Supporting Information

Enantioselective Total Synthesis of (+)-Brazilin, (-)-Brazilein and (+)-Brazilide A

Xuequan Wang, Hongbin Zhang*, Xiaodong Yang*, Jingfeng Zhao, and Chengxue Pan

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China Fax: 86-871-5035538. E-mail: zhanghb@ynu.edu.cn; xdyang@ynu.edu.cn

General Experimental: Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on Bruker Avance 300 and 400 spectrometer at 300 and 400 MHz. Carbon-13 nuclear magnetic resonance (¹³C-NMR) was recorded on Bruker Avance 300 and 400 spectrometer at 75 and 100 MHz. Chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane (TMS) for all recorded NMR spectra. Low-resolution Mass spectra were recorded on a VG Auto Spec-3000 magnetic sector MS spectrometer. High Resolution Mass spectra were taken on AB QSTAR Pulsar mass spectrometer. The infrared (IR) spectra were acquired as thin films on a FT-IR spectrometer and the absorption frequencies are reported in cm⁻¹. Chiral HPLC analyses were performed on Agilent 1100 series with a tunable UV detector at wavelength $\lambda = 254$ nm. Melting points were determined on a capillary melting point apparatus and are uncorrected. Optical rotations were obtained on a UV-210A spectrometer. Starting materials and reagents used in reactions were obtained commercially from Acros, Aldrich, Fluka and were used without purification, unless otherwise indicated. THF and diethyl ether used in the reactions were dried by distillation over metallic sodium and benzophenone; dichloromethane were distilled over P₂O₅. Unless otherwise stated, all reactions were conducted in dried glassware under a positive pressure of dry nitrogen or argon. Silica gel (Qingdao, 300-400 mesh) was used for column chromatography.

Synthesis of compound 12

To a solution of 3-(3,4-dimethoxyphenyl)propanoic acid **11** (21 g, 0.1 mol) in anhydrous dichloromethane (300 mL) and DMF (0.5 mL) was added oxalyl chloride (24 mL, 0.25 mol) dropwise over a period of 1 hour. The mixture was then stirred at room temperature overnight. The resulting mixture was concentrated under reduced pressure and the crude aryl propionyl chloride was redissolved in anhydrous dichloromethane (300 mL) at 0 °C. To the solution of aryl propionyl

chloride was added portionwise a powder of AlCl₃ (16 g, 0.12 mol). The reaction mixture was then stirred at room temperature for 2 h. Ice (20 g) was added slowly at 0 °C (to quench the excess AlCl₃) followed by ice-water (100 mL). The organic phase was separated, and the aqueous phase was extracted with dichloromethane (3×100 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, decolorized with activated carbon, filtered, and concentrated to afford the product (**12**, 18.6 g, 97%) as pale yellow solid.¹

Ref. 1: S. R. Haadsma-Svensson, K. A. Cleek, D. M. Dinh, J. N. Duncan, C. L. Haber, R. M. Huff, M. E. Lajiness, N. F. Nichols, M. W. Smith, K. A. Svensson, M. J. Zaya, A. Carlsson, C. H. Lin, *J. Med. Chem.* **2001**, *44*, 4716.

m.p.: 116-118 °C. IR: v_{max} (KBr) cm⁻¹: 3055, 2928, 2849, 1699, 1592, 1497, 1450, 1313, 1258, 1116, 1037, 896, 851, 813, 708. ¹H-NMR (400 MHz, CDCl₃) δ : 7.17 (1H, *s*), 6.89 (1H, *s*), 3.96 (3H, *s*), 3.90 (3H, *s*), 3.05 (2H, *t*, *J* = 5.4 Hz), 2.68-2.65 (2H, *m*). ¹³C-NMR (100 MHz, CDCl₃) δ : 205.77, 155.39, 150.43, 149.37, 129.91, 107.47, 104.16, 56.23, 56.09, 36.53, 25.58. ES+ *m*/*z* (%): 192 (M⁺, 100), 177 (27), 164 (12), 149 (32), 135 (13), 121 (67), 107 (34), 91 (47), 77 (81), 63 (59), 51 (69). HRMS *m*/*z* Found: 192.0793, Calcd. for C₁₁H₁₂O₃ (M)⁺ : 192.0786.

Synthesis of compound 13

To a silution of 1-indanone **12** (9.6 g, 50 mmol) in dimethylcarbonate (80 mL) was added NaH (3.42 g, 100 mmol, 70% in paraffin), and the mixture was stirred at 90 °C for 3-4 h. The resulting solid was cooled with an ice-water bath at 0 °C. Dichloromethane (200 mL) was added, followed by aqueous solution of HCl (6M, 18 mL) and H₂O (100 mL). The organic phase was separated, and the aqueous layer was extracted with dichloromethane (3 × 100 mL). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The desired product (**13**, 11.5 g, 92%) was obtained as pale yellow solid by flash column chromatography (Hexane : EtOAc = 8 :1 \rightarrow 4 : 1) on silica gel.²

Ref. 2: C. X. Pan, X. H. Zeng, Y. F. Guan, X. L. Jiang, L. Li, H. Zhang, Synlett, 2011, 425.

m.p.: 161-162 °C. IR: v_{max} (KBr) cm⁻¹: 3068, 2929, 2848, 1704, 1591, 1506, 1452, 1314, 1264, 1207, 1115, 1025, 956, 876, 723. ¹H-NMR (400 MHz, CDCl₃) δ : 7.16 (1H, *s*), 6.90 (1H, *s*), 3.96 (3H, *s*), 3.89 (3H, *s*), 3.77 (3H, *s*), 3.71 (1H, *dd*, J = 3.4, 7.9 Hz), 3.44 (1H, *dd*, J = 3.3, 17.0 Hz), 3.26 (1H, *dd*, J = 7.9, 17.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 197.94, 169.90, 156.11, 149.78, 149.27, 127.92, 107.26, 104.83, 56.34, 56.15, 53.41, 52.76, 30.02. ES+ *m/z* (%): 250 (M⁺, 16), 218 (18), 190 (34), 175 (11), 125 (15), 111 (28), 97 (38), 85 (40), 83 (40), 77 (18), 71 (52), 57 (100), 55 (72). HRMS *m/z* Found: 250.0852, Calcd. for C₁₃H₁₄O₅ (M)⁺: 250.0841.

Synthesis of compound 14

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

methyl 5,6-dimethoxy-1*H*indene-2-carboxylate C₁₃H₁₄O₄ Mol. Wt.: 234.09

1-Indanone-2-carboxylic acid methyl ester **13** (5.0 g, 20 mmol) was dissolved in dichloromethane (100 mL) and methanol (10 mL). NaBH₄ (912 mg, 24 mmol) was added portionwise at 0 °C and the mixture was stirred at room temperature for 1 h. A solution of aqueous HCl (1 M, 30 mL) was added. The organic phase was separated and the aqueous phase was extracted with dichloromethane (3×50 mL). The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated. The crude product was re-dissolved in toluene (100 mL) and PPTS (Pyridinium *p*-toluenesulfonate, 0.5 g, 2 mmol) was added. The resulting mixture was stirred at reflux with a Dean-Stark trap for 3-6 h. The reaction progress was monitored by TLC. The solvent was removed under reduced pressure and the residue was dissolved in dichloromethane (250 mL) and washed with brine, dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : DCM = 1:1) afforded the product (**14**, 3.51 g, 75%) as white solid.²

Ref. 2: C. X. Pan, X. H. Zeng, Y. F. Guan, X. L. Jiang, L. Li, H. Zhang, Synlett, 2011, 425.

m.p.: 122-123 °C. IR: v_{max} (KBr) cm⁻¹: 3065, 2949, 2838, 1696, 1604, 1558, 1485, 1438, 1320, 1229, 1092, 989, 849, 737. ¹H-NMR (400 MHz, CDCl₃) δ : 7.64 (1H, *s*), 7.06 (1H, *s*), 7.02 (1H, *s*), 3.92 (3H, *s*), 3.91 (3H, *s*), 3.82 (3H, *s*), 3.61 (2H, *s*). ¹³C-NMR (100 MHz, CDCl₃) δ : 165.37, 149.77, 148.69, 141.48, 138.32, 135.35, 135.25, 107.54, 105.95, 56.12, 51.50, 38.37. ES+ *m/z* (%): 234 (M⁺, 76), 219 (24), 203 (24), 191 (16), 175 (52), 160 (26), 145 (20), 131 (93), 117 (58), 89 (100), 83 (81), 75 (27), 63 (72), 59 (67). HRMS *m/z* Found: 234.0893, Calcd. for C₁₃H₁₄O₄ (M)⁺ : 234.0892.

Synthesis of compound 10

To a solution of methyl ester **14** (5.0 g, 21.4 mmol) in dichloromethane (100 mL) at -78 °C under argon was added dropwise a solution of DIBAL-H (31.4 mL, 1.5 M in toluene, 47.1 mmol). After 3 h, the reaction was quenched slowly with MeOH (5.0 mL) at -78 °C followed by addition of a saturated aqueous solution of NaHCO₃ (27 mL). The reaction mixture was allowed to reach room temperature and filtered through celite. The organic phase was separated and the aqueous phase was extracted with dichloromethane (3 × 50 mL). The combined organic phases were washed with brine (80 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : DCM = 2:1) afforded product **10** (4.01 g, 91%) as white solid.

m.p.: 105-106 °C. IR: v_{max} (KBr) cm⁻¹: 3356, 3064, 2927, 2837, 1610, 1485, 1320, 1267, 1215, 1101, 1026, 992, 856, 759. ¹H-NMR (400 MHz, CDCl₃) δ : 6.99 (1H, *s*), 6.87 (1H, *s*), 6.61 (1H, *s*), 4.51 (2H, *s*), 3.87 (6H, *s*), 3.33 (2H, *s*), 2.05 (1H, br, *s*). ¹³C-NMR (100 MHz, CDCl₃) δ : 148.19, 147.36, 147.01, 137.22, 135.84, 127.54, 108.09, 104.54, 61.75, 56.24, 56.11, 38.93. ES+ *m/z* (%): 206 (M⁺, 67), 191 (22), 175 (37), 161 (27), 145 (36), 131 (52), 115 (80), 103 (78), 91 (100), 83 (44), 77 (74), 63 (87), 51 (70). HRMS *m/z* Found: 206.0945, Calcd. for C₁₂H₁₄O₃ (M)⁺ : 206.0943.

Synthesis of compound 15

1-Indene-2-methanol **10** (1.03 g, 5.0 mmol), triphenylphosphine (1.58 g, 6.0 mmol) and 3-hydroxyphenyl benzoate **9** (1.18 g, 5.5 mmol) were dissolved in dry THF (80 mL) then cooled to -78 °C. To this mixture was added dropwise a solution of diethyl azodicarboxylate (1.0 mL, 6.0 mmol) in dry THF (5 mL) over 30 min. The resulting yellow solution was then allowed to warm up and stirred at room temperature for 1 h. The reaction progress was monitored by TLC. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel (Hexane : DCM = $3:1\rightarrow1:1$) to give the product (**15**, 1.21 g, 60%) as white solid.

m.p.: 121-122 °C. IR: v_{max} (KBr) cm⁻¹: 3064, 2991, 2932, 2831, 1736, 1603, 1487, 1313, 1261, 1144, 1100, 1012, 878, 778, 707. ¹H-NMR (400 MHz, CDCl₃) δ : 8.21 (2H, *d*, *J* = 7.2 Hz), 7.64 (1H, *t*, *J* = 7.2 Hz), 7.52 (2H, *t*, *J* = 7.8 Hz), 7.33 (1H, *t*, *J* = 8.2 Hz), 7.05 (1H, *s*), 6.93 (1H, *s*), 6.89 (1H, *dd*, *J* = 2.0, 8.4 Hz), 6.86 (1H, *t*, *J* = 2.0 Hz), 6.83 (1H, *dd*, *J* = 2.0, 8.4 Hz), 6.78 (1H, *s*), 4.95 (2H, *s*), 3.90 (6H, *s*), 3.46 (2H, *s*). ¹³C-NMR (100 MHz, CDCl₃) δ : 165.12, 159.71, 151.90, 148.27, 147.29, 142.46, 136.96, 136.00, 133.64, 130.20, 129.93, 129.77, 129.53, 128.60, 114.14, 112.54, 108.60, 108.04, 104.71, 67.01, 56.26, 56.13, 39.37. ES+ *m*/*z* (%): 402 (M⁺, 5), 250 (10), 234 (23), 206 (100), 191 (50), 175 (60), 161 (33), 145 (41), 131 (59), 117 (36), 105 (49), 91 (66), 77 (68), 63 (46). HRMS *m*/*z* Found: 402.1478, Calcd. for C₂₅H₂₂O₅ (M)⁺ : 402.1467.

