Electronic supplementary information

Charge-transfer Inclusion Complex Formation of Tropylium Cation with Pillar[6]arenes

Jiazeng Fan, Hongmei Deng, Jian Li, Xueshun Jia* and Chunju Li*

Contents

Materials and methods.	S2
Copies of ¹ H NMR and ¹³ C NMR spectra of pillararene hosts.	S3
¹ H NMR spectra.	S 7
UV-vis spectra.	S11
ESI mass spectrum of an equimolar mixture of $\mathbf{T} \cdot \mathbf{BF}_4$ and OHP6A.	S12
Binding behavior of neutral halogenated hydrocarbons by EtP6A. (Scheme S2)	S13
Determination of the association constants.	S20
References.	S22

Materials and methods.

per-Ethylated pillar[5,6,7]arenes (EtP5A, EtP6A and EtP7A) and *per*-hydroxylated pillar[6]arene (OHP6A) were prepared according to literature procedures.^[S1] Tropylium tetrafluoroborate and halogenated hydrocarbons were commercially available and used as received. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV500 instrument. Electrospray ionization mass spectra (ESI-MS) were recorded on a Bruker Daltonics, Inc. APEXIII7.0 TESLA FTMS instrument. Ultraviolet-visible (UV-vis) spectra were measured employing a Shimadzu UV-2401PC using a conventional 1 cm path (1 × 0.25 cm) quartz cell in a thermostated compartment, which was kept at 25 °C through a Shimadzu TB-85 Thermo Bath unit.

Scheme S1. Some organic nitrogen-containing cation guests for P6As.

Figure S1. ¹H NMR spectrum (500 MHz) of EtP5A in CDCl₃.

Figure S2. ¹³C NMR spectrum (125 MHz) of EtP5A in CDCl₃.

Figure S3. ¹H NMR spectrum (500 MHz) of EtP6A in CDCl₃.

Figure S4. ¹³C NMR spectrum (125 MHz) of EtP6A in CDCl₃.

Figure S5. ¹H NMR spectrum (500 MHz) of OHP6A in methanol-*d*₄.

Figure S6. ¹³C NMR spectrum (125 MHz) of OHP6A in methanol-*d*₄.

Figure S7. ¹H NMR spectrum (500 MHz) of EtP7A in CDCl₃.

Figure S8. ¹³C NMR spectrum (125 MHz) of EtP7A in CDCl₃.

•

¹H NMR spectra.

Figure S9. ¹H NMR spectra (500 MHz, 298 K) of (a) $\mathbf{T} \cdot \mathbf{BF}_4$, (b) $\mathbf{T} \cdot \mathbf{BF}_4$ + EtP6A, and (c)

EtP6A in acetone- d_6 at 2.0–2.3 mM.

Figure S10. ¹H NMR spectra (500 MHz, 298 K) of (a) $\mathbf{T} \cdot \mathbf{BF}_4$, (b) $\mathbf{T} \cdot \mathbf{BF}_4$ + EtP7A, and (c) EtP7A in acetone- d_6 at 1.9–2.0 mM.

Figure S11. H NMR spectra (500 MHz, 298 K) of (a) $\mathbf{1} \cdot \mathbf{BF}_4$, (b) $\mathbf{1} \cdot \mathbf{BF}_4 + \mathbf{EtPS}$ EtP5A in acetone- d_6 at 1.7–2.0 mM.

Figure S12. ¹H NMR spectra (500 MHz, 298 K) of (a) $\mathbf{T} \cdot BF_4$, (b) $\mathbf{T} \cdot BF_4$ + OHP6A, and (c)

OHP6A in acetone- d_6 at 1.9–2.1 mM.

UV-vis spectra.

Figure S13. UV-vis spectra of an equimolar mixture of T·BF₄ and EtP6A (2.8 mM) in 1 :

1 acetone-CHCl₃ and pure acetone solutions at 298 K.

