 (t, *J* = 6.9 Hz, 2H), 7.18-7.22 (m, Ar, 3H), 3.74-3.76 (m, 2H), 3.22 (q, *J* = 6.9 Hz, 4H), 2.85 (td, *J* = 2, 12.9 Hz, 2H), 2.65 (tt, *J* = 3.9, 11.9 Hz, 1H), 1.81-1.87 (m, 2H), 1.7 (qd, *J* = 3.9, 11.9 Hz, 2H), 1.13 (t, *J* = 6.9 Hz, 6H). <sup>13</sup>C NMR  $\delta$ (75 MHz, CDCl3): 164.8, 145.8, 128.4, 126.7, 126.2, 47.8, 42.9, 41.7, 33.1, 13.2. MS (ESI): m/z = 261 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>16</sub>H<sub>25</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 261.19614, found = 261.19571.



### 1,1-diethyl-3-methyl-3-phenethylurea : (scheme 2, entry 9, 3i)

Isolated yield = 58%; IR cm<sup>-1</sup>: 2971, 2931, 1641, 1486, 1398, 1121, 983, 748, 700. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.17-7.3 (m, Ar, 5H), 3.39 (t, *J* = 7.5 Hz, 2H), 3.1 (q, *J* = 6.9 Hz, 4H), 2.85 (t, *J* = 7.9 Hz, 2H), 2.81 (s, 3H), 1.06 (t, *J* = 6.9 Hz, 6H). <sup>13</sup>C NMR  $\delta$ (75 MHz, CDCl<sub>3</sub>): 164.9, 139.4, 128.6, 128.3, 126.1, 52, 41.9, 37, 34, 13.1. MS (ESI): m/z = 235 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>14</sub>H<sub>23</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 235.18049, found = 235.18019.



## 4-benzyl-N, N-diethylpiperidine-1-carboxamide : (scheme 2, entry 10, 3j)

Isolated yield = 53%; IR cm<sup>-1</sup>: 2926, 1642, 1416, 1373, 1250, 964, 745, 700. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3)$  7.25-7.3 (m, Ar, 2H), 7.18-7.21 (m, Ar, 1H), 7.12-7.15 (m, Ar, 2H), 3.57-3.62 (m, 2H), 3.17 (q, *J* = 6.7 Hz, 4H), 2.66 (td, *J* = 2.2, 12.8 Hz, 2H), 2.54 (d, *J* = 6.7 Hz, 2H), 1.59-1.7 (m, 3H), 1.18-1.28 (m, 2H), 1.1 (t, *J* = 6.7 Hz, 6H). <sup>13</sup>C NMR  $\delta(75 \text{ MHz}, \text{CDCl}_3)$ : 164.7, 140.1, 128.9, 128.1, 125.7, 47.3, 43.1, 41.7, 38.3, 31.9, 13.1. MS (ESI): m/z = 275 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>17</sub>H<sub>27</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 275.21179, found = 275.21118.



## Morpholino(4-phenylpiperidin-1-yl)methanone : (scheme 2, entry 11, 3k)

Isolated yield = 41%; IR cm<sup>-1</sup>: 2919, 2851, 1643, 1417, 1271, 1223, 1114, 1012, 757, 700. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3)$  7.28-7.33 (m, Ar, 2H), 7.18-7.23 (m, Ar, 3H), 3.81-3.87 (m, 2H), 3.7 (t, *J* = 4.5 Hz, 4H), 3.28 (t, *J* = 4.5 Hz, 4H), 2.89 (td, *J* = 2.4, 13 Hz, 2H), 2.67 (tt, *J* = 3.5, 11.8 Hz, 1H), 1.84-1.88 (m, 2H), 1.65-1.75 (m, 2H). <sup>13</sup>C NMR  $\delta(75 \text{ MHz CDCl}_3)$ : 163.9, 145.4, 128.3, 126.6, 126.2, 66.5, 47.3, 42.7, 33. MS (ESI): m/z = 275 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>16</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> = 275.17540, found = 275.17499.