Synthesis of compound 8

A 50 mL round-bottomed flask equipped with a magnetic stirring bar was charged with 1.4 g AD-mix- β^3 and methanesulfonylamide (98 mg, 1.0 mmol). *tert*-Butanol (10 mL) and water (10 mL) were added and the slurry was

stirred at room temperature until all solids dissolved. The orange solution was then cooled to 0 °C. The 1-indene-2benzoate (**15**, 402 mg, 1 mmol) and 3-hydroxyphenyl benzoate (**9**, 214 mg, 1.0 mmol) in dichloromethane (1 mL) were added. A solution of OsO_4 (0.13 mL, 20 mg/mL, 1% mmol) was added and the resulting mixture was vigorously stirred at room temperature for 3 days. The reaction progress was monitored by TLC. Saturated aqueous solution of $Na_2S_2O_3$ (13 mL) was added and the reaction was stirred for 15 min. The mixture was then extracted with ethyl acetate (3 × 30 mL). The combined organic phases were washed with brine (15 mL), dried over Na_2SO_4 and concentrated. Flash column chromatography on silica gel (Hexane : $EtOAc = 3:1\rightarrow 2:1$) afforded the product (**8**, 370 mg, 85%) as a yellow syrup. 80.5% ee, determined by HPLC on a Chiracel AS column using 2-propanol in hexane (30%) as the eluent.

Ref. 3: K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Xu, X. L. Zhang, *J. Org. Chem.*, **2011**, *57*, 2768.

IR: v_{max} (KBr) cm⁻¹: 3443, 3072, 2924, 2848, 1732, 1603, 1497, 1455, 1320, 1264, 1143, 990, 872, 766, 708. ¹H-NMR (400 MHz, CDCl₃) δ : 8.19 (2H, *d*, *J* = 7.6 Hz), 7.64 (1H, *t*, *J* = 7.2 Hz), 7.51 (2H, *t*, *J* = 7.6 Hz), 7.34 (1H, *t*, *J* = 8.0 Hz), 6.96 (1H, *s*), 6.87-6.84 (3H, m), 6.75 (1H, *s*), 5.09 (1H, *d*, *J* = 6.9 Hz), 4.15 (1H, *d*, *J* = 9.3 Hz), 4.10 (1H, *d*, *J* = 9.2 Hz), 3.88 (3H, *s*), 3.87 (3H, *s*), 3.20 (1H, *s*), 3.08 (1H, *d*, *J* = 16.2 Hz), 3.05 (1H, *d*, *J* = 16.2 Hz), 2.80 (1H, *d*, *J* = 6.8 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 165.17, 159.37, 151.90, 149.96, 148.90, 133.73, 133.39, 131.16, 130.19, 130.09, 129.37, 128.62, 114.61, 112.36, 108.53, 108.01, 107.76, 80.67, 77.25, 72.28, 56.07, 40.87. ES+ *m*/*z* (%): 436 (M⁺, 92), 418 (14), 400 (5), 277 (18), 222 (11), 205 (22), 189 (33), 151 (9), 105 (100), 91 (6), 77 (58). HRMS *m*/*z* Found: 436.1529, Calcd. for C₂₅H₂₄O₇ (M)⁺: 436.1522.

Synthesis of compound 16

To a solution of diol **8** (930 mg, 2.13 mmol) in toluene (25 mL) was added pyridinium *p*-toluenesulfonate (PPTS, 643 mg, 2.56 mmol). The resulting mixture was stirred at 90 °C for 2 h. The solvent was removed under reduced pressure and the residue was dissolved in dichloromethane (100 mL) and washed with brine (20 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = $3:1\rightarrow2:1$) afforded the product (16, 713 mg, 80%) as yellow plates.

m.p.: 130-131 °C. IR: v_{max} (KBr) cm⁻¹: 3509, 3052, 2926, 2836, 1716, 1599, 1499, 1454, 1319, 1274, 1130, 1032, 960, 889, 710. ¹H-NMR (400 MHz, CDCl₃) δ : 8.20 (2H, *d*, *J* = 7.8 Hz), 7.64 (1H, *t*, *J* = 7.4 Hz), 7.52 (2H, *t*, *J* = 7.6 Hz), 7.45 (1H, *d*, *J* = 8.4 Hz), 6.94 (1H, *dd*, *J* = 2.0, 8.4 Hz), 6.82 (1H, *dd*, *J* = 2.0, 7.2 Hz), 6.81 (1H, *s*), 6.75 (1H, *s*), 4.21 (1H, *s*), 4.08 (1H, *d*, *J* = 11.2 Hz), 3.87 (1H, *d*, *J* = 11.2 Hz), 3.86 (3H, *s*), 3.84 (3H, *s*), 3.28 (1H, *d*, *J* = 15.6 Hz), 2.91 (1H, *d*, *J* = 11.2 Hz), 3.87 (1H, *d*, *J* = 11.2 Hz), 3.86 (3H, *s*), 3.84 (3H, *s*), 3.28 (1H, *d*, *J* = 15.6 Hz), 2.91 (1H, *d*, *J* = 11.2 Hz), 3.87 (1H, *d*, *J* = 11.2 Hz), 3.86 (3H, *s*), 3.84 (3H, *s*), 3.28 (1H, *d*, *J* = 15.6 Hz), 2.91 (1H, *d*, *J* = 11.2 Hz), 3.87 (1H, *d*, *J* = 11.2 Hz), 3.86 (3H, *s*), 3.84 (3H, *s*), 3.28 (1H, *d*, *J* = 15.6 Hz), 2.91 (1H, *d*, *J* = 11.2 Hz), 3.87 (1H, *d*, *J* = 11.2 Hz), 3.86 (3H, *s*), 3.84 (3H, *s*), 3.28 (1H, *d*, *J* = 15.6 Hz), 2.91 (1H, *d*, *J* = 15.6 Hz), 3.87 (1H, *d*, *J* = 11.2 Hz), 3.86 (3H, *s*), 3.84 (3H, *s*), 3.28 (1H, *d*, *J* = 15.6 Hz), 2.91 (1H, *d*, *J* = 15.6 Hz), 3.87 (1H, *d*, *J* = 11.2 Hz), 3.86 (3H, *s*), 3.84 (3H, *s*), 3.28 (1H, *d*, *J* = 15.6 Hz), 3.91 (1H, *d*), 3.91

15.6 Hz), 2.51 (1H, s). ¹³C-NMR (100 MHz, CDCl₃) δ : 165.15, 154.31, 150.35, 148.86, 148.46, 135.42, 133.69, 131.15, 130.58, 130.22, 129.41, 128.60, 119.99, 115.28, 110.94, 108.46, 107.64, 70.33, 56.15, 56.08, 50.78, 41.33. ES+ m/z (%): 418 (M⁺, 22), 400 (9), 295 (4), 267 (8), 239 (5), 211 (6), 194 (86), 165 (61), 118 (100), 105 (27). HRMS m/z Found: 418.1408, Calcd. for C₂₅H₂₂O₆ (M)⁺ 418.1416.

Synthesis of compound 7

To a solution of benzoate **16** (667 mg, 1.6 mmol) in THF (25 mL) was added a solution of LiOH (12.5 mL, 1.0 M in methol, 20 mmol). The reaction mixture was then stirred at room temperature for 30 min until TLC showed complete conversion. After removal of the solvents, the residue was then diluted with EtOAc (50 mL), aq. HCl (19 mL, 1.0 M) and brine (30 mL) and the organic phase was then separated. The aqueous layer was extracted with EtOAc (3×30 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = 1:1) afforded the product (**7**, 462 mg, 92%) as yellow crystals. After recrystallization (311 mg, 67%), the isomeric purity of phenol **7** was 99.8% ee, as determined by HPLC on a Chiracel AS column using 2-propanol in hexane (35%) as the eluent.

m.p.: 186-188 °C. [α] $_{D}^{20}$ +125.5 (*c* 1.00, MeOH). IR: v_{max} (KBr) cm⁻¹: 3359, 3259, 3011, 2925, 2840, 1608, 1500, 1466, 1287, 1224, 1148, 1037, 960, 841, 764. ¹H-NMR (400 MHz, MeOD) & 7.25 (1H, *d*, *J* = 8.3 Hz), 6.86 (1H, *s*), 6.80 (1H, *s*), 6.49 (1H, *dd*, *J* = 1.4, 8.3 Hz), 6.30 (1H, *s*), 4.03 (1H, *s*), 3.94 (1H, *d*, *J* = 11.3 Hz), 3.77 (3H, *s*), 3.76 (3H, *s*), 3.70 (1H, *d*, *J* = 11.3 Hz), 3.08 (1H, *d*, *J* = 15.8 Hz), 2.89 (1H, *d*, *J* = 15.8 Hz). ¹³C-NMR (100 MHz, MeOD) & 156.62, 154.40, 148.72, 148.35, 137.03, 131.37, 130.78, 113.86, 108.76, 108.69, 108.22, 102.94, 76.79, 69.41, 55.29, 55.21, 50.03, 41.70. ES+ *m/z* (%): 314 (M⁺, 7), 279 (3), 237 (7), 191 (4), 177 (6), 153 (17), 149 (31), 137 (29), 125 (12), 83 (17), 71 (46), 57 (100). HRMS *m/z* Found: 314.1148, Calcd. for C₁₈H₁₈O₅ (M)⁺ : 314.1154.

Synthesis of (+)-Brazilin (1)

To a solution of compound **7** (30 mg, 0.1 mmol) in dry dichloromethane (10 mL) at -78 °C was added dropwise a solution of boron tribromide (0.09 mL, 4 N solution in dichloromethane, 0.35 mmol). The reaction mixture was then stirred at -78 °C for 2 h and stirred at room temperature overnight. The reaction was quenched by the addition of methanol (0.6 mL), then diluted with water (5 mL). The aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with brine (5 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = 1:1) afforded the natural product (**1**, 22 mg, 81%) as yellow solid.⁴

m.p.: 68-69 °C. $[\alpha]_D^{20}$ +76.1 (*c* 1.00, MeOH), IR: v_{max} (KBr) cm⁻¹: 3364, 2966, 2913, 1614, 1505, 1462, 1306, 1236, 1163, 1119, 1034, 979, 844, 771. ¹H-NMR (400 MHz, MeOD) & 7.19 (1H, *d*, *J* = 8.3 Hz), 6.71 (1H, *s*), 6.60 (1H, *s*), 6.47 (1H, *dd*, *J* = 2.4, 8.3 Hz), 6.30 (1H, *d*, *J* = 2.4 Hz), 3.96 (1H, *s*), 3.93 (1H, *d*, *J* = 11.3 Hz), 3.69 (1H, *d*, *J* = 11.3 Hz), 3.02 (1H, *d*, *J* = 15.6 Hz), 2.78 (1H, *d*, *J* = 15.6 Hz). ¹³C-NMR (100 MHz, MeOD) & 157.84, 155.71, 145.64, 145.32, 137.45, 132.23, 131.37, 115.59, 112.89, 112.47, 109.97, 104.27, 78.08, 70.86, 51.07, 42.90. ES+ *m/z* (%): 286 (M⁺, 39), 268 (16), 229 (6), 163 (3), 147 (3), 105 (6), 84 (82), 77 (5), 66 (100), 57 (18). HRMS *m/z* Found: 286.0844, Calcd. for C₁₆H₁₄O₅ (M)⁺ : 286.0841.