Figure S14. UV-vis spectra (A) and color changes (B) of $\mathbf{T} \cdot \mathbf{BF}_4$ (2.8 mM) upon complexation with 1.0 eq. of OHP6A in acetone solution at 298 K. (a) $\mathbf{T} \cdot \mathbf{BF}_4$, (b) $\mathbf{T} \cdot \mathbf{BF}_4$ + OHP6A, and (c) OHP6A.

ESI mass spectrum of an equimolar mixture of T·BF₄ and OHP6A.

Figure S15. ESI mass spectrum of an equimolar mixture of \mathbf{T} ·BF₄ and OHP6A in methanol solution. The concentration of host/guest is about 0.5 μ mol/L.

In the ESI mass spectrum of an equimolar mixture of $\mathbf{T} \cdot \mathbf{BF}_4$ and OHP6A (Figure S15), only one intense peak for the 1 : 1 complex $[\mathbf{T} \subseteq \text{EtP6A}]^+$ (m/z 823.3) was observed.

Binding behavior of neutral halogenated hydrocarbons by EtP6A.

Considering that our previous works have reported the strong binding strength between P5As with α , ω -dihaloalkanes, some halogenated hydrocarbons (Scheme S2) are expected to fit P6A hosts. The complexation of 1,4-dibromobutane (**1**) and 1,4-diiodobutane (**2**) by *per*-ethylated pillar[6]arene (EtP6A) host was first investigated by ¹H NMR experiments. As can be seen from Figure S16 and S17, no obvious signal changes were observed for the guests upon addition of about one equivalent EtP6A in the ¹H NMR spectra, indicating no complexation between EtP6A and these two guests. These results are reasonable since that the methylene chain, which fit the cavity size of P5As, is relatively small compared with P6A's cavity. Then several other halogenated hydrocarbons (**3–7**) bearing halogen atoms in their middle positions were chosen as the guest molecules. The introduction of halogen atoms can enlarge the guests' sizes, and there may exist additional halogen… π interations. Unfortunately, no NMR changes were found either. (Figure S18–S22) For halogenated hydrocarbons containing cyclohexane rings and benzene rings (**8–11**), similar results were obtained. (Figure S23–S26)

Scheme S2. Structures of neutral halogenated hydrocarbons.

Figure S16. ¹H NMR spectra (500 MHz, 298 K) of (a) **1**, (b) **1** + EtP6A, and (c) EtP6A in

CDCl₃ at 3.9-4.2 mM.

Figure S17. ¹H NMR spectra (500 MHz, 298 K) of (a) **2**, (b) **2** + EtP6A, and (c) EtP6A in CDCl₃ at 3.8–4.2 mM.

Figure S18. ¹H NMR spectra (500 MHz, 298 K) of (a) **3**, (b) **3** + EtP6A, and (c) EtP6A in CDCl₃ at 3.4–4.0 mM.

Figure S19. ¹H NMR spectra (500 MHz, 298 K) of (a) **4**, (b) **4** + EtP6A, and (c) EtP6A in

CDCl₃ at 3.4-4.0 mM.

Figure S20. ¹H NMR spectra (500 MHz, 298 K) of (a) 5, (b) 5 + EtP6A, and (c) EtP6A in

CDCl₃ at 3.5-4.0 mM.

Figure S21. ¹H NMR spectra (500 MHz, 298 K) of (a) 6, (b) 6 + EtP6A, and (c) EtP6A in

CDCl₃ at 3.6-4.0 mM.

Figure S22. ¹H NMR spectra (500 MHz, 298 K) of (a) 7, (b) 7 + EtP6A, and (c) EtP6A in

Figure S23. ¹H NMR spectra (500 MHz, 298 K) of (a) **8**, (b) **8** + EtP6A, and (c) EtP6A in

CDCl₃ at 3.5-4.1 mM.

Figure S24. ¹H NMR spectra (500 MHz, 298 K) of (a) **9**, (b) **9** + EtP6A, and (c) EtP6A in CDCl₃ at 3.3–4.0 mM.

Figure S25. ¹H NMR spectra (500 MHz, 298 K) of (a) **10**, (b) **10** + EtP6A, and (c) EtP6A

in CDCl₃ at 4.0–4.6 mM.