## *N*-methyl-*N*-phenethylmorpholine-4-carboxamide : (scheme 2, entry 12, 3l)

Isolated yield = 40%; IR cm<sup>-1</sup>: 2923, 1643, 1489, 1453, 1395, 1115, 1068, 749, 701. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3)$  7.27-7.31 (m, Ar, 2H), 7.18-7.23 (m, Ar, 3H), 3.6 (t, *J* = 4.9 Hz, 4H), 3.45 (t, *J* = 7.9 Hz, 2H), 3.11 (t, *J* = 4.9 Hz, 4H), 2.84-2.87 (m, 5H). <sup>13</sup>C NMR  $\delta(75 \text{ MHz}, \text{CDCl}_3)$ : 164.2, 139, 128.6, 128.3, 126.1, 66.4, 51.3, 47.1, 36.6, 33.7. MS (ESI): m/z = 249 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>14</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> = 249.15975, found = 249.15926.



# 1,1-dimethyl-3-(1-phenylethyl)urea : (scheme 2, entry 13, 3m)

Isolated yield = 49% ; IR cm<sup>-1</sup>: 2929, 1630, 1528, 1377, 1226, 761, 700. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.29-7.34 (m, Ar, 4H), 7.21-7.25 (m, 1H), 5.01 (p, *J* = 6.9 Hz, 1H), 4.6 (bs, 1H), 2.89 (s, 6H), 1.48 (d, *J* = 6.7 Hz, 3H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 157.5, 144.4, 128.4, 126.9, 125.9, 49.9, 36, 22.5. MS (ESI): m/z = 193 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>11</sub>H<sub>17</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 193.13354, found = 193.13336.



## 3-cyclohexyl-1, 1-dimethylurea : (scheme 2, entry 14, 3n)

Isolated yield = 56%; IR cm<sup>-1</sup>: 2930, 1625, 1534, 1388, 1359, 1217, 1030. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 4.18 (bs, 1H), 3.56-3.69 (m, 1H), 2.88 (s, 6H), 1.92-1.97 (m, 2H), 1.62-1.73 (m, 4H), 1.29-1.44 (m, 2H), 1.02-1.2 (m, 2H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 157.7, 49.3, 36, 34, 25.6, 25. MS (ESI): m/z = 171 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>9</sub>H<sub>19</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 171.14919, found = 171.14879.



# 3-cyclooctyl-1, 1-dimethylurea : (scheme 2, entry 15, 30)

Isolated yield = 43%; IR cm<sup>-1</sup>: 2921, 1634, 1522, 1340, 1327, 1201, 1021.<sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 4.26 (m, 1H), 3.83-3.92 (m, 1H), 2.88 (s, 6H), 1.51-1.88 (m, 14H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 157.5, 50.3, 35.9, 32.9, 27, 25.3, 23.6. MS (ESI): m/z = 199 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>11</sub>H<sub>23</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 199.18049, found = 199.18019.



# *N*-(1-phenylethyl)morpholine-4-carboxamide : (scheme 2, entry 16, 3p)

Isolated yield = 33%; IR cm<sup>-1</sup>: 2970, 2926, 1624, 1530, 1255, 1116, 995, 866, 762, 700, 564. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.32-7.37 (m, 4H), 7.22-7.29 (m, 1H), 5.02 (p, *J* = 6.7 Hz, 1H), 4.66 (bs, 1H), 3.67 (t, *J* = 4.7 Hz, 4H), 3.32-3.35 (m, 4H), 1.49 (d, *J* = 6.7 Hz, 3H). <sup>13</sup>C NMR  $\delta$  (75 MHz,CDCl<sub>3</sub>): 156.9,

144.1, 128.4, 127, 125.9, 66.3, 49.9, 43.9, 22.4. MS (ESI):  $m/z = 235 (M+H)^+$ . HRMS ESI  $(M+H)^+ m/z$  calcd for  $C_{13}H_{19}N_2O_2 (M+H)^+ = 235.14410$ , found = 235.14359.