Ref. 4: a) C. F. J. Yamahara, T. Shimokawa, J. Kinjo, T. Tomimatsu, T. Nohara, *Phytochemistry* **1985**, *24*, 2403; b) D. S. Kim, N. Baek, S. P. Oh, K. Y. Jung, I. S. Lee, H.-K. Lee, *Phytochemistry* **1997**, *46*, 177.

Synthesis of (-)-Brazilein (2)

To a solution of (+)-Brazilin (1, 14.3 mg, 0.05 mmol) in anhydrous THF (3 mL) at 0 °C was added IBD (iodobenzene diacetate, 16.1 mg, 0.05 mmol). The reaction mixture was stirred for 10 min. The reaction progress was monitored by TLC. After removal of the solvent, the residue was chromatographed on silica gel (CHCl₃ : MeOH = 5:1) to afford the product (2, 10.8 mg, 76%) as brown solid.

m.p.: 260-262 °C. $[\alpha]_{D}^{20}$ –871.0 (*c* 1.20, MeOH), ¹H-NMR (300 MHz, DMSO) δ : 7.81 (1H, *d*, *J* = 8.7 Hz), 7.10 (1H, *s*), 6.56 (1H, *dd*, *J* = 2.1, 8.7 Hz), 6.35 (1H, *d*, *J* = 2.1 Hz), 6.32 (1H, *s*), 5.66 (1H, br, *s*), 4.45 (1H, *d*, *J* = 11.7 Hz), 4.00 (1H, *d*, *J* = 11.7 Hz), 2.85 (2H, *s*). ¹³C-NMR (75 MHz, DMSO) δ : 179.29, 162.33, 158.92, 157.73, 152.34, 151.60, 130.53, 126.03, 117.48, 110.11, 110.81, 104.12, 102.88, 74.21, 72.94, 39.65.

Ref. 4: D. S. Kim, N. Baek, S. P. Oh, K. Y. Jung, I. S. Lee, H.-K. Lee, Phytochemistry 1997, 46, 177.

Synthesis of compounds 17, 18 and 19

To a mixtute of compound **7** (500 mg, 1.59 mmol), anhydrous THF (5 mL), anhydrous EtOH (5 mL), and liquid ammonia (150 mL) at -78 °C under nitrogen was added lithium metal (445 mg, 63.6 mmol) in small pieces. The reaction mixture was stirred for 12 h at -78 °C and then warmed to room temperature with evaporation of ammonia. Ice water (20 mL) was added slowly. The mixture was then extracted with EtOAc (4 × 10 mL), and the combined organic phases were washed with brine (20 mL), and concentrated to afford the product **17** as a yellow syrup. This diene product (**17**) was then dissolved in dry dichloromethane (20 mL) and Et₃N (0.44 mL, 3.18 mmol), DMAP (4-dimethylamiopryidine, 19 mg, 0.159 mmol) and BzCl (0.22 mL, 1.91 mmol) were introduced at 0 °C. The reaction mixture was stirred for 20 min and the solvent was then removed under reduced pressure. After flash column chromatography on silica gel (Hexane : EtOAc = 3:1), the benzoate (**18**) was obtained as a yellow oil. The benzoate **18** was quickly dissolved in EtOAc (90 mL) and divided into three portions (30 mL/part). Each portion was diluted with EtOAc (10 mL) and MeOH (4 mL) then treated with pyridinium *p*-toluenesulfonate (PPTS, 133 mg, 0.53 mmol) at 0 °C. Ozone (O₃) was then bubbled through the mixture at 0 °C. The reaction progress was monitored by TLC. After ozonolysis, the three reaction mixtures were combined and treated with dimethyl sulfide (4 mL, 54.7 mmol) overnight at room temperature. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel (Hexane : EtOAc = $8:1 \rightarrow 5:1 \rightarrow 3:1$) to afford product **19** (359 mg, 50% for 3 steps) as a yellow oil.

Compound 17: ¹H-NMR (300 MHz, MeOD) δ : 6.98 (1H, *d*, *J* = 8.1 Hz), 6.42 (1H, *dd*, *J* = 2.4, 8.4 Hz), 6.32 (1H, *d*, *J* = 2.4 Hz), 3.84 (1H, *d*, *J* = 11.1 Hz), 3.77 (1H, *d*, *J* = 11.1 Hz), 3.56 (7H, overlap, *s*), 2.95-2.86 (1H, *m*), 2.79-2.66 (3H, *m*), 2.53 (1H, *d*, *J* = 16.2 Hz), 2.31 (1H, *d*, *J* = 16.2 Hz). ¹³C-NMR (75 MHz, MeOD) δ : 160.36, 159.32, 140.39, 140.17, 137.20, 134.31, 132.85, 117.09, 112.52, 107.13, 80.15, 74.70, 60.39, 60.19, 56.68, 48.49, 31.81, 30.95.

Compound 18: ¹H-NMR (300 MHz, CDCl₃) δ : 8.18 (2H, *d*, *J* = 7.2 Hz), 7.63 (1H, *t*, *J* = 7.4 Hz), 7.50 (2H, *t*, *J* = 7.5 Hz), 7.17 (1H, *d*, *J* = 7.8 Hz), 6.83 (1H, *d*, *J* = 7.8 Hz), 6.81 (1H, *s*), 3.97 (1H, *d*, *J* = 11.1 Hz), 3.90 (1H, *d*, *J* = 11.1 Hz), 3.69 (1H, s), 3.62 (3H, s), 3.61 (3H, s), 2.93-2.78 (4H, *m*), 2.66 (1H, *d*, *J* = 16.2 Hz), 2.64 (1H, *s*), 2.33 (1H, *d*, *J* = 16.2 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 165.13, 155.16, 150.10, 136.36, 136.12, 133.63, 132.79, 130.64, 130.19, 129.74, 129.46, 128.57, 119.49, 114.93, 110.95, 76.81, 71.46, 57.57, 57.25, 53.45, 44.25, 28.60, 27.66.

Compound 19: $[\alpha]_{D}^{20}$ +28.0 (*c* 1.13, Acetone), IR: v_{max} (KBr) cm⁻¹: 3458, 3060, 2949, 2844, 1733, 1601, 1497, 1441, 1311, 1257, 1149, 1047, 887, 800, 709. ¹H-NMR (400 MHz, CDCl₃) δ : 8.18 (2H, *d*, *J* = 7.8 Hz), 7.63 (1H, *t*, *J* = 7.4 Hz), 7.51 (2H, *t*, *J* = 7.7 Hz), 7.29 (1H, *d*, *J* = 8.2 Hz), 6.82 (1H, *dd*, *J* = 1.8, 8.4 Hz), 6.80 (1H, s), 4.02 (1H, *d*, *J* = 11.2 Hz), 3.96 (1H, *d*, *J* = 11.6 Hz), 3.93 (1H, s), 3.68 (3H, s), 3.66 (3H, s), 3.21-3.07 (4H, *m*), 2.85 (1H, *d*, *J* = 16.2 Hz), 2.56 (1H, *d*, *J* = 4.1 Hz), 2.42 (1H, *d*, *J* = 16.3 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 170.94, 170.64, 165.09, 155.16, 150.38, 134.79, 133.65, 131.48, 131.35, 130.20, 129.43, 128.58, 118.46, 114.88, 110.84, 75.29, 70.57, 53.14, 52.13, 52.07, 44.68, 34.17, 31.98. ES+ *m*/*z* (%): 452 (M⁺, 6), 434 (15), 374 (5), 118 (11), 105 (24), 83 (100), 77 (13). HRMS *m*/*z* Found: 452.1482, Calcd. for C₂₅H₂₄O₈ (M)⁺: 452.1471.

Synthesis of compound 20

To a solution of compound **19** (42 mg, 0.093 mmol) in dry dichloromethane (3 mL) was added *m*-CPBA (3-chloroperoxybenzoic acid, 25 mg, 77%, 0.112 mmol) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C then at room temperature overnight. Saturated aqueous solution of NaHSO₃ (8 mL) was added. The mixture was extracted with dichloromethane (3 × 10 mL), and the combined organic phases were washed with saturated aqueous solution of NaHCO₃ (8 mL) and brine (8 mL), and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = 3:1) afforded the product (**20**, 40 mg, 92%) as a colorless oil.

[α] $_{D}^{20}$ +46.1 (*c* 2.88, Acetone). IR: v_{max} (KBr) cm⁻¹: 3514, 3068, 2952, 1737, 1602, 1496, 1437, 1348, 1254, 1152, 1039, 939, 887, 708. ¹H-NMR (400 MHz, CDCl₃) δ : 8.17 (2H, *d*, *J* = 7.5 Hz), 7.64 (1H, *t*, *J* = 7.4 Hz), 7.51 (2H, *t*, *J* = 7.7 Hz), 7.30 (1H, *d*, *J* = 8.4 Hz), 6.85 (1H, *dd*, *J* = 2.3, 8.4 Hz), 6.82 (1H, *d*, *J* = 2.3 Hz), 4.02 (1H, *d*, *J* = 10.7 Hz), 3.74 (3H, *s*), 3.68 (1H, *d*, *J* = 10.7 Hz), 3.61 (3H, *s*), 2.71 (1H, *s*), 3.05 (1H, *d*, *J* = 17.1 Hz), 2.71 (2H, *s*), 2.55 (1H, *d*, *J* = 17.1 Hz), 2.54 (1H, *d*, *J* = 14.9 Hz), 2.30 (1H, *d*, *J* = 14.9 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 170.10, 169.33, 164.96, 156.10, 150.62, 133.73, 130.47, 130.18, 129.31, 128.62, 118.01, 115.42, 111.43, 75.25, 70.95, 69.05, 52.33, 52.13, 51.67, 41.00, 35.99, 34.31. ES+ *m*/*z* (%): 468 (M⁺, 6), 268 (7), 256 (4), 239 (5), 156 (9), 139 (11), 125 (17), 118 (100), 111 (33), 105 (76), 97 (59). HRMS *m*/*z* Found: 468.1425, Calcd. for C₂₅H₂₄O₉ (M)⁺ : 468.1420.