Figure S26. ¹H NMR spectra (500 MHz, 298 K) of (a) **11**, (b) **11** + EtP6A, and (c) EtP6A

in CDCl₃ at 3.9–4.6 mM.

Determination of the association constants.

For the present host-guest system, chemical exchange is fast on the NMR time scale. To determine the association constant, NMR titrations were done with solutions which had a constant concentration of pillararene host and varying concentrations of $\mathbf{T} \cdot \mathbf{BF}_4$ guest. Using the nonlinear curve-fitting method, the association constant was obtained for each host-guest combination from the following equation^[S2]:

 $A = (A_{\infty}/[P6A]_0) (0.5[G]_0 + 0.5([P6A]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0(1/K_a - [P6A]_0)) + (1/K_a + [P6A]_0)^2)^{0.5}))$

Where *A* is the chemical shift change of H_1 on EtP6A (or OHP6A) host at $[G]_0$, A_∞ is the chemical shift change of H_1 when the host is completely complexed, $[P6A]_0$ is the fixed initial concentration of the EtP6A (or OHP6A) host, and $[G]_0$ is the initial concentration of guest.

Figure S27. Partial ¹H NMR spectra (500 MHz, in acetone- d_6 -CDCl₃ (1 : 1, v : v), 298 K) of EtP6A at a concentration of 0.50 mM upon addition of tropylium tetrafluoroborate. From bottom to top, the concentration of tropylium tetrafluoroborate was 0, 0.040, 0.23, 0.44, 0.60, 0.82, 1.1, 1.5, 1.9, and 2.5 mM.

Figure S28. The non-linear curve-fitting (NMR titrations) for the complexation of EtP6A host (0.50 mM) with tropylium tetrafluoroborate in 1 : 1 acetone- d_6 -CDCl₃ at 298 K. The concentration of tropylium tetrafluoroborate was 0.040, 0.23, 0.44, 0.60, 0.82, 1.1, 1.5, 1.9, and 2.5 mM.

Figure S29. Partial ¹H NMR spectra (500 MHz, in acetone- d_6 , 298 K) of OHP6A at a concentration of 1.0 mM upon addition of tropylium tetrafluoroborate. From bottom to top, the concentration of tropylium tetrafluoroborate was 0, 0.28, 0.66, 1.5, 2.2, 3.4, 5.2, 7.2, 9.2, and 12 mM.

Figure S30. The non-linear curve-fitting (NMR titrations) for the complexation of OHP6A host (1.0 mM) with tropylium tetrafluoroborate in acetone- d_6 at 298 K. The concentration of tropylium tetrafluoroborate was 0.28, 0.66, 1.5, 2.2, 3.4, 5.2, 7.2, 9.2, and 12 mM.

References

[[]S1] (a) D. Cao, Y. Kou, J. Liang, Z. Chen, L. Wang and H. Meier, *Angew. Chem., Int. Ed.*, **2009**, *48*, 9721; (b) T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi, Y. Nakamoto, *J. Am. Chem. Soc.* **2008**, *130*, 5022; (c) X.-B. Hu, Z. Chen, L. Chen, L. Zhang, J.-L. Hou and Z.-T. Li *Chem. Commun.*, **2012**, *48*, 10999; (d) Y. Ma, X. Chi, X. Yan, J. Liu, Y. Yao, W. Chen, F. Huang, and J.-L. Hou, *Org. Lett.*, **2012**, *14*, 1532.

[[]S2] (a) K. A. Connors, Binding Constants; Wiley: New York, 1987. Corbin, P. S. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; (b) R. P. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi , D. J. Williams, *J. Am. Chem. Soc.*, 1996, *118*, 4931; (c) Y. Inoue, K. Yamamoto, T. Wada, S. Everitt, X.-M. Gao, Z.-J. Hou, L.-H. Tong, S.-K. Jiang, H.-M. Wu, *J. Chem. Soc.*, *Perkin Trans.* 2, 1998, 1807.