Supporting Information for:

"Tuning the electronic properties of an N-

heterocyclic carbene by charge and mesomeric

effects"

Hannes Buhl^a and Christian Ganter^{a,*}

^aInstitut für Anorganische und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany

christian.ganter@hhu.de

General Considerations. All experiments were performed with standard Schlenk techniques in a dry nitrogen atmosphere. Microwave assisted synthesis were carried out with a Cem Discover microwave. Solvents were dried and distilled under nitrogen by using standard procedures (diethyl ether and tetrahydrofuran over Na/benzophenone, dichlormethane over CaH_2 and n-hexane over Na). NMR spectra were measured with a Bruker Avance III – 300, Avance DRX 500 or Avance III – 600. Chemical shifts of ¹H and ¹³C{¹H}-NMR spectra were reported in delta (δ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using the solvent as internal standard (¹H: chloroform-d3 7.26 ppm, acetone-d6 2.05 ppm, DMSO-d6 2,50 ppm, acetonitrile-d3 1.94 ppm; ¹³C: chloroform-d3 77.16 ppm, acetone-d6 29.84 ppm, DMSO-d6 2,50 ppm, acetonitrile-d3 1.32 ppm. Coupling constants are expressed in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained with a Bruker Daltonics UHR-QTOF maXis 4G (ESI) and were reported as m/z. A Shimadzu IR Affinity-1 was used for IR spectroscopy. Elemental analyses were obtained with an Elementar vario Micro cube. X-ray crystal structure data were collected on a Bruker Apex Duo at 297 K. Refinement was done with SHELXL-97. Molecular structure plots were generated with Ortep3v2.

2,3-diaminopyridine, 98% [Acros Organics, Belgium (CAS: 452-58-4)] was purchased. [PyINp₂][PF₆] **4**,^[1] (PyINp₂)Rh(COD)Cl, [Rh(COD)Cl]₂^[2] and [Ir(COD)Cl]₂^[3] was synthesized according to literature.

General procedure for synthesis of the dicarbonyl complexes 10, 11 and 12:

CO was bubbled into a solution of corresponding COD complex for 30 minutes und high stirring. During this procedure the bright orange or yellow solutions bleached, which indicates the complete conversion. To measure IR spectra the procedure was carried out in CH_2Cl_2 . For collecting NMR data the respective deuterated solvent was taken.

Dicationic precursor 5a. 4-Azabenzimidazolium hexafluorophosphate (500 mg, 1.2 mmol) was suspended in methyl trifluormethansulfonate (1.2 mL) in a 10 mL microwave tube. The suspension was stirred in the microwave oven two times for