Synthesis of compound 21

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

To a solution of epoxide **20** (22 mg, 0.047 mmol) in dry dichloromethane (1 mL) was added a solution of BF₃·Et₂O (boron trifluoride-diethyl etherate, 0.24 mL, 0.1 M in dichloromethane, 0.024 mmol) at 0 °C under nitrogen. The reaction mixture was then stirred for 30 min at 0 °C before stirring at room temperature overnight. A saturated aqueous solution of NaHCO₃ (5 mL) was added. The mixture was then extracted with dichloromethane (3 × 5 mL). The combined organic phases were washed with brine (5 mL) and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = $3:1\rightarrow 2:1$) afforded the product (**21**, 16.7 mg, 84%) as white solid.

m.p.: 133-135 °C. $[\alpha]_{D}^{20}$ –16.8 (*c* 1.14, Acetone), IR: v_{max} (KBr) cm⁻¹: 3431, 3056, 2933, 1793, 1736, 1601, 1497, 1442, 1397, 1263, 1151, 1053, 992, 888, 814, 709. ¹H-NMR (400 MHz, CDCl₃) δ : 8.17 (2H, *d*, *J* = 7.9 Hz), 7.66 (1H, *t*, *J* = 7.3 Hz), 7.53 (2H, *t*, *J* = 7.7 Hz), 7.22 (1H, *d*, *J* = 8.4 Hz), 6.95 (1H, *dd*, *J* = 1.6, 8.4 Hz), 6.89 (1H, *s*), 3.94 (1H, *d*, *J* = 11.8 Hz), 3.73 (1H, *d*, *J* = 11.8 Hz), 3.58 (1H, *s*), 3.34 (1H, *d*, *J* = 19.1 Hz), 3.16 (1H, *d*, *J* = 19.1 Hz), 2.88 (1H, br, *s*), 2.77 (1H, *d*, *J* = 19.6 Hz), 2.61 (1H, *d*, *J* = 14.4 Hz), 2.56 (1H, *d*, *J* = 19.2 Hz), 2.50 (1H, *d*, *J* = 15.3 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 173.01, 172.15, 165.19, 154.50, 151.32, 134.03, 130.63, 130.27, 128.92, 128.73, 117.26, 116.95, 111.80, 97.58, 92.36, 76.16, 70.61, 55.44, 45.21, 42.04, 38.60. ES+ *m/z* (%): 422 (M⁺, 3), 219 (2), 178 (4), 149 (4), 105 (84), 83 (100), 77 (31), 66 (30), 57 (32). HRMS *m/z* Found: 422.0996, Calcd. for C₂₃H₁₈O₈ (M)⁺ : 422.1022.

Synthesis of C-10,11-epimer of Brazilide A (22)

To a solution of bis-lactone **21** (19 mg, 0.045 mmol) in acetic acid (2 mL) was added 65% H₂SO₄ solution (0.14 mL). The reaction mixture was then stirred at 110 °C for 5 h, by which time TLC analysis showed no remaining starting material. After cooling to room temperature, EtOAc (5 mL) and water (5 mL) was added. After separation of the organic phase, the aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with brine (8 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = $3:1\rightarrow2:1$) afforded the product (**22**, 12.7 mg, 90%) as white solid.

m.p.: 127-128 °C. $[\alpha]_{D}^{20}$ +4.4 (*c* 1.30, Acetone), IR: v_{max} (KBr) cm⁻¹: 3407, 3077, 2987, 2931, 1782, 1621, 1507, 1462, 1401, 1324, 1250, 1154, 1041, 994, 845, 639. ¹H-NMR (400 MHz, Acetone-*d*₆) δ: 7.00 (1H, *d*, *J* = 8.4 Hz), 6.57 (1H, *dd*, *J* = 1.4, 8.3 Hz), 6.40 (1H, *s*), 3.89 (1H, *d*, *J* = 11.6 Hz), 3.76 (1H, *d*, *J* = 11.6 Hz), 3.55 (1H, *s*), 3.44 (1H, *d*, *J* = 18.8 Hz), 3.16 (1H, *d*, *J* = 18.8 Hz), 2.80 (1H, *d*, *J* = 19.3 Hz), 2.64 (1H, *d*, *J* = 14.8 Hz), 2.56 (1H, *d*, *J* = 19.3 Hz), 2.47 (1H, *d*, *J* = 14.8 Hz). ¹³C-NMR (100 MHz, Acetone-*d*₆) δ: 174.08, 173.37, 158.78, 156.15, 131.69, 112.17, 111.21, 104.56, 98.65, 93.59, 76.84, 71.15, 55.97, 46.02, 42.44, 39.10. ES+ m/z (%): 318 (M⁺, 6), 192 (5), 161 (18), 147 (4), 131 (3), 118 (100), 105 (12), 97 (9). HRMS m/z Found: 318.0743, Calcd. for C₁₆H₁₄O₇ (M)⁺ : 318.0740.

Synthesis of compound 23

To a solution of compound **19** (240 mg, 0.53 mmol) in anhydrous dichloromethane (20 mL) at 0 °C under nitrogen was added a solution of 2,6-Lutidine (0.31 mL, 2.65 mmol) followed by addition of *tert*-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf, 0.52 mL, 2.12 mmol). The reaction mixture was then warmed up to room temperature and stirred at room temperature overnight. The reaction mixture was then cooled to 0 °C and quenched with brine (10 mL). The aqueous phase was extracted with dichloromethane (3×15 mL). The combined organic phases were washed with brine (15 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = 8:1) afforded the product (**23**, 255 mg, 85%) as a yellow oil.

[α] $_{D}^{20}$ +46.2 (*c* 1.24, Acetone), IR: v_{max} (KBr) cm⁻¹: 3064, 2944, 2856, 1738, 1606, 1496,1442, 1317, 1256, 1150, 1010, 939, 832, 777, 709. ¹H-NMR (300 MHz, CDCl₃) δ: 8.16 (2H, *d*, *J* = 7.8 Hz), 7.60 (1H, *t*, *J* = 7.2 Hz), 7.47 (2H, *t*, *J* = 7.5 Hz), 7.22 (1H, *d*, *J* = 7.8 Hz), 6.77 (1H, *d*, *J* = 8.7 Hz), 6.74 (1H, s), 3.96-3.89 (3H, *m*), 3.65 (3H, s), 3.63 (3H, s), 3.18-3.02 (4H, m), 2.78 (1H, *d*, *J* = 16.2 Hz), 2.37 (1H, *d*, *J* = 16.2 Hz), 0.79 (9H, s), 0.02 (3H, s), -0.03 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ: 170.92, 170.57, 165.01, 155.54, 150.29, 135.09, 133.49, 131.11, 130.14, 129.65, 128.53, 118.80, 114.11, 110.35, 70.69, 53.67, 51.95, 46.17, 34.29, 31.95, 25.63, 17.99, -2.85, -2.99. ES+ *m/z* (%): 565 (M⁺-1, 10), 551 (40), 535 (52), 509 (27), 477 (8), 449 (8), 375 (15), 285 (3). 271 (5), 211 (4), 105 (100), 77 (35). HRMS *m/z* Found: 566.2330, Calcd. for C₃₁H₃₈O₈Si (M)⁺ : 566.2336.

Synthesis of compounds 24 and 25

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

C₃₁H₃₈O₉Si Mol. Wt.: 582.23 C₃₁H₃₈O₉Si Mol. Wt.: 582.23

To a solution of compound **23** (246 mg, 0.435 mmol) in anhydrous dichloromethane (30 mL) was added *m*-CPBA (3chloroperoxybenzoic acid, 97 mg, 77%, 0.435 mmol) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C then warmed up to 32 °C. The reaction mixture was then stirred at 32 °C for 3 days and during this period further *m*-CPBA was added every 12 h (6 × 49 mg, 77%, 6 × 0.22 mmol). Saturated aqueous solution of NaHSO₃ (20 mL) was added. The mixture was extracted with dichloromethane (3 × 25 mL), and the combined organic phases were washed with saturated aqueous solution of NaHCO₃ (15 mL), brine (15 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : Acetone = $30:1\rightarrow 20:1$) afforded the epooxides (**24**, 160 mg, 63%; **25**, 54 mg, 22%) as colorless oil.

Compound 24: $[\alpha]_{D}^{20}$ +11.9 (*c* 1.51, Acetone), IR: v_{max} (KBr) cm⁻¹: 3068, 2946, 2844, 1738, 1606, 1497, 1440, 1321, 1256, 1150, 1049, 939, 832, 777, 708. ¹H-NMR (400 MHz, CDCl₃) δ : 8.17 (2H, *d*, *J* = 7.7 Hz), 7.63 (1H, *t*, *J* = 7.4 Hz), 7.50 (2H, *t*, *J* = 7.7 Hz), 7.27 (1H, *d*, *J* = 8.3 Hz), 6.82 (1H, *dd*, *J* = 2.2, 8.3 Hz), 6.76 (1H, *s*), 4.08 (1H, *d*, *J* = 11.2 Hz), 3.76 (1H, *d*, *J* = 11.2 Hz), 3.69 (3H, *s*), 3.52 (3H, *s*), 3.44 (1H, *s*), 2.81 (1H, *d*, *J* = 17.1 Hz), 2.75 (1H, *d*, *J* = 16.3 Hz), 2.61 (1H, *d*, *J* = 16.3 Hz), 2.55 (1H, *d*, *J* = 17.1 Hz), 2.39 (1H, *d*, *J* = 14.6 Hz), 2.28 (1H, *d*, *J* = 14.6 Hz), 0.79 (9H, *s*), 0.07 (3H, *s*), 0.06 (3H, *s*). ¹³C-NMR (100 MHz, CDCl₃) δ : 169.98, 169.90, 164.92, 155.76, 150.77, 133.63, 131.66, 130.15, 129.46, 128.59, 117.35, 114.72, 110.49, 78.90, 71.10, 70.84, 68.22, 52.05, 51.59, 42.57, 36.95, 34.76, 25.61, 18.01, -2.65, -2.74. ES+ *m*/*z* (%): 582 (M⁺, 12), 581 (M⁺-1, 23), 567 (82), 525 (100), 509 (18), 493 (25), 465 (21), 433 (32), 373 (25), 325 (25), 173 (18), 105 (53), 89 (12), 77 (34). HRMS *m*/*z* Found: 582.2274, Calcd. for C₃₁H₃₈O₉ Si (M)⁺: 582.2285.

Compound 25: $[\alpha]_{D}^{20}$ -8.1 (*c* 1.51, Acetone), IR: v_{max} (KBr) cm⁻¹: 3068, 2948, 2856, 1739, 1608, 1498, 1442, 1317, 1256, 1148, 1049, 1017, 833, 778, 708. ¹H-NMR (400 MHz, CDCl₃) δ : 8.20 (2H, *d*, *J* = 7.6 Hz), 7.63 (1H, *t*, *J* = 7.4 Hz), 7.51 (2H, *t*, *J* = 7.7 Hz), 7.28 (1H, *d*, *J* = 8.4 Hz), 6.84 (1H, *dd*, *J* = 2.2, 8.4 Hz), 6.79 (1H, *d*, *J* = 2.2 Hz), 4.00 (1H, *d*, *J* = 11.4 Hz), 3.93 (1H, *d*, *J* = 11.4 Hz), 3.81 (3H, *s*), 3.74 (3H, *s*), 3.43 (1H, *s*), 3.39 (1H, *d*, *J* = 16.7 Hz), 2.84 (1H, *d*, *J* = 16.3 Hz), 2.70 (1H, *d*, *J* = 16.3 Hz), 2.39 (1H, *d*, *J* = 16.7 Hz), 2.32 (1H, *d*, *J* = 14.7 Hz), 2.27 (1H, *d*, *J* = 14.7 Hz), 0.79 (9H, *s*), 0.00 (3H, *s*), - 0.01 (3H, *s*). ¹³C-NMR (100 MHz, CDCl₃) δ : 169.95, 169.88, 165.03, 155.64, 150.47, 133.57, 130.87, 130.19, 129.57, 128.56, 115.48, 114.25, 110.49, 73.32, 73.06, 67.10, 64.34, 52.30, 52.05, 46.47, 41.30, 36.19, 34.63, 25.59, 17.93, -2.95, -3.15. ES+ *m*/*z* (%): 582 (M⁺, 9), 581 (M⁺-1, 16) .567 (17), 559 (22), 525 (43), 505 (21), 495 (59), 463 (100), 435 (38), 421 (18), 391 (9), 375 (14), 330 (13), 313 (21), 271 (13), 192 (16), 105 (67), 77 (24). HRMS *m*/*z* Found: 582.2285, Calcd. for C₃₁H₃₈O₉Si (M)⁺: 582.2285.

