Electronic Supporting Information

Angular dependence of the exchange interaction in fluoridebridged $\mathrm{Gd}^{\text {III }}-\mathrm{Cr}^{\text {III }}$ complexes

Saurabh Kumar Singh, ${ }^{b}$ Kasper S. Pedersen, ${ }^{a}$ Marc Sigrist, ${ }^{a c}$ Christian Aa. Thuesen, ${ }^{a}$ Magnus Schau-Magnussen, ${ }^{a}$ Hannu Mutka, ${ }^{c}$ Stergios Piligkos, ${ }^{,}$Høgni Weihe, ${ }^{a}$ Gopalan Rajaraman ${ }^{b}$ * and Jesper Bendix ${ }^{a *}$ *

Molecular connectivities

1: trans- $\left[\mathrm{CrF}_{2}(\mathrm{py})_{4}\right] \mathrm{Gd}(\mathrm{hfac})_{4}$

3: cyclo-\{mer- $\left.\left[\mathrm{CrF}_{3}(\mathrm{py})_{3}\right] \mathrm{Gd}(\mathrm{hfac})_{3}\right\}_{2}$

2: cyclo-\{cis- $\left.\left[\mathrm{CrF}_{2}(\text { phen })_{2}\right] \mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{4}\right\}_{2}$

4: $\left.\left\{f a c-\left[\mathrm{CrF}_{3}\left(\mathrm{Me}_{3} \text { tame }\right)\right]\right\}_{2} \mathrm{Gd}_{3}(\mathrm{hfac})_{6}\right\}_{2}$

Scheme S1. Molecular connectivities for complexes 1-4.

Electronic Supporting Information

Synthesis

$\left[\mathrm{Gd}(\mathrm{hfac})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and trans $-\left[\mathrm{CrF}_{2}(\mathrm{py})_{4}\right] \mathrm{NO}_{3}$ were synthesized as described in the literature. ${ }^{\mathrm{i} . \mathrm{ii}} \mathbf{1}$ was synthesized similarly to the isostructural Dy compound. ${ }^{\text {iii }}$ To a solution of trans-[$\left.\mathrm{CrF}_{2}(\mathrm{py})_{4}\right] \mathrm{NO}_{3}(1.2$ $\mathrm{g}, 2.6 \mathrm{mmol})$ in chloroform $(25 \mathrm{ml})$ was added a solution of one equivalent $\left[\mathrm{Gd}(\mathrm{hfac})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](2.1 \mathrm{~g}$, $2.6 \mathrm{mmol})$ in chloroform (40 ml). Red-violet, block-shaped crystals of $\left[\mathrm{Gd}(\mathrm{hfac})_{4^{-}}\right.$ $\left.\mathrm{CrF}_{2}(\mathrm{py})_{4}\right] \cdot 0.35 \mathrm{CHCl}_{3}$ (1) were filtered off after 1 day and washed with successive aliquots of chloroform. The samples were stored in closed vials in a freezer to suppress solvent loss. Yield: 1.7 g ; 46% (based on Cr$)$, Anal. calc. (found) for $\left(\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{CrGdF}_{26} \mathrm{~N}_{4} \mathrm{O}_{8}\right) \cdot 0.35\left(\mathrm{CHCl}_{3}\right)$: $\mathrm{C}: 33.8 \%(33.43 \%)$, H: 1.71% (1.45%), N: 3.91% (4.01%).

Crystallography

Single-crystal X-ray diffraction data were collected at 122 K using a Nonius Kappa CCD areadetector diffractometer with Mo Ka radiation ($\lambda=0.71073 \AA$) equipped with an Oxford Cryostreams low-temperature device. The structures were solved using direct methods (SHELXS97) and refined using the SHELXL97 software package. (G. M. Sheldrick, Acta Crystallogr. Sect. A 64 (2008) 112122.) All non-hydrogen atoms were refined anisotropically except for those of the co-crystallized CHCl_{3}, whereas hydrogen atoms were fixed. CCDC-921006 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Database via www.ccdc.cam.uk/data_request/cif.

Fig. S1. Thermal ellipsoid plot (50% probability level) of the asymmetric unit of $\mathbf{1}$. Colour code: Gd, turquoise; Cr, dark blue; Cl, light green; F, yellow; O, red; N, blue; C, grey. Hydrogen atoms have been omitted for clarity.

Electronic Supporting Information

Table S1. Crystallographic data for 1.