5 minutes at 130 °C while being shaken between the passes. The resulting dark red, high viscous solution was transferred into a 250 mL Schlenkflask and mixed with 80 mL of diethyl ether. After stirring for 3 hours at ambient temperature the diethyl ether was removed by a syringe. To the red brown solid 50 mL of diethyl ether were added and the mixture was stirred again for 3 hours until a white precipitate was formed. The suspension was filtered and washed with 10 mL THF. After drying in high vacuum for several hours, the analytically pure product 5 was obtained in 91% yield (580 mg, 1.1 mmol) (5a). Single crystals of 5a were grown by solvent diffusion from Et₂O in a solution of **5a** in acetone. ¹H NMR (300 MHz, DMSO-*d6*): δ 10.26 (s, 1H, C2-H), 9.48 (brd, 1H, ${}^{3}J_{\text{HH}} = 8.6$ Hz, C7-H), 9.27 (brd, 1H, ${}^{3}J_{\text{HH}} = 6.1 \text{ Hz}, \text{ C5-H}), 8.37 \text{ (dd, 1H, } {}^{3}J_{\text{HH}} = 8.6 \text{ Hz}, {}^{3}J_{\text{HH}} = 6.1 \text{ Hz}, \text{ C6-H}), 4.83 \text{ (s, 3H, }$ N4-CH₃), 4.57 (s, 2H, N1-CH₂), 4.51 (s, 3H, N3-CH₃), 1.00 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (75 MHz, DMSO-*d*6): δ 148.49 (s, C2), 145.91 (s, C7), 137.34 (s, C_q), 133.36 (s, C5), 131.06 (s, C_q), 123.34 (s, C6), 120.62 (q, ${}^{1}J_{CF} = 322.1 \text{ Hz}$, <u>CF₃</u>), 58.08 (s, <u>C</u>(CH₃)₃), 45.15 (s, N4CH₃), 37.94 (s, N1CH₂), 35.02 (s, N3CH₃), 26,47 (s, C(CH₃)₃). HRMS (ESI): [M+OH]⁺ calcd for C₁₃H₂₂N₃O⁺: 236.17574; found: 236.17547. Anal. Calcd (%) for C₁₅H₂₁N₃F₆O₆S₂: C, 34.82; H, 4.09; N, 8.12; S, 12.39. Found: C, 34.68; H, 4.18; N, 8.04, S, 12.81.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Dicationic precursor 5b. 5b was synthesized according to 5a by 100 °C instead of 130 °C. The product was obtained as a white solid 74% yield (508 mg, PF6:OTf 1:2 0,9 mmol). ¹H NMR (600 MHz, DMSO-*d*6): δ 10.16 (s, 1H, C2-H), 9.52 (d, 1H, ${}^{3}J_{\text{HH}} = 8.5 \text{ Hz}, \text{ C7-H}), 9.27 \text{ (d, 1H, } {}^{3}J_{\text{HH}} = 6.1 \text{ Hz}, \text{ C5-H}), 8.41 \text{ (dd, 1H, } {}^{3}J_{\text{HH}} = 8.6 \text{vHz},$ ${}^{3}J_{\text{HH}} = 6.1 \text{ Hz}, \text{ C6-H}), 4.82 \text{ (s, 2H, N3-CH}_2), 4.75 \text{ (s, 3H, N4-CH}_3), 4.66 \text{ (s, 2H, N1-CH}_2),$ 1.08 (s, 9H, N3-C(CH₃)₃), 1.01 (s, 9H, N1-C(CH₃)₃). ¹³C (150 MHz, DMSO-*d*6): δ 148.72 (s, C2), 147.15 (s, C5), 137.23 (s, C_a), 133.69 (s, C7), 131.68 (s, C_a), 123.26 (s, C6), 120.64 (q, ${}^{1}J_{CF} = 322.4 \text{ Hz}, \text{ CF}_{3}$, 59.54 (s, N3-CH₂), 58.10 (s, N1-CH₂), 46.31 (s, N4-CH₃), 33.17 (s, N3-C(CH₃)₃), 33.00 (s, N1-C(CH₃)₃), 26.69 (s, N3-C(CH₃)₃), 26.57 (s, C(CH₃)₃). ¹⁹F (280 MHz, DMSO-*d6*): δ -70.16 (d, 6F, ${}^{1}J_{\text{FP}} = 711.2 \text{ Hz}, \text{ PF}_{6}^{-}$) -77.75 (s, 6F, CF₃). ${}^{31}\text{P}$ (81 MHz, DMSO-*d6*): δ -142.96 (sep, ${}^{1}J_{PF} = 711.2 \text{ Hz}, PF_{6}^{-}$). HRMS ESI: [M+OH]⁺ calcd for $C_{17}H_{30}N_3O^+$: 292.23834; found Calcd (%) 292.23866. Anal. for [C₁₇H₂₉N][(PF₆)_{1/2}(CF₃O₃S)_{3/2}]: C, 38.57; H, 5.11; N, 7.36; S, 7.49. Found: C, 37.96; H, 5.14; N, 7.21, S, 8.01.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

¹⁹F NMR (DMSO-*d6*)

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

Cationic thione 7. A 50 mL Schlenk flask was charged with **5a** (250 mg, 483.1 μ mol), sulfur (31 mg, 966.6 μ mol) and potassium *tert*-butoxide (59.6 mg,

531.1 μmol). The solid mixture was cooled to -80 °C. Then 10 mL THF were added drop wise with vigorous stirring. After stirring for 20 min at -80 °C the cooling bath was removed. The red reaction mixture was warmed to ambient temperature and stirred over night. The organic phase was removed carefully with a syringe from the precipitate. Drying in high vacuum for several hours yields **7** in 41% (80.1 mg, 200.5 μmol). ¹H NMR (300 MHz, acetone-*d*6): δ 8.49 (d, 1H, ${}^{3}J_{HH} = 6.4$ Hz, C7-H), 8.47 (d, 1H, ${}^{3}J_{HH} = 8.2$ Hz), 7.74 (dd, 1H, ${}^{3}J_{HH} = 8.2$ Hz, ${}^{3}J_{HH} = 6.5$ Hz, C6-H), 4.87 (s, 3H, N3-CH₃), 4.42 (s, 3H, N4-CH3), 4.40 (s, 2H, N1-CH₂), 1.09 (s, 9H, C(CH₃)₃). ${}^{13}C{}^{1}H{}$ NMR (75 MHz, acetone-*d*6): δ 176.28 (s, C2), 142.87 (s, Cq), 138.44 (s, C7), 133.89 (s, Cq), 123.87 (s, C5), 122.22 (q, ${}^{1}J_{CF} = 321.6$ Hz, CF₃), 119.85 (s, C6), 56.63 (s, N1-CH₂), 45.74 (s, N4-CH₃), 36.51 (s, C(CH₃)₃), 35.75 (s,

N3-<u>C</u>H₃), 28.95 (s, C(<u>C</u>H₃)₃). HRMS (ESI): [M]⁺ calcd for C₁₃H₂₀N₃S⁺: 250.13724; found: 250.13680; [M]⁻ calcd for CF₃O₃S⁻: 148.95257; found: 148.95271.