## *N*-cyclohexylmorpholine-4-carboxamide : (scheme 2, entry 17, 3q)

Isolated yield = 29%; IR cm<sup>-1</sup>: 2929, 1614, 1538, 1454, 1414, 1274, 1252, 1109, 1074, 1027, 999, 855. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 4.26 (bs, 1H), 3.62-3.69 (m, 5H), 3.31 (t, *J* = 4.9 Hz, 4H), 1.95 (dd, *J* = 3.9, 12.9 Hz, 2H), 1.68-1.77 (m, 2H), 1.59-1.63 (m, 1H), 1.32-1.41 (m, 2H), 1.05-1.19 (m, 3H). <sup>13</sup>C NMR  $\delta$  (75 MHz ,CDCl<sub>3</sub>): 157, 66.4, 49.3, 43.8, 33.8, 25.5, 24.9. MS (ESI): m/z = 213 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>11</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> = 213.15975, found = 213.15929.



## Methyl 2-(3, 3-dimethylureido)-3-phenylpropanoate : (scheme 2, entry 18, 3r)

Isolated yield = 39%; IR cm<sup>-1</sup>: 2930, 1740, 1639, 1527, 1453, 1382, 1202, 746, 701. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3)$  7.21 – 7.32 (m, 3H), 7.07 – 7.16 (m, 2H), 4.74 – 4.83 (m, 2H), 3.71 (s, 3H), 3.08 – 3.15 (m, 2H), 2.87 (bs, 6H). <sup>13</sup>C NMR  $\delta(75 \text{ MHz}, \text{CDCl}_3)$ : 173.1, 157.3, 136.2, 129.1, 128.3, 126.8, 54.3, 52, 38.3, 35.9. MS (ESI): m/z = 251 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>13</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> = 251.13902, found = 251.13876.



## Methyl2-(3, 3-dimethylureido)-3-methylbutanoate : (scheme 2, entry 19, 3s)

Isolated yield = 41%; IR cm<sup>-1</sup>: 2937, 1744, 1632, 1502, 1435, 1352, 1242, 1085.<sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 4.85 (bs, 1H), 4.42 – 4.46 (m, 1H), 3.73 (s, 3H), 2.94 (bs, 6H), 2.07 – 2.19 (m, 1H), 0.93 (q, *J* = 6.7 Hz, 6H). <sup>13</sup>C NMR  $\delta$ (75 MHz ,CDCl<sub>3</sub>): 173.8, 157.8, 58.3, 51.8, 36, 31.1, 18.8, 17.7. MS (ESI): m/z = 203 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>9</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> = 203.13902, found = 203.13894.



## *N*-methyl-4-phenylpiperidine-1-carboxamide : (scheme 2, entry 20, 3t)

Isolated yield = 48%; IR cm<sup>-1</sup>: 2933, 1626, 1547, 1417, 1395, 1242, 1009, 756, 700. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.28-7.33 (m, Ar, 2H), 7.18-7.23 (m, Ar, 3H), 4.6 (bs, 1H), 4.06-4.1 (m, 2H), 2.82-2.92 (m, 5H), 2.66 (tt, *J* = 3.5, 12 Hz, 1H), 1.82-1.87 (m, 2H), 1.65 (qd, *J* = 3.9, 12.4 Hz, 2H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 158.3, 145.4, 128.4, 126.6, 126.2, 44.5, 42.5, 32.9, 27.5. MS (ESI): m/z = 219 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>13</sub>H<sub>19</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 219.14919, found = 219.14874.



## 1,3-dimethly-1-phenethylurea : (scheme 2, entry 21, 3u)

Isolated yield = 47%; IR cm<sup>-1</sup>: 2929, 1630, 1536, 1379, 1305, 1235, 1146, 1078, 1030, 979, 748, 700. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.18-7.31 (m, Ar, 5H), 4.43 (bs, 1H), 3.47 (t, *J* = 7.1 Hz, 2H), 2.79-2.84 (m, 5H), 2.72 (d, *J* = 4.5 Hz). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 158.7, 139.1, 128.6, 128.3, 126.1, 50.8, 34.5, 34.4, 27.4. MS (ESI): m/z = 193 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>11</sub>H<sub>17</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 193.13354, found = 193.13330.