	1
Formula	$\left(\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{CrGdF}_{26} \mathrm{~N}_{4} \mathrm{O}_{8}\right) \cdot 0.35\left(\mathrm{CHCl}_{3}\right)$
$M_{\text {r }}$	1433.66
Color, shape	Pink, prism
crystal size/mm	$0.11 \times 0.08 \times 0.04$
Crystal system	triclinic
Space group	$P \overline{1}$
T/K	122
a / A	12.575(9)
b/Å	19.91 (3)
c/Å	21.36 (4) Å
$\alpha /{ }^{\circ}$	85.44 (13)
$\beta 1{ }^{\circ}$	81.52 (11)
$\gamma /{ }^{\circ}$	86.29 (10) ${ }^{\circ}$
V / \AA^{3}	5264(13)
Z	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.65
F_{000}	2793
$\mu($ Mo $K \alpha) / \mathrm{mm}^{-1}$	1.65
θ range $/{ }^{\circ}$	2.0-25.2
collected reflns	150717
unique reflns	18466
params/restraints	1458/3
reflns ($I>2 \sigma(I)$)	11906
GoF	1.02
$R 1^{a}(I>2.00 \sigma(I))$	0.089
$R 1^{a}$ (all data)	0.1471
$w R 2^{b}$ (all data)	0.239
$\max / \min \Delta \rho_{\mathrm{r}} / \mathrm{e} \AA^{-3}$	4.35 /-3.14

Electronic Supporting Information

Magnetic measurements

All magnetic measurements were performed on a Quantum Design MPMS-XL equipped with a 5 T dc magnet. The susceptibility was approximated as $\chi=M / H_{\mathrm{dc}}$ where $H_{\mathrm{dc}}=1000 \mathrm{Oe}$. Magnetization measurements were performed with fields from 1 to 5 T and at selected temperatures. All data were corrected for diamagnetic contributions from the sample (by means of Pascal constants) and from the sample holder and crystallite-immobilizing 1-octadecene oil.

Fig. S2. Magnetization data and best-fit for $\mathbf{1}$ as described in the main text.

Inelastic neutron scattering

INS experiments on $\mathbf{1}$ were performed at the direct geometry time-of-flight spectrometer IN5 located at Institut Laue-Langevin (Grenoble, France). The time-of-flight to energy conversion and data reduction were performed using the LAMP package ${ }^{\text {iv }}$. Around 2 g of non-deuterated $\mathbf{1}$ was loaded in a double-wall aluminum can and placed in a standard ILL orange cryostat. The intensity was summed over the complete Q range. INS spectra were simulated with the "ins" program developed by Dr. Høgni Weihe (University of Copenhagen).

Electronic Supporting Information

Fig. S3. INS spectrum of 1 obtained with $\lambda_{\mathrm{i}}=4.8 \AA$ and $T=1.5 \mathrm{~K}$. The calculated spectrum utilized J

$$
=0.87 \mathrm{~cm}^{-1} \text { and } D_{\mathrm{Cr}}=0.50 \mathrm{~cm}^{-1} .
$$

Fig. S4. Black lines: Calculated energy levels with $J=0.87 \mathrm{~cm}^{-1}$ and $D_{\mathrm{Cr}}=0.50 \mathrm{~cm}^{-1}$. Grey lines: $J=$ $0.87 \mathrm{~cm}^{-1}$ and $D_{\mathrm{Cr}}=0$.

Electronic Supporting Information

Fig. S5. Calculated INS spectra with and without inclusion of the zero-field splitting terms for $\mathrm{Cr}^{\text {III }}$ and $\mathrm{Gd}^{\text {III }}$. In both cases is $J=0.87 \mathrm{~cm}^{-1}$.

Computational Details

The spin Hamiltonian which is used for to estimate the magnetic interaction between $\mathrm{Cr}^{\text {III }}$ and $\mathrm{Gd}^{\text {III }}$ ions is described here,

$$
\hat{H}=J \cdot S_{G d} \cdot S_{C r}
$$

Here J is the isotropic exchange coupling constant and S_{Gd} and S_{Cr} are the spins on $\mathrm{Gd}^{\text {III }}(\mathrm{S}=7 / 2)$ and $\mathrm{Cr}^{\text {III }}$ ($\mathrm{S}=3 / 2$) atoms respectively. The DFT calculations combined with Broken Symmetry (BS) approach ${ }^{v}$ has been employed to compute the J values. The BS method has a proven record of yielding good numerical estimates of J constants for a variety of complexes. ${ }^{\text {vivii }}$ A detailed technical discussion on computational details on the evaluation of J values using broken symmetry approach on dinuclear as well polynuclear complexes can be found elsewhere. ${ }^{\text {viii }}$ We have performed most of calculations using the Gaussian 09 suite of programs. ${ }^{\text {ix }}$ We have employed a hybrid B3LYP functional ${ }^{\mathrm{X}}$ along with a double-zeta quality basis set employing Cundari-Stevens (CS) relativistic effective core potential on Gd atom ${ }^{\mathrm{xi}}$ and TZV basis set on $\mathrm{Cr}^{\mathrm{xii}}$ and the rest of the atoms. A comprehensive method assessment performed earlier on $\{\mathrm{Cu}-\mathrm{Gd}\}$ complexes by us, reveal that this combination yield good estimate of the J constants. A very tight SCF ($1 \times 10^{-8} \mathrm{Eh}$) convergence has been employed throughout. All magneto-structural calculations have been performed by varying the specific structural parameters and performing single point calculations on the modified structure.