Rhodium complex 8. A 50 mL Schlenk flask was charged with **5a** (200 mg, 386.5 μ mol), potassium *tert*-butoxide (47.7 mg, 425.2 μ mol) and [Rh(COD)Cl]₂ (95.3 mg, 193.3 μ mol). After cooling the mixture to -80 °C 15 mL THF were added drop wise with vigorous stirring. Subsequently the orange reaction mixture was stirred for 20 min at -80 °C. Then the cooling bath was removed and the mixture was warmed to ambient temperature. Stirring over night yields a yellow precipitate. Removing the organic phase carefully with a syringe and drying the remaining solid in high vacou for several hours afforded the desired compound **8** in 50% yield (118.7 mg, 193.0 μ mol). ¹H NMR (600 MHz, acetone-*d*6): δ 8.81 (d, 1H, ³*J*_{HH} = 8.2 Hz, C7-H), 8.71 (d, 1H, ³*J*_{HH} = 6.2 Hz, C5-H), 7.87 (dd, 1H, ³*J*_{HH} = 8.2 Hz, ³*J*_{HH} = 6.2 Hz, C6-H), 5.31 – 5.35 (m, 1H, =CH), 5.23 (d, 1H, ²*J*_{HH} = 14.2 Hz, N1-CH₂), 5.14 (s, 3H, N4-CH₃), 5.06 – 5.10 (m, 1H, =CH), 5.01 (s, 3H, N3-CH₃), 4.64 (d, 1H, ²*J*_{HH} = 14.2 Hz, N1-CH₂), 3.73 – 3.77 (m, 1H, =CH), 3.12 – 3.16 (m, 1H,

=CH), 2.62 – 2.71 (m, 2H, CH₂), 2.35 – 2.41 (m, 1H, CH₂), 2.28 – 2.32 (m, 1H, CH₂), 2.20 – 2.26 (m, 1H, CH₂), 2.20 – 2.14 ppm (m, 1H, CH₂), 1.85 – 1.94 (m, 2H, CH₂), 1.26 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (150 MHz, acetone-*d*6): δ 212.95 (d, ¹*J*_{CRh} = 53.5 Hz, C2), 142.19 (s, C_q), 140.06 (s, C5), 135.96 (s, C_q), 127.36 (s, C7), 122.22 (q, ¹*J*_{CF} = 321.5 Hz, <u>CF</u>₃), 119.82 (s, C6), 102.92 (d, ¹*J*_{CRh} = 6.6 Hz, =<u>C</u>H), 102.77 (d, ¹*J*_{CRh} = 6.5 Hz, =<u>C</u>H), 73.11 (d, ¹*J*_{CRh} = 14.2 Hz, =<u>C</u>H), 68.53 (d, ¹*J*_{CRh} = 13.7 Hz, =<u>C</u>H), 60.93 (s, N1-CH₂), 46.03 (s, N3-<u>C</u>H₃), 40.80 (s, N4-<u>C</u>H₃), 35.32 (s, <u>C</u>H₂), 34.76 (s, <u>C</u>(CH₃)₃), 31.52 (s, <u>C</u>H₂), 31.24 (s, <u>C</u>H₂), 30.04 (s, C(<u>C</u>H₃)₃), 27.38 (s, <u>C</u>H₂). HRMS (ESI): [M-CI]⁺⁺ calcd for C₂₁H₃₂N₃Rh⁺⁺: 214.58202; found: 214.58266.

¹H NMR (acetone-d6)

Iridium complex 9a. A 50 mL Schlenk flask was charged with **5a** (250 mg, 483.1 μ mol), Potassium *tert*-butoxide (59.6 mg, 531.4 μ mol) and [Ir(COD)CI]₂ (162.3 mg, 241.6 μ mol). The solids were cooled to -90 °C. Then 15 mL THF were added drop wise with vigorous stirring and the orange suspension was stirred for further 20 minutes at -85 °C. Subsequently the cooling bath was removed, the reaction mixture was warmed and stirred over night at ambient temperature. Filtration of the resulting precipitate and drying in high vacuum for several hours obtained the desired compound **9a** in 82% yield (277.3 mg, 394.3 μ mol). ¹H NMR (500 MHz, acetone-*d*6): δ 8.82 (d, 1H, ³*J*_{HH} = 8.3 Hz, C7-H), 8.70 (d, 1H, ³*J*_{HH} = 6.2 Hz, C5-H), 7.85 (dd, 1h, ³*J*_{HH} = 8.3 Hz, ³*J*_{HH} = 6.3 Hz, C6-H), 5.19 (d, 1H, ²*J*_{HH} = 14.3 Hz, N1-CH₂), 5.05 – 5.10 (m, 1H, =CH), 4.97 (s, 3H, N4-CH₃), 4.94 (s, 3H, N3-CH₃), 4.65 – 4.95 (m, 1H, =CH), 4.62 (d, 1H, ²*J*_{HH} = 14.2 Hz, N1-CH₂), 3.29 – 3.34 (m, 1H, =CH), 2.64 – 2.70 (m, 1H, =CH), 2.34 – 2.51 (m, 2H, CH₂), 2.08 – 2.30 (m, 4H,