## 4-benzyl-N-methylpiperidine-1-carboxamide : (scheme 2, entry 22, 3v)

Isolated yield = 52% ; IR cm<sup>-1</sup>: 2918, 1624, 1546, 1417, 1396, 1253, 1149, 1032, 961, 746, 700. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3)$  7.25-7.30 (m, Ar, 2H), 7.16-7.21 (m, Ar, 1H), 7.11-7.14 (m, Ar, 2H), 4.54 (bs, 1H), 3.87-3.92 (m, 2H), 2.78 (d, *J* = 3.7 Hz, 3H), 2.69 (td, *J* = 2.2, 12.8 Hz, 2H), 2.53 (d, *J* = 6.7 Hz, 2H), 1.61-1.72 (m, 3H), 1.1-1.23 (m, 2H). <sup>13</sup>C NMR  $\delta(75 \text{ MHz}, \text{CDCl}_3)$ : 158.4, 139.9, 128.9, 128, 125.8, 44, 42.9, 37.9, 31.6, 27.4. MS (ESI): m/z = 233 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>14</sub>H<sub>21</sub>N<sub>2</sub>O (M+H)<sup>+</sup> = 233.16484, found = 233.16444.



## 3-(2-acetylphenyl)-1, 1-dimethylurea : (scheme 3, entry 1, 5a)

Isolated yield = 31% ; IR cm<sup>-1</sup>: 2927, 1677, 1644, 1586, 1530, 1451, 1362, 1313, 1242, 1180, 1163, 959, 758, 695. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 11.42 (bs, 1H), 8.65 (dd, *J* = 0.7, 8.4Hz, 1H), 7.86 (dd, *J* = 1.5, 8.1 Hz, 1H), 7.51 (td, *J* = 1.3, 8.4 Hz, 1H), 6.99 (td, *J* = 1.1, 8.1 Hz), 3.09 (bs, 6H), 2.66 (s, 3H). <sup>13</sup>C NMR  $\delta$ (75 MHz CDCl<sub>3</sub>): 202.8, 155.6, 143.2, 135, 131.5, 120.1, 119.5, 36.2, 29.5. MS (ESI): m/z = 229 (M+Na)<sup>+</sup>. HRMS ESI (M+Na)<sup>+</sup> m/z calcd for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>Na (M+Na)<sup>+</sup> = 229.09475, found = 229.09441.



## 3-(2-benzoylphenyl)-1, 1-dimethylurea : (scheme 3, entry 2, 5b)

Isolated yield = 38% ; IR cm<sup>-1</sup>: 2928, 1678, 1629, 1582, 1523, 1447, 1361, 1255, 1176, 938, 752, 700, 644. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 10.77 (bs, 1H), 8.56 (dd, *J* = 1.1, 8.6 Hz, 1H), 7.65 – 7.67 (m, 2H), 7.45 – 7.61 (m, 5H), 6.95 (td, *J* = 1.1, 8.1 Hz, 1H), 3.11 (bs, 6H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 200.3, 155.5, 143.1, 139, 134.5, 133.9, 131.9, 129.5, 128.1, 121.6, 120.3, 119.9, 36.2. MS (ESI): m/z = 269 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>16</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> = 269.12845, found = 269.12799.



## 3-(2-benzoyl-4-chlorophenyl)-1, 1-dimethylurea : (scheme 3, entry 3, 5c)

Isolated yield = 39% ; IR cm<sup>-1</sup>: 2929, 1677, 1634, 1578, 1512, 1397, 1362, 1240, 1175, 950, 832, 747, 701. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 10.6 (bs, 1H), 8.54 - 8.57 (m, 1H), 7.59 - 7.68 (m, 3H), 7.47 - 7.53 (m, 4H), 3.09 (bs, 6H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 199, 155.2, 141.6, 138.3, 134.2, 132.7, 129.5, 128.4, 124.9, 122.7, 122, 36.2. MS (ESI): m/z = 303 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>16</sub>H<sub>16</sub>ClN<sub>2</sub>O<sub>2</sub> (M+H)<sup>+</sup> = 303.08948, found = 303.08905.