Synthesis of (+)-Brazilide A (3)

To a stirred solution of epoxide **25** (37 mg, 0.064 mmol) in anhydrous dichloromethane (5 mL) was added a solution of BF₃·Et₂O (boron trifluoride-diethyl etherate, 0.32 mL, 0.1 M in dichloromethane, 0.032 mmol) at 0 °C under nitrogen. The reaction mixture was stirred for 30 min at 0 °C then stirred at room temperature overnight. A saturated aqueous solution of NaHCO₃ (8 mL) was added. The resulting mixture was extracted with dichloromethane (3 × 15 mL), and the combined organic phases were washed with brine (8 mL) and concentrated. The residue was re-dissolved in acetic acid (3 mL), and a solution of 65% H₂SO₄ (0.2 mL) was added. The reaction mixture was stirred at 110 °C for 5 h, by which time TLC analysis showed no remaining starting material. After cooling to room temperature, EtOAc (5 mL) and water (5 mL) was added. The organic phase was separated. The aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with brine (8 mL), dried over Na₂SO₄ and concentrated. Flash column chromatography on silica gel (Hexane : EtOAc = 3:1→2:1) afforded the product (**2**, 16.6 mg, 82%) as white solid.⁵

m.p.: 252-253 °C. [α] $_{D}^{20}$ +3.4 (*c* 1.36, Acetone), IR: v_{max} (KBr) cm⁻¹: 3389, 2921, 2854, 1792, 1622, 1507, 1457, 1328, 1283, 1219, 1161, 1096, 1037, 996, 842, 713. ¹H-NMR (400 MHz, Acetone-*d*₆) δ : 7.12 (1H, *d*, *J* = 8.6 Hz), 6.46 (1H, *dd*, *J* = 2.4, 8.5 Hz), 6.31 (1H, *d*, *J* = 2.4 Hz), 3.90 (1H, *d*, *J* = 10.9 Hz), 3.82 (1H, *d*, *J* = 10.9 Hz), 3.67 (1H, *s*), 3.53 (1H, *d*, *J* = 18.7 Hz), 3.23 (1H, *d*, *J* = 18.7 Hz), 3.00 (1H, *d*, *J* = 19.2 Hz), 2.65 (1H, *d*, *J* = 19.2 Hz), 2.62 (1H, *d*, *J* = 15.4 Hz), 2.43 (1H, *d*, *J* = 15.6 Hz). ¹³C-NMR (100 MHz, Acetone-*d*₆) δ : 174.12, 173.73, 158.47, 155.77, 134.52, 110.13, 109.51, 104.00, 96.52, 94.63, 78.52, 69.80, 54.30, 46.02, 44.45, 42.94. ES+ *m*/*z* (%): 318 (100), 300 (10), 232 (5), 174 (5), 163 (26), 147 (15), 105 (20), 91 (16), 77 (16), 57 (16). HRMS *m*/*z* Found: 318.0740, Calcd. for C₁₆H₁₄O₇ (M)⁺ : 318.0740.

Ref. 5: B. O. Yang, C.-Q. Ke, Z.-S. He, Y.-P. Yang, Y. Ye, Tetrahedron Lett. 2002, 43, 1731.

Spectrum for

Enantioselective Total Synthesis of (+)-Brazilin, (-)-Brazilein and (+)-Brazilide A

Xuequan Wang, Hongbin Zhang*, Xiaodong Yang*, Jingfeng Zhao, and Chengxue Pan

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China Fax: 86-871-5035538. E-mail: zhanghb@ynu.edu.cn; xdyang@ynu.edu.cn

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

*** End of Report ***

Instrument 1 2012-7-5 23:05:09 下午 1

Data File C:\HPCHEM\1\VERIFY\DEFAULT.VAL\WXQ00002.D

Sample Name: zero

Instrument 1 2012-9-5 17:01:15 下午

Instrument 1 2013-1-19 16:13:55 下午 1

Signal 1: VWD1 A, Wavelength=286 nm

Results obtained with enhanced integrator!

Peak #	RetTime [min]	Type	Width [min]	Ar mAU	ea *s	Heig [mAU	ght]	Area %
1	11.989	PB	0.8016	1.077	07e4	204.	72748	9.1332
2	21.381	BB	2.3459	1.071	58e5	680.2	28156	90.8668
Tota]	.s :			1.1793	29e5	885.0	0903	

*** End of Report ***

40

min

Instrument 1 2013-1-19 14:04:04 下午 1

min

Instrument 1 2013-1-19 13:19:33 下午 1

Compound 21 crystal structure analysis

Figure 1 X-crystal structure of compound 21 (zhb_yxd_1)

Table 1. Crystal data and structure refinement for zhb_yxd_1.

Identification code	mo_zhb_yxd_1_0m
Empirical formula	C23 H18 O8
Formula weight	422.37
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space grou	p Monoclinic, P21/c
Unit cell dimensions b = 8 c = 12	a = 19.082(4) A alpha = 90 deg. 1761(16) A beta = 105.231(3) deg. 2.919(3) A gamma = 90 deg.
Volume 1	944.8(6) A^3
Z, Calculated density	4, 1.443 Mg/m^3
Absorption coefficient	0.110 mm^-1
F(000) 88	0
Crystal size 0	.67 x 0.37 x 0.13 mm
Theta range for data collec	tion 1.11 to 30.45 deg.
Limiting indices	-26<=h<=26, -11<=k<=10, -18<=l<=17
Reflections collected / unio	pue $19227 / 5453 [R(int) = 0.0482]$
Completeness to theta $= 30$	0.45 92.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmissio	n 0.9858 and 0.9298
Refinement method	Full-matrix least-squares on F ²
Data / restraints / paramete	rs 5453 / 0 / 281
Goodness-of-fit on F ²	1.079
Final R indices [I>2sigma(I)] $R1 = 0.0469, wR2 = 0.1263$
R indices (all data)	R1 = 0.0675, wR2 = 0.1455
Largest diff. peak and hole	0.473 and -0.329 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for zhb_yxd_1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)	
O(15)	7204(1)	7023(2)	6197(1)	29(1)
O(7)	5938(1))	2554(2)	10477(1)	24(1)
O(13)	10069(1	l)	7429(1)	8758(1)	22(1)
O(11)	9007(1)	6537(1)	8924(1)	17(1)
O(10)	8183(1)	5421(1)	6553(1)	22(1)
O(1)	7734(1)		774(1)	8784(1)	23(1)
O(16)	6574(1)	1470(2)	12043(1)	28(1)
O(3)	9577(1)		2268(1)	8969(1)	22(1)
C(15)	7654(1))	6277(2)	6844(1)	21(1)
C(14)	7736(1))	6115(2)	8036(1)	18(1)
C(11)	8464(1)	5294(2)	8473(1)	15(1)
C(4)	8541(1)		3832(2)	9266(1)	15(1)
C(4A)	7863(1)	3446(2)	9615(1)	16(1)
C(5)	7584(1)		4591(2)	10201(1)	19(1)
C(6)	6949(1)		4300(2)	10503(1)	21(1)
C(7)	6598(1)		2830(2)	10210(1)	21(1)
C(16)	6000(1))	1873(2)	11457(1)	20(1)
C(17)	5288(1))	1746(2)	11715(1)	18(1)
C(18)	4640(1)	2205(2)	10992(1)	22(1)
C(19)	3997(1)	2152(2)	11300(1)	24(1)
C(20)	4002(1)	1618(2)	12323(1)	24(1)
C(13)	9558(1)	6521(2)	8449(1)	18(1)
C(10)	8670(1))	4633(2)	7465(1)	18(1)
C(12)	9435(1)	5259(2)	7575(1)	20(1)
C(9)	8552(1)		2799(2)	7496(1)	19(1)
C(3)	8801(1)		2377(2)	8689(1)	18(1)
C(8A)	7491(1)	1972(2)	9350(1)	19(1)
C(2)	8506(1)		760(2)	8974(1)	22(1)
C(8)	6853(1)		1657(2)	9643(1)	21(1)
C(21)	4644(1))	1118(2)	13031(1)	24(1)
C(22)	5291(1))	1185(2)	12733(1)	22(1)

Table 3. Bond lengths [A] and angles [deg] for zhb_yxd_1.

O(15)-C(15)	1.1949(19)
O(7)-C(16)	1.3592(19)
O(7)-C(7)	1.4102(18)
O(13)-C(13)	1.2077(18)
O(11)-C(13)	1.3502(17)
O(11)-C(11)	1.4591(16)
O(10)-C(15)	1.3600(19)
O(10)-C(10)	1.4461(17)
O(1)-C(8A)	1.3741(18)
O(1)- $C(2)$	1 4293(19)
O(16)-C(16)	12032(18)
O(3)-C(3)	1 4309(17)
O(3)-H(3)	0.8400
C(15)-C(14)	1512(2)
C(14)-C(11)	1.512(2) 1.512(2)
C(14) - C(11) C(14) + U(14A)	1.312(2)
$C(14)$ - $\Pi(14A)$ $C(14)$ $\Pi(14B)$	0.9900
$C(14) - \Pi(14D)$	0.9900
C(11)-C(10)	1.5559(19)
C(11)-C(4)	1.555(2)
C(4)-C(4A)	1.5113(19)
C(4)-C(3)	1.553(2)
C(4)-H(4)	1.0000
C(4A)-C(8A)	1.394(2)
C(4A)-C(5)	1.395(2)
C(5)-C(6)	1.387(2)
C(5)-H(5)	0.9500
C(6)-C(7)	1.380(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.371(2)
C(16)-C(17)	1.484(2)
C(17)-C(18)	1.391(2)
C(17)-C(22)	1.392(2)
C(18)-C(19)	1.387(2)
C(18)-H(18)	0.9500
C(19)-C(20)	1.390(2)
C(19)-H(19)	0.9500
C(20)-C(21)	1 383(2)
C(20)-H(20)	0.9500
C(13)-C(12)	1.502(2)
C(10)- $C(12)$	1.502(2) 1.517(2)
C(10) - C(9)	1.517(2) 1.518(2)
$C(12)-H(12\Delta)$	0 9900
C(12)-H(12R) C(12)-H(12R)	0.9900
$C(12)^{-11}(12D)$ C(0) C(3)	1.528(2)
C(9) - C(3) $C(0) \cup U(0A)$	0.0000
$C(9) - \Pi(9A)$	0.9900
$C(9) - \Pi(9D)$	0.9900
C(3)-C(2)	1.319(2)
C(8A)-C(8)	1.391(2)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(8)-H(8)	0.9500
C(21)-C(22)	1.387(2)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500