CH₂), 1.57 – 1.73 (m, 2H, CH₂), 1.19 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (125 MHz, acetone-*d6*): δ 205.43 (s, C2), 143.04 (s, C_q), 139.91 (s, C5), 136.38 (s, C_q), 127.24 (s, C7), 119.91 (s, C6), 91.57 (s, =<u>C</u>H), 89.59 (s, =<u>C</u>H), 60.66 (s, N1-<u>C</u>H₂), 56.81 (s, =<u>C</u>H), 52.76 (s, =<u>C</u>H), 45.99 (s, N₃-<u>C</u>H₃), 40.44 (s, N4-<u>C</u>H₃), 35.75 (s, <u>C</u>H₂), 34.55 (s, <u>C</u>H₂), 32.18 (s, <u>C</u>H₂), 31.84 (s, C(<u>C</u>H₃)₃), 27.71 (s, <u>C</u>H₂). HRMS (ESI): [M-Cl]⁺⁺ calcd for C₂₁H₃₀IrN₃⁺⁺: 258.60293; found: 258.60287.

Iridium complex 9b. A 50 mL Schlenk flask was charged with **5b** (250 mg, 438.0 μ mol), Potassium *tert*-butoxide (54.1 mg, 481.8 μ mol), Potassium hexafluorophosphate (160 mg, 869.3 μ mol) and [Ir(COD)Cl]₂

(147.1 mg, 219.0 μ mol). The mixture was cooled to -90 °C and 15 mL THF were added dropwise. The suspension was stirred for 20 min at -90 °C. Then the cooling bath was removed and the mixture was stirred over night at ambient temperature. The resulting orange precipitate was filtered of. Drying for several hours in high vacuum yields **9b** in 56 % (185.2 mg, 245.3 μ mol). ¹H-NMR (600 MHz, acetone-*d*6): δ 8.78 (d, 1H, ³*J*_{HH} = 8.2 Hz, C7-H), 8.65 (d, 1H, ³*J*_{HH} = 6.3 Hz, C5-H), 7.91 (dd, 1H, ³*J*_{HH} = 8.3 Hz, ³*J*_{HH} = 6.3 Hz, C6-H), 5.88 (d, 1H, ²*J*_{HH} = 15.2 Hz, N3-CH₂), 5.37 (d, 1H, ²*J*_{HH} = 14.2 Hz, N1-CH₂), 5.15 (d, 1H, ²*J*_{HH} = 14.2 Hz, N1-CH₂), 4.83 (s, 3H, N4-CH₃), 2.69 – 2.74 (m, 1H, =CH), 2.19 – 2.39 (m,

6H, =CH, CH₂), 1.86 – 1.97 (m, 2H, CH₂), 1.64 – 1.70 (m, 1H, CH₂), 1.24 (s, 9H, N1-C(CH₃)₃), 1.17 (s, 9H, N3-C(CH₃)₃). ¹³C{¹H} NMR (150 MHz, acetone-*d*6): δ 209.52 (s, C2), 143.59 (s, C_q), 140.26 (s, C5), 136.86 (s, C_q), 127.20 (s, C7), 120.55 (s, C6), 91.65 (s, =<u>C</u>H), 91.34 (s, =<u>C</u>H), 62.15 (s, N3-<u>C</u>H₂), 61.07 (s, N1-<u>C</u>H₂), 57.99 (s, =<u>C</u>H), 56.55 (s, =<u>C</u>H), 46.64 (s, N4-<u>C</u>H₃), 34.13 (s, <u>C</u>(CH₃)₃), 34.06 (s, <u>C</u>(CH₃)₃), 33.95 (s, <u>C</u>H₂), 33.38 (s, <u>C</u>H₂), 30.35 (s, <u>C</u>H₂), 29.80 (s, N1-C(<u>C</u>H₃)₃), 29.54 (s, <u>C</u>H₂), 29.15 (s, N3-C(<u>C</u>H₃)₃). ¹⁹F NMR (280 MHz, acetone-*d*6): δ -72.61 (d, ¹J_{FP} = 707.5 Hz, PF₆⁻). ESI-MS: m/z: 287 [M-Cl]⁺⁺.