Electronic Supporting Information

Table S2. DFT computed energies of high spin (HS) and broken symmetry (BS) state, $\left\langle\mathrm{S}^{2}\right\rangle$ values for the parent dinuclear $\{\mathrm{Cr}-\mathrm{Gd}\}$ complex.

Complex	Total Energy		$\left\langle S^{2}\right\rangle$ values		J values $/ \mathrm{cm}^{-1}$
	HS	BS	HS	BS	
$\mathbf{1}$	-6112.56625531	-6112.56630034	30.0279	9.0280	0.82

Table S3. DFT computed spin densities on $\mathbf{1}$ in HS and the BS states. Atom numbers refer to the numbering provided in the picture of $\mathbf{1}$ below:

1	Gd	7.028167		1	Gd
2.027730					
2	Cr	3.090067		2	Cr
	-3.092583				
3	F	0.016876		3	F
4	-0.017468				
4	F	0.033375		4 F	-0.033694

Electronic Supporting Information

5	F	0.000008	5 F	0.000007
6	O	-0.003007	6 O	-0.002844
7	F	-0.000007	7 F	-0.000007
8	F	-0.000029	8 F	-0.000026
9	F	-0.000041	9 F	-0.000039
10	O	-0.001783	10 O	-0.001848
11	F	0.000054	11 F	0.000017
12	F	0.000006	12 F	0.000006
13	F	-0.000014	13 F	-0.000017
14	F	0.000043	14 F	0.000008
15	F	-0.000042	15 F	-0.000048
16	O	-0.002811	16 O	-0.002713
17	N	-0.068182	17 N	0.068004
18	O	-0.002751	18 O	-0.002649
19	F	0.000007	19 F	0.000007
20	N	-0.069340	20 N	0.069222
21	F	-0.000034	21 F	-0.000038
22	N	-0.069563	22 N	0.069421
23	O	-0.002394	23 O	-0.002205
24	F	0.000050	24 F	0.000010
25	F	0.000049	25 F	0.000011
26	O	-0.001977	26 O	-0.002057
27	F	0.000001	27 F	-0.000002
28	F	0.000010	28 F	0.000007
29	F	-0.000037	29 F	-0.000042
30	O	-0.002010	30 O	-0.002100
31	O	-0.001968	31 O	-0.002067
32	N	-0.073187	32 N	0.073028
33	F	0.000000	33 F	-0.000001
34	F	-0.000028	34 F	-0.000029
35	F	-0.000009	35 F	-0.000007
36	C	0.021627	36 C	-0.021663
37	H	-0.000787	37 H	0.000778
38	C	0.020477	38 C	-0.020440
39	H	-0.000996	39 H	0.000894
40	F	0.000028	40 F	0.000028
41	C	0.022747	41 C	-0.022799
42	H	0.000171	42 H	-0.000212
43	C	0.000395	43 C	0.000379
44	H	0.000013	44 H	0.000008
45	C	-0.000494	45 C	-0.000493
46	C	-0.000492	46 C	-0.000494
47	C	0.000294	47 C	0.000351
48	H	0.000013	48 H	0.000005
49	C	-0.013858	49 C	0.013910
50	H	0.000452	50 H	-0.000460

Electronic Supporting Information

	C 0.000207	51 C	C 0.000192
	H 0.000019	52 H	H 0.000014
	C 0.017994	53 C	C -0.018011
	H -0.000854	54 H	H 0.000853
	C -0.000768	55 C	C -0.000822
	C -0.000577		C -0.000540
	C 0.019113	57 C	C -0.019017
	H -0.000145		H -0.000009
	C -0.011768	59 C	C 0.011805
	H 0.000361	60 H	H -0.000367
	C 0.019619		C -0.019658
	H -0.000837	62 H	H 0.000830
63	C 0.000388	63 C	C 0.000341
	H 0.000016	64 H	H 0.000013
	C -0.000437	65 C	C -0.000433
66	C -0.001110		C -0.001206
	F -0.000035	67 F	F -0.000045
	C -0.000993	68 C	C -0.001046
	C -0.001028	69 C	C -0.001062
	C -0.012484	70 C	C 0.012499
	H 0.000364	71 H	H -0.000368
	C -0.011089	72 C	C 0.011109
	H 0.000464	73 H	H -0.000465
	C 0.021109	74 C	C -0.020984
	H -0.000468	75 H	H 0.000293
76	C -0.000052	76 C	C -0.000051
	C -0.000031	77 C	C -0.000035
	C -0.012018	78 C	C 0.012040
	H 0.000530	79 H	H -0.000530
	C 0.019019	80 C	C -0.019057
	H -0.000981	81 H	H 0.000972
	C -0.000459	82 C	C -0.000514
	C -0.000526	83 C	C -0.000494
	C -0.010251	84 C	C 0.010273
	H 0.000452	85 H	H -0.000453
86	C -0.011157	86 C	C 0.011178
	H 0.000452	87 H	H -0.000452
	C -0.000154	88 C	C -0.000151
	F -0.000031	89 F	F -0.000033
	C 0.018064	90 C	C -0.018078
	H -0.000867	91 H	H 0.000867
92	C -0.011922		C 0.011973
	H 0.000365	93 H	H -0.000371
94	C -0.000287	94 C	C -0.000297
95	C -0.000420	95 C	C -0.000420
	C 0.017208	96	-0.017227