C(16)-O(7)-C(7)	115.41(12)
C(13)-O(11)-C(11)	111.57(11)
C(15)-O(10)-C(10)	111.72(11)
C(8A)-O(1)-C(2)	112.99(12)
C(3)-O(3)-H(3)	109.5
O(15)-C(15)-O(10)	121.17(14)
O(15)-C(15)-C(14)	128.37(15)
O(10)-C(15)-C(14)	110.46(12)
C(11)-C(14)-C(15)	105.04(12)
C(11)-C(14)-H(14A)	110.7
C(15)-C(14)-H(14A)	110.7
C(11)-C(14)-H(14B)	110.7
C(15)-C(14)-H(14B)	110.7
H(14A) C(14) H(14B)	108.8
O(11) C(11) C(14)	100.0 100.02(11)
O(11) - C(11) - C(14) O(11) - C(11) - C(10)	106.96(11) 105.52(10)
C(11)- $C(11)$ - $C(10)$	103.32(10) 104.54(11)
C(14)-C(11)-C(10)	104.54(11)
O(11)-C(11)-C(4)	109.76(11)
C(14)-C(11)-C(4)	120.40(11)
C(10)-C(11)-C(4)	106.53(11)
C(4A)-C(4)-C(3)	112.94(11)
C(4A)-C(4)-C(11)	114.64(11)
C(3)-C(4)-C(11)	105.03(11)
C(4A)-C(4)-H(4)	108.0
C(3)-C(4)-H(4)	108.0
C(11)-C(4)-H(4)	108.0
C(8A)-C(4A)-C(5)	118.14(13)
C(8A)-C(4A)-C(4)	121.83(12)
C(5)-C(4A)-C(4)	120.02(13)
C(6)-C(5)-C(4A)	121.53(14)
C(6)-C(5)-H(5)	119.2
C(4A)-C(5)-H(5)	119.2
C(7)- $C(6)$ - $C(5)$	117 97(14)
C(7)- $C(6)$ - $H(6)$	121.0
C(5)- $C(6)$ - $H(6)$	121.0
$C(3)-C(0)-\Pi(0)$	121.0 122.81(14)
C(8) - C(7) - C(0)	122.01(14) 118.06(14)
C(6) - C(7) - O(7)	118.90(14)
C(0)-C(7)-O(7)	110.20(14) 122.60(14)
O(10)-C(10)-O(7) O(16)-C(16)-C(17)	122.09(14) 125.17(14)
O(10)-C(10)-C(17)	123.17(14)
O(7)-O(10)-O(17) O(10)-O(17)	112.11(12) 120.2((14))
C(18)-C(17)-C(22)	120.30(14)
C(18)-C(17)-C(16)	122.32(14)
C(22)-C(17)-C(16)	117.30(13)
C(19)-C(18)-C(17)	119.74(14)
C(19)-C(18)-H(18)	120.1
C(17)-C(18)-H(18)	120.1
C(18)-C(19)-C(20)	119.81(14)
C(18)-C(19)-H(19)	120.1
C(20)-C(19)-H(19)	120.1
C(21)-C(20)-C(19)	120.34(14)
C(21)-C(20)-H(20)	119.8
С(19)-С(20)-Н(20)	119.8
O(13)-C(13)-O(11)	120.14(13)
O(13)-C(13)-C(12)	128.62(13)
O(11)-C(13)-C(12)	111.23(12)
O(10)-C(10)-C(12)	108.89(12)
O(10)-C(10)-C(9)	113.16(12)
C(12)-C(10)-C(9)	118.46(13)
、 ラー ヽ ニアニマク	()

O(10)-C(10)-C(11)	106.11(11)	
C(12)-C(10)-C(11)	104.65(11)	
C(9)-C(10)-C(11)	104.40(11)	
C(13)-C(12)-C(10)	105.02(12)	
C(13)-C(12)-H(12A)	110.7	
C(10)-C(12)-H(12A)	110.7	
C(13)-C(12)-H(12B)	110.7	
C(10)-C(12)-H(12B)	110.7	
H(12A)-C(12)-H(12B)	108.8	
C(10)-C(9)-C(3)	103.94(12)	
C(10)-C(9)-H(9A)	111.0	
C(3)-C(9)-H(9A)	111.0	
C(10)-C(9)-H(9B)	111.0	
C(3)-C(9)-H(9B)	111.0	
H(9A)-C(9)-H(9B)	109.0	
O(3)-C(3)-C(2)	108.01(12)	
O(3)-C(3)-C(9)	107.20(12)	
C(2)-C(3)-C(9)	113.82(13)	
O(3)-C(3)-C(4)	111.49(12)	
C(2)-C(3)-C(4)	111.40(12)	
C(9)-C(3)-C(4)	104.88(12)	
O(1)-C(8A)-C(8)	116.99(13)	
O(1)-C(8A)-C(4A)	121.77(13)	
C(8)-C(8A)-C(4A)	121.24(14)	
O(1)-C(2)-C(3)	112.51(12)	
O(1)-C(2)-H(2A)	109.1	
C(3)-C(2)-H(2A)	109.1	
O(1)-C(2)-H(2B)	109.1	
C(3)-C(2)-H(2B)	109.1	
H(2A)-C(2)-H(2B)	107.8	
C(7)-C(8)-C(8A)	118 30(14)	
C(7)-C(8)-H(8)	120.9	
C(8A)-C(8)-H(8)	120.9	
C(20)-C(21)-C(22)	120 23(15)	
C(20)-C(21)-H(21)	1199	
C(22)-C(21)-H(21)	119.9	
C(21) - C(22) - C(17)	119 48(14)	
C(21) - C(22) - H(22)	120.3	
C(17) - C(22) - H(22)	120.3	
$C(17)^{-}C(22)^{-11}(22)$	140.0	

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for zhb_yxd_1. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a*² U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
0(15) 33(1)	27(1)	25(1)	9(1)	5(1)	4(1)
O(7)	19(1)	$\frac{2}{(1)}$	23(1)	9(1)	10(1)	0(1)
O(13)) 21(1)	23(1)	23(1)	0(1)	9(1)	-7(1)
0(11	18(1)	15(1)	20(1)	-3(1)	9(1)	-3(1)
0(10	27(1)	23(1)	16(1)	2(1)	7(1)	0(1)
O(1)	27(1)	15(1)	32(1)	-6(1)	15(1)	-4(1)
0(16) 21(1)	39(1)	27(1)	11(1)	9(1)	5(1)
0(3)	20(1)	26(1)	23(1)	-1(1)	9(1)	4(1)
C(15	23(1)	17(1)	22(1)	3(1)	7(1)	-3(1)
C(14) $19(1)$	17(1)	20(1)	2(1)	7(1)	0(1)
C(11	17(1)	14(1)	17(1)	-1(1)	8(1)	-3(1)
C(4)	17(1)	13(1)	17(1)	-1(1)	8(1)	-1(1)
C(4A	20(1)	15(1)	17(1)	2(1)	9(1)	$\hat{0}(\hat{1})$
C(5)	23(1)	16(1)	20(1)	$0(1)^{-1}$	10(1)	0(1)
C(6)	24(1)	21(1)	21(1)	2(1)	12(1)	4(1)
C(7)	18(1)	25(1)	21(1)	6(1)	10(1)	0(1)
C(16) 21(1)	18(1)	21(1)	2(1)	9(1)	1(1)
C(17	20(1)	16(1)	21(1)	1(1)	9(1)	-1(1)
C(18	22(1)	23(1)	22(1)	4(1)	8(1)	-2(1)
C(19	20(1)	25(1)	29(1)	4(1)	6(1)	0(1)
C(20	22(1)	26(1)	29(1)	0(1)	12(1)	-1(1)
C(13) 18(1)	17(1)	19(1)	3(1)	8(1)	0(1)
C(10	22(1)	17(1)	15(1)	0(1)	8(1)	-1(1)
C(12	22(1)	20(1)	23(1)	-2(1)	14(1)	-3(1)
C(9)	22(1)	16(1)	19(1)	-3(1)	9(1)	-2(1)
C(3)	19(1)	16(1)	21(1)	-1(1)	10(1)	1(1)
C(8A	23(1)	15(1)	20(1)	$\hat{0}(\hat{1})$	10(1)	$\hat{0}(\hat{1})$
$\dot{C(2)}$	26(1)	14(1)	30(1)	0(1)	14(1)	2(1)
C(8)	22(1)	19(1)	24(1)	2(1)	9(1)	-4(1)
C(21)) 28(1)	27(1)	21(1)	1(1)	12(1)	$\hat{0}(\hat{1})$
C(22	23(1)	23(1)	21(1)	2(1)	7(1)	0(1)
· · ·				~ /	~ /	~ /

	х	у	2	Z	U(eq)	
11(2)	0725		2190		0629	22
$\Pi(3)$	9/33		2189		9038	33
H(14A)	//29		/204		8369	22
H(14B)	7340		5440		8176	22
H(4)	8937		4101		9922	18
H(5)	7835		5594	1	0400	23
H(6)	6761		5089	1	0898	25
H(18)	4638		2553		10289	26
H(19)	3554		2480		10813	29
H(20)	3563		1596		12538	29
H(12A)	9793		4360		7774	24
H(12B)	9477		5753		6895	24
H(9A)	8846		2209		7088	22
H(9B)	8034		2519		7195	22
H(2A)	8646		-123		8544	27
H(2B)	8730		517		9740	27
H(8)	6600		654	9	9455	26
H(21)	4642		729	1	3722	29
H(22)	5732		849	1	3221	26

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for zhb_yxd_1.

Table 6. Torsion angles [deg] for zhb_yxd_1.

C(10)-O(10)-C(15)-O(15)	179 27(14)
C(10) O(10) C(15) C(14)	0.80(17)
C(10)-O(10)-C(13)-C(14)	-0.80(17)
O(15)-C(15)-C(14)-C(11)	-170.30(16)
O(10)-C(15)-C(14)-C(11)	9.77(16)
C(13) = O(11) = C(11) = C(14)	-121.79(12)
C(13) - O(11) - C(11) - C(14)	-121.79(12)
C(13)-O(11)-C(11)-C(10)	-10.01(14)
C(13)-O(11)-C(11)-C(4)	104.41(13)
C(15)-C(14)-C(11)-O(11)	98 48(13)
C(15) C(14) C(11) C(10)	12.05(14)
C(13)-C(14)-C(11)-C(10)	-13.93(14)
C(15)-C(14)-C(11)-C(4)	-133.48(13)
O(11)-C(11)-C(4)-C(4A)	122.46(12)
C(14) - C(11) - C(4) - C(4A)	-5.23(18)
C(10) C(11) C(4) C(4A)	122.77(12)
C(10)-C(11)-C(4)-C(4A)	-123.77(12)
O(11)-C(11)-C(4)-C(3)	-112.99(12)
C(14)-C(11)-C(4)-C(3)	119.32(13)
C(10)-C(11)-C(4)-C(3)	0.79(14)
C(2) $C(4)$ $C(4A)$ $C(8A)$	5.07(10)
C(3)-C(4)-C(4A)-C(6A)	-3.07(19)
C(11)-C(4)-C(4A)-C(8A)	115.19(15)
C(3)-C(4)-C(4A)-C(5)	176.14(13)
C(11)-C(4)-C(4A)-C(5)	-63.60(17)
C(2A) C(4A) C(5) C(6)	11(2)
C(8A)-C(4A)-C(3)-C(0)	-1.1(2)
C(4)-C(4A)-C(5)-C(6)	177.72(13)
C(4A)-C(5)-C(6)-C(7)	0.4(2)
C(5)-C(6)-C(7)-C(8)	0.3(2)
C(5) C(6) C(7) O(7)	17750(12)
C(3)-C(0)-C(7)-O(7)	-177.39(13)
C(16)-O(7)-C(7)-C(8)	93.40(17)
C(16)-O(7)-C(7)-C(6)	-88.64(17)
C(7)-O(7)-C(16)-O(16)	-2.9(2)
C(7) O(7) C(16) C(17)	17536(13)
C(7) - O(7) - C(10) - C(17)	175.50(15)
O(16)-C(16)-C(17)-C(18)	-1/8.66(1/)
O(7)-C(16)-C(17)-C(18)	3.1(2)
O(16)-C(16)-C(17)-C(22)	3.0(2)
O(7) - C(16) - C(17) - C(22)	-17515(14)
C(22) C(17) C(19) C(10)	21(2)
C(22)-C(17)-C(18)-C(19)	2.1(2)
C(16)-C(17)-C(18)-C(19)	-176.13(14)
C(17)-C(18)-C(19)-C(20)	-1.0(2)
C(18) - C(19) - C(20) - C(21)	-0.9(3)
C(11) O(11) C(13) O(13)	17690(13)
C(11) - O(11) - C(13) - O(13)	-1/0.90(13)
C(11)-O(11)-C(13)-C(12)	1.69(16)
C(15)-O(10)-C(10)-C(12)	-120.47(13)
C(15)-O(10)-C(10)-C(9)	105.58(14)
C(15)-O(10)-C(10)-C(11)	-8.31(15)
O(11) C(11) C(10) O(10)	101.08(12)
O(11)-O(11)-O(10)	-101.08(12)
C(14)-C(11)-C(10)-O(10)	13.80(14)
C(4)-C(11)-C(10)-O(10)	142.28(11)
O(11)-C(11)-C(10)-C(12)	13 99(14)
C(14) C(11) C(10) C(12)	128.87(12)
C(14)-C(11)-C(10)-C(12)	128.87(12)
C(4)-C(11)-C(10)-C(12)	-102.65(13)
O(11)-C(11)-C(10)-C(9)	139.13(11)
C(14)-C(11)-C(10)-C(9)	-105.98(13)
C(4)-C(11)-C(10)-C(9)	22 50(14)
O(12) C(12) C(12) C(10)	$\frac{22.50(17)}{174.01(15)}$
O(13)-O(13)-O(12)-O(10)	-1/4.01(13)
O(11)-C(13)-C(12)-C(10)	7.56(16)
O(10)-C(10)-C(12)-C(13)	100.22(13)
	. /
C(9)-C(10)-C(12)-C(13)	-128 62(14)