¹⁹F NMR (acetone-d6)

______.71.36 _________

Dicarbonylchlorido(6)rhodium(I) 10. ¹H-NMR (600 MHz, acetonitrile- $A_{0Tf}^{N_{p}}$ $A_{0Tf}^{Rh(CO)_{2}CI}$ A_{3} : δ 8.71 (d, 1H, ${}^{3}J_{HH} = 8.4$ Hz, C7-H), 8.49 (d, 1H, ${}^{3}J_{HH} = 6.2$ Hz, C5-H), 7.83 (dd, 1H, ${}^{3}J_{HH} = 8.4$ Hz, ${}^{3}J_{HH} = 6.2$ Hz, C6-H), 4.79 (d, 1H, ${}^{2}J_{HH} = 14.5$ Hz, N1-CH₂), 4.70 (s, 3H, N3-CH₃), 4.45 (d, 1H, ${}^{2}J_{HH} = 14.4$ Hz, N1-CH₂), 1.14 (s, 9H, C(CH₃)₃). 13 C (150 MHz, acetonitrile- A_{3}): 200.04 (d, ${}^{1}J_{CRh} = 46.0$ Hz, C2), 186.18 (d, ${}^{1}J_{CRh} = 55.1$ Hz, <u>C</u>O), 182.57 (d, ${}^{1}J_{CRh} = 73.7$ Hz, <u>C</u>O), 142.29 (s, C5), 141.37 (s, C_q), 135.40 (s, C_q), 130.52 (s, C7), 121.91 (q, ${}^{1}J_{CF} = 320.3$ Hz, <u>C</u>F₃), 121.28 (s, C6), 61.28 (s, N1-<u>C</u>H₂), 46.48 (s, N3-<u>C</u>H₃), 41.51 (s, N4-<u>C</u>H₃), 34.93 (s, <u>C</u>(CH₃)₃), 29.23 (s, C(<u>C</u>H₃)₃). IR (CH₂Cl₂): \tilde{v} 2095, 2022 cm⁻¹ (C=O).

Dicarbonylchlorido(6)iridium(I) 11. ¹H-NMR (600 MHz, DMSO-*d*6): δ 9.09 (d, 1H, ³*J*_{HH} = 8.4 Hz, C7-H), 8.92 (d, 1H, ³*J*_{HH} = 6.1 Hz, C5-H), 8.05 (dd, 1H, ³*J*_{HH} = 8.4 Hz, ³*J*_{HH} = 6.2 Hz, C6-H), 4.77 (d, 1H, ²*J*_{HH} = 14.1 Hz, N1-CH₂), 4.76 (s, 3H, N4-CH₃), 4.66 (s, 3H, N3-CH₃), 4.56 (d, 1H, ²*J*_{HH} = 14.2 Hz, N1-CH₂), 1.08 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (150 MHz, DMSO-*d*6): δ 191.35 (s, C2), 180,29 (s, <u>C</u>O), 167.32 (s, <u>C</u>O), 142.17 (s, C5), 140.14 (s, C_q), 133.47 (s, C_q), 130.24 (s, C7), 120.67 (q, ¹*J*_{CF} = 322.2 Hz, <u>C</u>F₃), 120.48 (s, C6), 59.15 (s, N1-<u>C</u>H₂), 45.26 (s, N3-<u>C</u>H₃), 40.41 (s, N4-<u>C</u>H₃), 34.03 (s, <u>C</u>(CH₃)₃), 27.52 (s, C(<u>C</u>H₃)₃). IR (CH₂Cl₂): \tilde{v} 2082, 2004 cm⁻¹ (C=O). Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Dicarbonylchlorido(PyINp₂)rhodium(I) 12. ¹H-NMR (500 MHz, $\stackrel{\mathsf{N}_{\mathsf{P}}}{\underset{\mathsf{N}_{\mathsf{P}}}{\overset{\mathsf{R}_{\mathsf{h}}(\mathsf{CO})_2\mathsf{Cl}}}$ chloroform-*d3*): δ 8.41 (dd, 1H, ³*J*_{HH} = 4.7 Hz, ⁴*J*_{HH} = 1.4 Hz, C5-H), 7.78 (dd, 1H, ³*J*_{HH} = 8.2 Hz, ⁴*J*_{HH} = 1.4 Hz, C7-H), 7.27 (dd, 1H, ³*J*_{HH} = 8.2 Hz, ³*J*_{HH} = 4.7 Hz, C6-H), 4.95 (d, 1H, ²*J*_{HH} = 14.1 Hz, N-CH₂), 4.84 (d, 1H, ²*J*_{HH} = 13.7 Hz, N-CH₂), 4.46 (d, 1H, ²*J*_{HH} = 13.7 Hz, N-CH₂), 4.22 (d, 1H, ²*J*_{HH} = 14.1 Hz, N-CH₂), 1.16 (s, 9H, C(CH₃)₃), 1.16 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR (125 MHz, chloroform-*d3*): δ 192.06 (d, ¹*J*_{CRh} = 45.29 Hz, C2), 185.20 (d, ¹*J*_{CRh} = 54.2 Hz, <u>C</u>O), 183.13 (d, ¹*J*_{CRh} = 74.9 Hz, <u>C</u>O), 147.42 (s, C_q), 144.21 (s, C5), 127.77 (s, C_q), 120.00 (s, C7), 118.54 (s, C6), 60.65 (s, N-<u>CH₂</u>), 58.36 (N-<u>CH₂</u>), 34.57 (s, <u>C</u>(CH₃)₃), 34.14 (s, <u>C</u>(CH₃)₃), 29.75 (s, C(<u>CH₃)₃), 29.73 (s, C(<u>C</u>H₃)₃). IR (CH₂Cl₂): \tilde{v} 2084, 2003 cm⁻¹ (C=O)</u>