## 3-(2-benzoyl-4-nitrophenyl)-1, 1-dimethylurea : (scheme 3, entry 4, 5d)

Isolated yield = 35% ; IR cm<sup>-1</sup>: 2925, 2854, 1694, 1623, 1508, 1332, 1252, 959, 750, 697, 553. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 11.21 (bs, 1H), 8.83 (d, *J* = 9 Hz, 1H), 8.51 (d, *J* = 3 Hz, 1H), 8.38 (dd, *J* = 3, 9.8 Hz, 1H), 7.64 – 7.69 (m, 3H), 7.55 (t, *J* = 6.7 Hz, 2H), 3.15 (bs, 6H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 199, 154.4, 148.6, 139.7, 137.8, 133, 129.6, 129.1, 128.7, 120.2, 120.1, 36.4. MS (ESI): m/z = 314 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>16</sub>H<sub>16</sub>N<sub>3</sub>O<sub>4</sub> (M+H)<sup>+</sup> = 314.11353, found = 314.11322.



### Methyl 4-chloro-1-(dimethylcarbamoyl)-1H-indole-2-carboxylate : (scheme 3, entry 5, 5e)

Isolated yield = 37%; IR cm<sup>-1</sup>: 2929, 1708, 1530, 1441, 1390, 1245, 1199, 1060, 763, 729. <sup>1</sup>H NMR  $\delta$ (300 MHz, CDCl<sub>3</sub>) 7.66 (bs, 1H), 7.32 – 7.34 (m, 1H), 7.24 – 7.27 (m, 2H), 4.38 (q, *J* = 6.9 Hz, 2H), 3.25 (bs, 3H), 2.79 (bs, 3H), 1.39 (t, *J* = 6.9 Hz, 3H). <sup>13</sup>C NMR  $\delta$  (75 MHz, CDCl<sub>3</sub>): 160.4, 152.7, 135.3, 129.1, 127.4, 126.5, 121.8, 112.2, 110.9, 61.2, 37.7, 36.8, 14.1. MS (ESI): m/z = 295 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>14</sub>H<sub>16</sub>ClN<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> = 295.08440, found = 295.08401.



### Methyl 1-(dimethylcarbamoyl)-*1H*-pyrrole-2-carboxylate : (scheme 3, entry 6, 5f)

Isolated yield = 40%; IR cm<sup>-1</sup>: 2925, 1704, 1442, 1393, 1292, 1236, 1141, 1093, 1060, 755. <sup>1</sup>H NMR  $\delta(300 \text{ MHz}, \text{CDCl}_3) 6.95 - 6.98 \text{ (m, 2H)}, 6.26 - 6.29 \text{ (m, 1H)}, 3.83 \text{ (s, 3H)}, 3.17 \text{ (bs, 3H)}, 2.71 \text{ (bs, 3H)}.$ 3H). <sup>13</sup>C NMR  $\delta(75 \text{ MHz}, \text{CDCl}_3)$ : 160.4, 153.4, 125, 122.5, 117.5, 110.2, 51.5, 37.7, 36.6. MS (ESI): m/z = 197 (M+H)<sup>+</sup>. HRMS ESI (M+H)<sup>+</sup> m/z calcd for C<sub>9</sub>H<sub>13</sub>N<sub>2</sub>O<sub>3</sub> (M+H)<sup>+</sup> = 197.09207, found = 197.09167.

# 5. Copies of <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra : compound 3a





# **Compound 3b**



![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_1.jpeg)

# Compound 3d

![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_1.jpeg)

# Compound 3e

![](_page_21_Figure_2.jpeg)

![](_page_22_Figure_1.jpeg)

# Compound 3f

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_1.jpeg)

# Compound 3g

![](_page_25_Figure_2.jpeg)

![](_page_26_Figure_1.jpeg)

# **Compound 3h**

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_1.jpeg)

# **Compound 3i**

![](_page_29_Figure_2.jpeg)

![](_page_30_Figure_1.jpeg)

# Compound 3j

![](_page_31_Figure_2.jpeg)

![](_page_32_Figure_1.jpeg)

# Compound 3k

![](_page_33_Figure_2.jpeg)

![](_page_34_Figure_1.jpeg)

# **Compound 31**

![](_page_35_Figure_2.jpeg)

![](_page_36_Figure_1.jpeg)

# Compound 3m

![](_page_37_Figure_2.jpeg)

![](_page_38_Figure_1.jpeg)

# Compound 3n

![](_page_39_Figure_2.jpeg)