C(11)-C(10)-C(12)-C(13)	-12.90(15)
O(10)-C(10)-C(9)-C(3)	-152.30(11)
C(12)-C(10)-C(9)-C(3)	78.48(15)
C(11)-C(10)-C(9)-C(3)	-37.38(14)
C(10)-C(9)-C(3)-O(3)	-80.42(13)
C(10)-C(9)-C(3)-C(2)	160.20(12)
C(10)-C(9)-C(3)-C(4)	38.20(14)
C(4A)-C(4)-C(3)-O(3)	-142.38(12)
C(11)-C(4)-C(3)-O(3)	92.00(13)
C(4A)-C(4)-C(3)-C(2)	-21.64(17)
C(11)-C(4)-C(3)-C(2)	-147.26(12)
C(4A)-C(4)-C(3)-C(9)	101.93(13)
C(11)-C(4)-C(3)-C(9)	-23.69(14)
C(2)-O(1)-C(8A)-C(8)	-150.22(14)
C(2)-O(1)-C(8A)-C(4A)	30.27(19)
C(5)-C(4A)-C(8A)-O(1)	-179.30(13)
C(4)-C(4A)-C(8A)-O(1)	1.9(2)
C(5)-C(4A)-C(8A)-C(8)	1.2(2)
C(4)-C(4A)-C(8A)-C(8)	-177.61(13)
C(8A)-O(1)-C(2)-C(3)	-58.59(17)
O(3)-C(3)-C(2)-O(1)	176.51(12)
C(9)-C(3)-C(2)-O(1)	-64.58(17)
C(4)-C(3)-C(2)-O(1)	53.75(17)
C(6)-C(7)-C(8)-C(8A)	-0.2(2)
O(7)-C(7)-C(8)-C(8A)	177.66(13)
O(1)-C(8A)-C(8)-C(7)	179.92(14)
C(4A)-C(8A)-C(8)-C(7)	-0.6(2)
C(19)-C(20)-C(21)-C(22)	1.6(3)
C(20)-C(21)-C(22)-C(17)	-0.5(2)
C(18)-C(17)-C(22)-C(21)	-1.4(2)
C(16)-C(17)-C(22)-C(21)	176.94(14)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for zhb_yxd_1 [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3)O(13)#1	0.84	2.03	2.8460(17) 163.4

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, -y + 1, -z + 2

(+)-Brazilide A (3) crystal structure analysis

Figure 1 Absolute configuration of (+)-Brazilide A (3) (zhb_w_1)

Table 1. Crystal data and structure refinement for zhb_w_1 .

Identification code	cu_zhb_w_1_0m
Empirical formula	C19 H20 O8
Formula weight	376.35
Temperature	00(2) K
Wavelength 1	.54178 A
Crystal system, space group	Monoclinic, P 21
Unit cell dimensions b = 6.7 c = 12	a = 10.9939(2) A alpha = 90 deg. (3910(10) A beta = 111.3280(10) deg. 6864(3) A gamma = 90 deg.
Volume 87	5.55(3) A^3
Z, Calculated density	2, 1.428 Mg/m^3
Absorption coefficient	0.949 mm^-1
F(000) 396	
Crystal size 0.0	54 x 0.32 x 0.08 mm
Theta range for data collect	on 3.74 to 68.19 deg.
Limiting indices	-12<=h<=12, -7<=k<=6, -15<=l<=14
Reflections collected / unique	ae $7274 / 2361 [R(int) = 0.0330]$
Completeness to theta $= 68$.	19 92.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9280 and 0.5819
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameter	s 2361 / 1 / 248
Goodness-of-fit on F^2	1.097
Final R indices [I>2sigma(I	R1 = 0.0278, wR2 = 0.0718
R indices (all data)	R1 = 0.0279, WR2 = 0.0719
Absolute structure parameter	r 0.36(14)
Largest diff. peak and hole	0.153 and -0.225 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for zhb_w_1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	2793(1)			
O(7)		619(2)	-1066(1)	29(1)
O(15)	9962(1)	1142(2)	6618(1)	30(1)
O(3)	6345(1)	3139(2)	5247(1)	25(1)
O(1)	4370(1)	4420(2)	2308(1)	24(1)
O(11)	7614(1)	-811(2)	3127(1)	21(1)
O(13)	8380(1)	-738(2)	1727(1)	24(1)
O(10)	9188(1)	2664(2)	4949(1)	22(1)
O(8)	2077(1)	1003(2)	3292(1)	35(1)
C(7)	3524(2)	793(3)	57(1)	21(1)
C(6)	4170(2)	-898(3)	621(1)	22(1)
C(5)	4927(2)	-789(3)	1757(1)	20(1)
C(4A)	5081(2)	989(3)	2373(1)	18(1)
C(4)	5931(2)	1087(3)	3622(1)	19(1)
C(11)	7388(2)	538(3)	3923(1)	20(1)
C(14)	8077(2)	-243(3)	5119(1)	23(1)
C(15)	9175(2)	1188(3)	5678(1)	22(1)
C(10)	8112(2)	2497(3)	3868(1)	20(1)
C(9)	7135(2)	4153(3)	3737(1)	22(1)
C(3)	6032(2)	3240(3)	4052(1)	20(1)
C(2)	4742(2)	4315(3)	3512(1)	23(1)
C(8A)	4376(2)	2624(3)	1796(1)	20(1)
C(8)	3621(2)	2554(3)	647(1)	22(1)
C(12)	8630(2)	2166(3)	2924(1)	23(1)
C(13)	8218(2)	101(3)	2509(1)	20(1)
C(17)	817(2)	2130(4)	1451(2)	42(1)
C(18)	1561(2)	602(3)	2295(2)	29(1)
C(19)	1629(2)	-1443(4)	1862(2)	37(1)
Table 3. Bond lengths [A] and angles [deg] for zhb_w_1.

O(7) C(7)	1.2627(10)
O(7) - C(7)	1.3027(19)
O(/)-H(/)	0.8400
O(15)-C(15)	1.192(2)
O(3)-C(3)	1.4284(19)
O(3)-H(3)	0.8400
O(1)-C(8A)	1.375(2)
O(1) C(01)	1.373(2) 1.4222(18)
O(1) - C(2)	1.4323(10)
O(11)-C(13)	1.347(2)
O(11)-C(11)	1.446(2)
O(13)-C(13)	1.209(2)
O(10)-C(15)	1.362(2)
O(10) - C(10)	1 4535(19)
O(8)- $C(18)$	1.214(2)
C(7) C(8)	1.214(2) 1.286(2)
C(7) - C(8)	1.360(3)
C(7)-C(6)	1.395(3)
C(6)-C(5)	1.379(2)
C(6)-H(6)	0.9500
C(5)-C(4A)	1.407(3)
C(5)-H(5)	0 9500
$C(4\Lambda) - C(8\Lambda)$	1 392(2)
C(4A) - C(6A)	1.572(2) 1.521(2)
C(4A) - C(4)	1.521(2)
C(4)-C(3)	1.539(3)
C(4)-C(11)	1.550(2)
C(4)-H(4)	1.0000
C(11)-C(14)	1.522(2)
C(11) - C(10)	1.556(2)
C(14)- $C(15)$	1.505(2)
C(14) - H(14A)	0 9900
$C(14) - \Pi(14A)$ $C(14) - \Pi(14A)$	0.0000
$C(14) - \Pi(14D)$	0.9900
C(10)-C(9)	1.516(3)
C(10)-C(12)	1.519(2)
C(9)-C(3)	1.536(2)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(3)-C(2)	1.517(2)
$C(2)_{-}H(2\Lambda)$	0.000
C(2) = H(2R) C(2) = H(2R)	0.0000
$C(2) - \Pi(2B)$	0.9900
C(8A)- $C(8)$	1.391(2)
C(8)-H(8)	0.9500
C(12)-C(13)	1.498(3)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(17)-C(18)	1.496(3)
C(17)-H(17A)	0 9800
C(17) - H(17B)	0.9800
C(17) II(17D)	0.9800
$C(17) - \Pi(17C)$	0.9600
C(18)-C(19)	1.495(3)
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(7)-O(7)-H(7)	109.5
C(3) - O(3) - H(3)	109.5
C(8A) O(1) C(2)	11/ 20(12)
C(0A) - O(1) - C(2)	114.32(13)
C(13)-O(11)-C(11)	111.49(14)