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

X-ray Details

Details of the X-ray diffraction study of compound 4

CCDC refcode	932700
Empirical formula	C16 H26 F6 N3 P
Formular weight	405.37
Temperature	296
Wavelength (Å)	0.71073
Crystal system	monoclinic
Space group	P 2 ₁ /c (no. 14)
Unit cell dimensions (Å)	a = 10.098(2)
	b = 19.944(5)
	c = 10.579(2)
	$\beta = 103.041(5)$
Volume (³)	2075.7(8)
Z	4
F (000)	848
Density (calculated, Mg/m ³)	1.297
Absorption coefficient (mm ⁻¹)	0.188
Crystal size (mm ³)	0.5 x 0.1 x 0.1
Theta range	2.23 - 23.70
Index ranges	$-12 \le h \le 12$
	$-23 \le k \le 23$
	$-12 \le 1 \le 12$
Reflections collected	18698
Independent reflections	3758 [R _{int} = 0.0397]
Completeness to theta $= 25.25$	1.00
Observed reflections (I>2sigma(I))	2979
Data / restraints / parameters	3758 / 0 / 242

GooF	1.183
Final R Inices (I>2sigma(I))	<i>R1</i> = 0.0691
	wR2 = 0.1403
R indices (all data)	R1 = 0.825
	wR2 = 0.1450
Largest diff. peak and hole $(e^{A^{-3}})$	0.499 and -0.368

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Details of the X-ray diffraction study of compound 5a

CCDC refcode	932701
Empirical formula	C15 H21 F6 N3 O6 S2
Formular weight	517.47
Temperature (K)	293
Wavelength (Å)	0.71073
Crystal System	triclinic
Space group	P-1 (no. 2)
Unit cell dimensions (Å)	a = 6.6711(11)
	b = 12.796(2)
	c = 14.462(2)
	$\alpha = 102.692(11)$
	$\beta = 92.911(11)$
	$\gamma = 104.750(11)$
Volume (Å ³)	1157.2(3)
Z	2
F (000)	532
Density (calculated, Mg/m ³)	1.485

Absorption coefficient (mm ⁻¹)	0.313
Crystal size (mm ³)	0.5 x 0.1 x 0.1
Theta range	2.49 - 24.24
Index ranges	$-7 \le h \le 7$
	$-15 \le k \le 15$
	$-17 \le l \le 17$
Reflections collected	10200
Independent reflections	$4063 [R_{int} = 0.0264]$
Completenes to theta $= 25.00$	0.999
Observed reflections (I>2sigma(I))	2641
Data / restraints / parameters	4063 / 0 / 294
GooF	1.121
Final R Indices (I>2sigma(I))	<i>R1</i> = 0.0679
	wR2 = 0.1939
R indices (all data)	<i>R1</i> = 0.0999
	wR2 = 0.2067
Largest diff. peak and hole (Åe ⁻³)	0.365 and -0.357

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Details of the X-ray diffraction study of compound 9b

CCDC refcode	932702
Empirical formula	C25 H40 Cl F6 Ir N3 P
Formular weight	755.22
Temperature (K)	296
Wavelength (Å)	0.71073
Crystal system	orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁ (no. 19)
Unit cell dimensions (Å)	a = 11.8317(19)
	b = 11.9035(19)
	c = 20.770(3)
Volume (Å ³)	2925.2(8)
Z	4
F (000)	1496
Density (calculated, Mg/m ³)	1.715

Absorption coefficient (mm ⁻¹)	4.768
Crystal size (mm ³)	0.65 x 0.25 x 0.25
Theta range	2.427 - 25.027
Index ranges	$-14 \le h \le 14$
	$-14 \le k \le 13$
	$-24 \le l \le 23$
Reflections collected	20212
Independent reflections	5066
Completeness to theta $= 25.080$	0.996
Observed reflections (I>2sigma(I))	4861
Data / restraints / parameters	5066 / 6 / 341
GooF	0.991
Final R Indices (I>2sigma(I))	R1 = 0.0184
	wR2 = 0.0401
R indices (all data)	R1 = 0.0200
	wR2 = 0.0405
Largest diff. peak and hole $(Å^3)$	0.507 and -0.275

Computational Details

The geometries of all molecules were optimized using the B3LYP^[4] functional with the *Gaussian03* program package.^[5] Ahlrichs' def2-TZVP^[6] basis set was used. Harmonic frequency calculations verified the nature of the ground states or excited states, having no imaginary frequencies, respectively. All relative energies include zero-point corrections.