![](_page_40_Figure_1.jpeg)

# **Compound 3o**

![](_page_41_Figure_2.jpeg)

![](_page_42_Figure_1.jpeg)

# Compound 3p

![](_page_43_Figure_2.jpeg)

![](_page_44_Figure_1.jpeg)

Compound 3q

![](_page_45_Figure_2.jpeg)

![](_page_46_Figure_1.jpeg)

# Compound 3r

![](_page_47_Figure_2.jpeg)

![](_page_48_Figure_1.jpeg)

# **Compound 3s**

![](_page_49_Figure_2.jpeg)

![](_page_50_Figure_1.jpeg)

# Compound 3t

![](_page_51_Figure_2.jpeg)

![](_page_52_Figure_1.jpeg)

# **Compound 3u**

![](_page_53_Figure_2.jpeg)

![](_page_54_Figure_1.jpeg)

# Compound 3v

![](_page_55_Figure_2.jpeg)

![](_page_56_Figure_1.jpeg)

# **Compound 5a**

![](_page_57_Figure_2.jpeg)

![](_page_58_Figure_1.jpeg)

# **Compound 5b**

![](_page_59_Figure_2.jpeg)

![](_page_60_Figure_1.jpeg)

# **Compound 5c**

![](_page_61_Figure_2.jpeg)

![](_page_62_Figure_1.jpeg)

# **Compound 5d**

![](_page_63_Figure_2.jpeg)

![](_page_64_Figure_1.jpeg)

# **Compound 5e**

![](_page_65_Figure_2.jpeg)

![](_page_66_Figure_1.jpeg)

**Compound 5f** 

![](_page_67_Figure_2.jpeg)

![](_page_68_Figure_1.jpeg)

## HPLC data of compound 3r :

## A : reaction between L –Phenyl Alanine Methyl Ester and DMF

![](_page_69_Figure_3.jpeg)

|        | 4.512 | 148241   | 1.37   | 202 |
|--------|-------|----------|--------|-----|
|        | 5.237 | 10693378 | 98.63  | 204 |
| Totals |       | 10841619 | 100.00 |     |

## **B** : Reaction between **D** – Phenyl Alanine Methyl Ester and DMF

![](_page_69_Figure_6.jpeg)

## C : Mixture of L + D

![](_page_69_Figure_8.jpeg)

![](_page_69_Figure_9.jpeg)

| Name   | Retention<br>Time | Area               | Area Percent   | Lambda Max |
|--------|-------------------|--------------------|----------------|------------|
|        | 4.661<br>5.248    | 6411264<br>7394918 | 46.44<br>53.56 | 203<br>203 |
| Totals |                   | 13806182           | 100.00         |            |

## HPLC data of compound 3s :

## A: (reaction between L-Valine Methyl Ester and DMF)

![](_page_70_Figure_3.jpeg)

## **B** : (reaction between **D** – Valine Methyl Ester and **DMF**)

![](_page_70_Figure_5.jpeg)

| 4: 210<br>nm, 8 nm |              |          |         |        |
|--------------------|--------------|----------|---------|--------|
|                    | ne Retention | Area     | Area    | Lambda |
|                    | Time         |          | Percent | Max    |
| 1                  | 7.467        | 205204   | 1.56    | 203    |
| 2                  | 8.128        | 12979150 | 98.44   | 203    |
|                    |              |          |         |        |
| Totals             |              |          |         |        |
|                    |              | 13184354 | 100.00  |        |

## C : (mixture of L + D)

![](_page_70_Figure_8.jpeg)

| 4: 210<br>nm, 8 nm |      |           |          |         |        |
|--------------------|------|-----------|----------|---------|--------|
|                    | Name | Retention | Area     | Area    | Lambda |
|                    |      | Time      |          | Percent | Max    |
| 1                  |      | 7.595     | 359566   | 2.02    | 202    |
| 2                  |      | 8.128     | 8781389  | 49.32   | 204    |
| 3                  |      | 8.789     | 8662332  | 48.66   | 204    |
|                    |      |           |          |         |        |
| Totals             |      |           |          |         |        |
|                    |      |           | 17803287 | 100.00  |        |