C(15)-O(10)-C(10)	112.16(12)
O(7)-C(7)-C(8)	122.60(16)
O(7)-C(7)-C(6)	117.55(15)
C(8)-C(7)-C(6)	119.85(14)
C(5)-C(6)-C(7)	119.56(16)
C(5)-C(6)-H(6)	120.2
C(7)-C(6)-H(6)	120.2
C(6)-C(5)-C(4A)	122.05(16)
C(6)-C(5)-H(5)	119.0
C(4A)-C(5)-H(5)	119.0
C(8A)-C(4A)-C(5)	116.77(14)
C(8A)-C(4A)-C(4)	121.83(15)
C(5)-C(4A)-C(4)	121.34(14)
C(4A)-C(4)-C(3)	110.38(13)
C(4A)-C(4)-C(11)	115.73(13)
C(3)-C(4)-C(11)	101.70(13)
C(4A)-C(4)-H(4)	109.6
C(3)-C(4)-H(4)	109.6
C(11)-C(4)-H(4)	109.6
O(11)-C(11)-C(14)	109.25(14)
O(11)-C(11)-C(4)	113.76(12)
C(14)-C(11)-C(4)	115.01(13)
O(11)-C(11)-C(10)	106.36(12)
C(14)-C(11)-C(10)	105.11(13)
C(4)-C(11)-C(10)	106.59(14)
C(15)-C(14)-C(11)	105./3(14)
C(15)-C(14)-H(14A)	110.6
C(11)-C(14)-H(14A)	110.6
C(15)-C(14)-H(14B)	110.6
$U(11)-U(14)-\Pi(14B)$ U(14A) C(14) U(14D)	110.0
H(14A)-C(14)-H(14B) O(15) C(15) O(10)	108.7 120.04(15)
O(15)-O(15)-O(10) O(15)-O(15)-O(14)	120.94(13) 128.28(16)
O(13)-C(13)-C(14) O(10) C(15) C(14)	120.30(10) 110.68(12)
O(10) - C(13) - C(14) O(10) - C(10) - C(0)	110.06(13) 110.27(13)
O(10) - C(10) - C(9) O(10) - C(10) - C(12)	110.37(13) 110.18(13)
C(10)- $C(10)$ - $C(12)$	110.16(13) 118.41(14)
O(10) C(10) C(11)	106 12(13)
C(10)- $C(10)$ - $C(11)$	100.13(13) 106.04(13)
C(9)- $C(10)$ - $C(11)$	100.04(13) 104.70(14)
C(12)- $C(10)$ - $C(11)$	104.79(14) 105.72(15)
$C(10)-C(9)-H(9\Delta)$	110.6
$C(3)-C(9)-H(9\Delta)$	110.6
C(10)-C(9)-H(9R)	110.6
C(3)-C(9)-H(9B)	110.6
H(9A)-C(9)-H(9B)	108 7
O(3)-C(3)-C(2)	109.07(13)
O(3)-C(3)-C(9)	109.07(13) 112 78(13)
C(2)-C(3)-C(9)	112.70(15)
O(3)-C(3)-C(4)	106 85(13)
C(2)-C(3)-C(4)	110.05(19)
C(9)-C(3)-C(4)	104 33(14)
O(1)-C(2)-C(3)	111 28(13)
O(1)-C(2)-H(2A)	109.4
C(3)-C(2)-H(2A)	109.4
O(1)-C(2)-H(2B)	109.4
C(3)-C(2)-H(2B)	109.4
H(2A)-C(2)-H(2B)	108.0
O(1)-C(8A)-C(8)	114.91(15)

O(1)-C(8A)-C(4A)	123.07(14)
C(8)-C(8A)-C(4A)	122.02(16)
C(7)-C(8)-C(8A)	119.63(16)
C(7)-C(8)-H(8)	120.2
C(8A)-C(8)-H(8)	120.2
C(13)-C(12)-C(10)	105.15(14)
C(13)-C(12)-H(12A)	110.7
C(10)-C(12)-H(12A)	110.7
C(13)-C(12)-H(12B)	110.7
C(10)-C(12)-H(12B)	110.7
H(12A)-C(12)-H(12B)	108.8
O(13)-C(13)-O(11)	120.96(17)
O(13)-C(13)-C(12)	127.35(16)
O(11)-C(13)-C(12)	111.68(13)
C(18)-C(17)-H(17A)	109.5
C(18)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(18)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
O(8)-C(18)-C(19)	121.38(18)
O(8)-C(18)-C(17)	121.3(2)
C(19)-C(18)-C(17)	117.37(17)
C(18)-C(19)-H(19A)	109.5
C(18)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(18)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for zhb_w_1. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a*² U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
O(7)	36(1)	25(1)	19(1)	-2(1)	4(1)	3(1)
0(15) $33(1)$	28(1)	21(1)	0(1)	1(1)	2(1)
O(3)	32(1)	24(1)	18(1)	-2(1)	9(1)	-5(1)
O(1)	28(1)	20(1)	21(1)	-2(1)	7(1)	5(1)
0(11) 21(1)	18(1)	25(1)	0(1)	10(1)	-1(1)
0(13	25(1)	28(1)	20(1)	-3(1)	7(1)	0(1)
O(10) 22(1)	23(1)	20(1)	0(1)	6(1)	-4(1)
O(8)	42(1)	35(1)	26(1)	0(1)	10(1)	5(1)
C(7)	21(1)	24(1)	21(1)	-1(1)	9(1)	-1(1)
C(6)	24(1)	18(1)	26(1)	-4(1)	10(1)	-2(1)
C(5)	19(1)	18(1)	26(1)	2(1)	9(1)	0(1)
C(4A	17(1)	20(1)	20(1)	1(1)	9(1)	-2(1)
C(4)	22(1)	17(1)	20(1)	2(1)	10(1)	-2(1)
C(11) 21(1)	18(1)	20(1)	0(1)	8(1)	0(1)
C(14) 20(1)	25(1)	23(1)	5(1)	7(1)	0(1)
C(15) 24(1)	22(1)	22(1)	0(1)	10(1)	2(1)
C(10) 20(1)	22(1)	17(1)	1(1)	4(1)	-4(1)
C(9)	26(1)	19(1)	22(1)	2(1)	8(1)	-2(1)
C(3)	23(1)	21(1)	17(1)	0(1)	7(1)	-1(1)
C(2)	26(1)	23(1)	22(1)	-3(1)	10(1)	1(1)
C(8A	21(1)	18(1)	23(1)	-2(1)	12(1)	-1(1)
C(8)	22(1)	21(1)	23(1)	2(1)	9(1)	2(1)
C(12) 24(1)	24(1)	22(1)	0(1)	9(1)	-3(1)
C(13) 16(1)	23(1)	18(1)	3(1)	3(1)	2(1)
C(17) 34(1)	61(2)	33(1)	16(1)	14(1)	1(1)
C(18) 26(1)	38(1)	28(1)	2(1)	14(1)	-1(1)
C(19) 35(1)	47(1)	32(1)	-9(1)	15(1)	-5(1)

	X	y z	z U(eq	D
11(7)	2200	1.601	1204	42
H(/)	2399	1691	-1304	43
H(3)	6719	4193	5549	38
H(6)	4088	-2118	225	27
H(5)	5358	-1951	2135	25
H(4)	5545	232	4065	23
H(14A)	7467	-289	5532	27
H(14B)	8421	-1595	5102	27
H(9A)	6792	4646	2948	27
H(9B)	7547	5273	4247	27
H(2A)	4056	3610	3698	28
H(2B)	4818	5674	3825	28
H(8)	3175	3706	269	27
H(12A)	8251	3143	2308	28
H(12B)	9593	2289	3212	28
H(17A)	793	3373	1845	63
H(17B)	-77	1661	1050	63
H(17C)	1247	2359	908	63
H(19A)	776	-2088	1661	56
H(19B)	2287	-2218	2451	56
H(19C)	1870	-1363	1192	56

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for zhb_w_1.

Table 6. Torsion angles [deg] for zhb_w_1 .

O(7)-C(7)-C(6)-C(5)	179.58(14)
C(8)-C(7)-C(6)-C(5)	-1.6(2)
C(7)-C(6)-C(5)-C(4A)	-0.4(2)
C(6)-C(5)-C(4A)-C(8A)	3.2(2)
C(6)-C(5)-C(4A)-C(4)	-179.41(14)
C(8A)-C(4A)-C(4)-C(3)	-8 3(2)
C(5)-C(4A)-C(4)-C(3)	17453(14)
C(8A)-C(4A)-C(4)-C(11)	-123.04(16)
C(5)-C(4A)-C(4)-C(11)	507(2)
C(13) O(11) C(11) C(14)	120 47(14)
C(13) - O(11) - C(11) - C(14)	-120.47(14) 100.51(15)
C(13) - O(11) - C(11) - C(4)	109.31(13) 7.50(16)
C(13)- $O(11)$ - $C(11)$ - $O(11)$	-7.30(10)
C(4A)-C(4)-C(11)-O(11)	-27.1(2)
C(3)-C(4)-C(11)-O(11)	-140./4(13)
C(4A)-C(4)-C(11)-C(14)	-154.18(15)
C(3)-C(4)-C(11)-C(14)	86.19(17)
C(4A)-C(4)-C(11)-C(10)	89.77(16)
C(3)-C(4)-C(11)-C(10)	-29.86(14)
O(11)-C(11)-C(14)-C(15)	111.29(15)
C(4)-C(11)-C(14)-C(15)	-119.38(15)
C(10)-C(11)-C(14)-C(15)	-2.49(17)
C(10)-O(10)-C(15)-O(15)	-177.25(15)
C(10)-O(10)-C(15)-C(14)	2.82(18)
C(11)-C(14)-C(15)-O(15)	-179.95(17)
C(11)-C(14)-C(15)-O(10)	-0.02(18)
C(15)-O(10)-C(10)-C(9)	110.13(15)
C(15)-O(10)-C(10)-C(12)	-117.25(15)
C(15)-O(10)-C(10)-C(11)	-4.33(17)
O(11)-C(11)-C(10)-O(10)	-111.75(13)
C(14)-C(11)-C(10)-O(10)	4.05(17)
C(4)-C(11)-C(10)-O(10)	126.55(13)
O(11)-C(11)-C(10)-C(9)	130.85(13)
C(14)-C(11)-C(10)-C(9)	-113.35(14)
C(4)-C(11)-C(10)-C(9)	9.15(15)
O(11)-C(11)-C(10)-C(12)	4.85(16)
C(14)-C(11)-C(10)-C(12)	120.64(14)
C(4)-C(11)-C(10)-C(12)	-116.85(14)
O(10)-C(10)-C(9)-C(3)	-98.92(14)
C(12)-C(10)-C(9)-C(3)	132.82(15)
C(11)-C(10)-C(9)-C(3)	15.60(15)
C(10)-C(9)-C(3)-O(3)	80.68(17)
C(10)-C(9)-C(3)-C(2)	-155.19(13)
C(10)-C(9)-C(3)-C(4)	-34.90(15)
C(4A)-C(4)-C(3)-O(3)	156.44(12)
C(11)-C(4)-C(3)-O(3)	-80.21(14)
C(4A)-C(4)-C(3)-C(2)	37.76(17)
C(11)-C(4)-C(3)-C(2)	161.11(13)
C(4A)-C(4)-C(3)-C(9)	-83.89(15)
C(11)-C(4)-C(3)-C(9)	39.46(14)
C(8A)-O(1)-C(2)-C(3)	52.17(18)
O(3)-C(3)-C(2)-O(1)	-178.82(13)
C(9)-C(3)-C(2)-O(1)	55.0(2)
C(4)-C(3)-C(2)-O(1)	-61.50(18)
C(2)-O(1)-C(8A)-C(8)	159.11(13)
C(2)-O(1)-C(8A)-C(4A)	-21.0(2)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

C(5)-C(4A)-C(8A)-O(1)	175.92(13)
C(4)-C(4A)-C(8A)-O(1)	-1.4(2)
C(5)-C(4A)-C(8A)-C(8)	-4.1(2)
C(4)-C(4A)-C(8A)-C(8)	178.53(14)
O(7)-C(7)-C(8)-C(8A)	179.50(14)
C(6)-C(7)-C(8)-C(8A)	0.8(2)
O(1)-C(8A)-C(8)-C(7)	-177.83(14)
C(4A)-C(8A)-C(8)-C(7)	2.2(2)
O(10)-C(10)-C(12)-C(13)	112.83(15)
C(9)-C(10)-C(12)-C(13)	-118.83(16)
C(11)-C(10)-C(12)-C(13)	-0.95(16)
C(11)-O(11)-C(13)-O(13)	-173.07(14)
C(11)-O(11)-C(13)-C(12)	7.19(17)
C(10)-C(12)-C(13)-O(13)	176.61(15)
C(10)-C(12)-C(13)-O(11)	-3.67(17)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA) <(DHA)
O(3)-H(3)O(8)#1	0.84	2.00	2.7983(18) 159.4
O(7)-H(7)O(13)#2	0.84	1.92	2.7580(19) 174.6

Table 7. Hydrogen bonds for zhb_w_1 [A and deg.].

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, y + 1/2, -z + 1 = #2 - x + 1, y + 1/2, -z