Cartesian coordinates of the optimized geometries for the calculation of the singlet-

triplet gap of [PyINpMe]:

B3LYP/def2-TZVP

singlet-[PyINpMe]

SCF-Energy = -631704116 a.u. Zeropoint = 0.274143 a.u.

Orbital energies: $E_{HOMO} = -6.12 \text{ eV}$; $E_{LUMO} = -1.20 \text{ eV}$; $\Delta_{HOMO-LUMO} = 4.93 \text{ eV}$

	atoms	Х	Y	Z
С		-1.88236900	0.28008100	0.00479000
С		-0.76368100	-0.50809700	-0.31231700
С		-0.91140100	-1.88451300	-0.33342400
С		-2.18034300	-2.37246400	-0.02450100
С		-3.21929100	-1.49376100	0.28506300
С		-0.14588800	1.68974400	-0.43836900
Η		-0.09643000	-2.55424700	-0.57172900
Η		-2.36803100	-3.43770200	-0.02164900
Η		-4.20251900	-1.88043000	0.52741000
Ν		-3.08950400	-0.16214500	0.30300700
Ν		0.26744700	0.38829700	-0.56075500
Ν		-1.45664500	1.59531800	-0.07805300
С		1.61832900	0.02986000	-0.97987200
Η		1.55516600	-0.91344300	-1.52822400
Н		1.93776100	0.79899200	-1.68277600
С		-2.31464500	2.74097900	0.16251200
Н		-1.71594500	3.63468800	0.01219400
Н		-3.15899700	2.73714900	-0.52763900
Н		-2.70281100	2.71935800	1.18141400
С		2.68242000	-0.10035600	0.13761000
С		3.98454300	-0.54295900	-0.54883600
Н		4.79036400	-0.63614300	0.18186300
Н		3.86825100	-1.51214800	-1.04105500
Н		4.30235200	0.18155900	-1.30252100
С		2.90838800	1.24967700	0.83135200
Η		3.22617900	2.01184800	0.11713000
Η		1.99943900	1.61447300	1.30924300
Η		3.68382400	1.15430700	1.59522900
С		2.27394800	-1.15406500	1.17624500
Н		2.13331000	-2.13624800	0.71762700
Н		3.05070900	-1.25553900	1.93731400

triplet-[PyINpMe]

SCF-Energy = -631.589446 a.u. Zeropoint = 0.270848 a.u.

	atoms	Х	Y	Z
С		-1.93475300	0.29024300	-0.03245900
С		-0.78958800	-0.52564700	-0.21358900
С		-0.94345100	-1.90005600	-0.19123000
С		-2.26343200	-2.36819600	0.00985600
С		-3.30383800	-1.48295100	0.19001400
С		-0.15693900	1.61461200	-0.27594800
Η		-0.11473100	-2.58306400	-0.31028900
Η		-2.45847000	-3.43194100	0.03430000
Η		-4.31137700	-1.84622300	0.35237300
Ν		-3.16203900	-0.13032400	0.17898100
Ν		0.30310200	0.31315200	-0.39584600
Ν		-1.52705800	1.61259500	-0.11527600
С		1.60143600	-0.06399700	-0.92347400
Η		1.48937800	-1.05391300	-1.37144900
Η		1.84979700	0.63328900	-1.73047700
С		-2.35783400	2.76485900	0.14417100
Н		-2.26546000	3.49126000	-0.66530000
Η		-3.38739500	2.42105700	0.20716900
Η		-2.07888300	3.24553500	1.08601900
С		2.76574100	-0.09086600	0.09629700
С		4.01680600	-0.55905600	-0.66226300
Η		4.87959400	-0.59351400	0.00569100
Н		3.87917300	-1.55998000	-1.07892500
Η		4.26102500	0.11753700	-1.48508700
С		3.00756900	1.31369800	0.66508800
Η		3.25105200	2.02549800	-0.12794800
Η		2.12955200	1.68749800	1.19526300
Н		3.84256800	1.30148800	1.36923900
С		2.45617600	-1.06963900	1.23617500
Η		2.31467700	-2.08576100	0.86012600
Н		3.28078700	-1.09314500	1.95171800
Η		1.55332300	-0.78161400	1.77673600

Η

Cartesian coordinates of the optimized geometries for the calculation of the singlet-

triplet gap of 6a:

B3LYP/def2-TZVP

singlet-6a

SCF-Energy = -671.355752 a.u. Zeropoint = 0.315457 a.u.

Orbital energies: E_{HOMO} = -9.99 eV; E_{LUMO} = -6.26 eV; $\Delta_{HOMO-LUMO}$ = 3.73 eV

	atoms	Х	Y	Z
С		-1.57572000	0.20877700	-0.09874400
С		-0.41851200	-0.55395600	-0.37582600
С		-0.46952900	-1.93173700	-0.39773800
С		-1.70162200	-2.52969800	-0.12872100
С		-2.80504400	-1.75943200	0.14932800
С		0.13340500	1.64205500	-0.50825300
Η		0.40333900	-2.53164000	-0.61075200
Η		-1.80829800	-3.60447000	-0.13211700
Η		-3.76835500	-2.19324000	0.36729600
Ν		0.58326500	0.36820700	-0.60379200
Ν		-1.21009200	1.52174600	-0.17869600
Ν		-2.75460100	-0.39919300	0.16725600
С		-2.01841800	2.73347700	-0.01217000
Η		-1.32847000	3.56582100	-0.10753200
Η		-2.77462700	2.81153600	-0.79161400
Η		-2.48240300	2.76628600	0.97135600
С		1.97573900	0.04978400	-0.96890900
Η		1.96071500	-0.89412600	-1.51689100
Η		2.28143900	0.83063600	-1.66260500
С		-3.98486700	0.35196500	0.49795300
Η		-3.86191400	0.86480600	1.44884500
Η		-4.21064400	1.06443000	-0.28928200
Η		-4.80209500	-0.35708200	0.57843900
С		2.98888400	-0.03176800	0.19669100
С		3.11141900	1.32071900	0.91100600
Η		2.17780500	1.61884900	1.38963500
Η		3.87840000	1.26272300	1.68500700
Η		3.39247500	2.11392600	0.21643500
С		2.59658400	-1.12082700	1.20506600
Н		2.53830900	-2.10589700	0.73406900

Η	3.34503200	-1.18743300	1.99584400
Н	1.64026300	-0.90799700	1.68863200
С	4.33885000	-0.39490900	-0.44489500
Η	4.65024900	0.35823200	-1.17160800
Η	5.11458400	-0.45673800	0.31922500
Η	4.29716900	-1.36064800	-0.95448500

triplet-6a

SCF-Energy = -671.271737 a.u. Zeropoint = 0.311391 a.u.

	atoms	Х	Y	Z
С		1.58387000	0.21489100	-0.04300900
С		0.62344700	-0.79625700	-0.15383900
С		0.96268600	-2.15506000	-0.13919900
С		2.34057100	-2.41737700	0.01495900
С		3.26476800	-1.42431000	0.12889900
С		-0.38604000	1.15615300	-0.25315900
Η		0.23762300	-2.94491100	-0.24586300
Η		2.69315100	-3.43868000	0.04408500
Η		4.31860400	-1.61696000	0.24558300
Ν		-0.60761000	-0.16021700	-0.27738800
Ν		0.92596700	1.42735400	-0.10877200
Ν		2.91445200	-0.06522300	0.10759200
С		1.42418100	2.80433900	0.00265800
Η		0.58633200	3.46931900	-0.18705700
Н		1.80576200	2.99124700	1.00395900
Η		2.19566900	2.99135700	-0.73859900
С		-1.89963700	-0.83688200	-0.48640600
Н		-2.02103700	-0.99913900	-1.56014100
Η		-1.81885100	-1.81093400	-0.00592600
С		3.96646900	0.94810200	0.12072000
Η		4.05338100	1.44424800	-0.84779900
Η		3.79448800	1.68713700	0.90131200
Η		4.90873700	0.45209800	0.33365200
С		-3.10885200	-0.07159900	0.08384600
С		-3.00444200	0.04424100	1.61131200
Η		-2.13131000	0.62160900	1.92295100
Н		-3.88611500	0.54572000	2.01219700
Η		-2.94262100	-0.94049200	2.07870700
С		-3.20055900	1.31441200	-0.55650900
Η		-3.33541800	1.26365100	-1.63819000
Η		-4.01238800	1.90212200	-0.12492100
Η		-2.27353200	1.89821900	-0.36893800
С		-4.35962200	-0.88912400	-0.28776000
Η		-4.32271100	-1.88790800	0.15171300

H -5.25642900 -0.39537900 0.08742600 H -4.46403900 -0.99488900 -1.36926100

- [1] F. Ullah, G. Bajor, T. Veszprémi, P. G. Jones, W. Heinicke, Angew. Chem. 2007, 119, 2751; Angew. Chem. Int. Ed. 2007, 46, 2697.
- [2] G. Giodiano, R. H. Crabtree, Inorg. Synth. 1990, 28, 88.
- [3] J. Choudhury, S. Podder, S. Roy, J. Am. Chem. Soc. 2005, 127, 6162.
- [4] A. D. Becke, J. Chem. Phys. 1993, 98, 5648; C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrewski, S. Dapprich, A. D. Daniels, M. C. Strain, Ö. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzales and J. Pople, *Gaussian 03, Revision E.01*.
- [6] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.