Electronic Supporting Information

97 H	-0.000863		97 H	0.000862
98	C	0.018954		98 C
9.0 .018994				
99 H	-0.000831		99 H	0.000822
100 C	0.021099		100 C	-0.021117
101 H	-0.001016		101 H	0.001015
102 C	-0.000453	102 C	-0.000454	
103 F	-0.000004	103 F	-0.000002	
104 F	0.000027		104 F	0.000026

Electronic Supporting Information

Table S4. DFT computed spin densities on metal ions and bridged fluoride ions at several different bond angles.

Spin densities				
Bond Angle	Gd	Cr	F-bridging	F-Terminal
180	7.028	3.090	0.016	0.033
170	7.028	3.090	0.016	0.033
160	7.028	3.093	0.015	0.033
150	7.029	3.095	0.014	0.033
140	7.031	3.096	0.012	0.034
135	7.031	3.099	0.011	0.034

Table S5. Computed Overlap Integral for $\mathrm{Cr}-\mathrm{Gd}$ pairs at higher and lower angle.

Bond Angle-178.3		$J=0.82 \mathrm{~cm}^{-1}$		Bond Angle-135		$J=-0.12 \mathrm{~cm}^{-1}$	
Gd- forbitals	$\mathrm{Cr}\left(\mathrm{d}_{\mathrm{xz}}\right)$	$\mathrm{Cr}\left(\mathrm{d}_{\mathrm{yz}}\right)$	$\mathrm{Cr}\left(\mathrm{d}_{\mathrm{xy}}\right)$	Gd- forbitals	$\mathrm{Cr}\left(\mathrm{d}_{\mathrm{xz}}\right)$	$\mathrm{Cr}\left(\mathrm{d}_{\mathrm{yz}}\right)$	$\mathrm{Cr}\left(\mathrm{d}_{\mathrm{xy}}\right)$
	331	332	333		329	330	331
387	0.003	0.006	0.001	378	-0.003	0.001	-0.001
391	0.006	0.003	0.002	381	-0.003	0.001	-0.002
393	0.006	0.000	0.001	382	0.004	-0.001	0.003
395	-0.002	0.006	0.001	385	0.003	0.006	0.002
397	0.001	-0.007	-0.005	386	0.001	0.006	0.005
398	0.008	-0.005	0.003	387	0.004	-0.003	0.001
399	-0.005	0.004	0.002	392	-0.004	0.006	-0.003

Electronic Supporting Information

Figure S6. The four representative d-f-orbitals (a spin on left $\left(\mathrm{Cr}^{\mathrm{III}}\right)$ and b on right $\left(\mathrm{Gd}^{\mathrm{III}}\right)$), which show the strongest overlap at angles close to 180 . The isodensity surface represented corresponds to a value of $0.03 \mathrm{e}^{-} / \mathrm{bohr}^{3}$.

Electronic Supporting Information

331 Cr-393 Gd

332 Cr-397 Gd

Electronic Supporting Information

Table S6. Computed NBO occupation for the $\{\mathrm{CrGd}\}$ pair at minimum and maximum bond angles.

Orbitals	Angle 135	Angle 180
6 s	0.20	0.20
4 f	7.01	7.01
5 d	0.38	0.35

References

${ }^{i}$ J. Glerup, J. Josephsen, K. Michelsen, E. Pedersen and C. E. Schäffer, Acta. Chem. Scand., 1970, 24, 247
${ }^{\text {ii }}$ M. F. Richardson, W. F. Wagner and D. E. J. Sands, Inorg. Nucl. Chem., 1968, 30, 1275.
${ }^{\text {iii }}$ J. Dreiser, K. S. Pedersen, C. Piamonteze, S. Rusponi, Z. Salman, Md. E. Ali, M. Schau-
Magnussen, C. Aa. Thuesen, S. Piligkos, H. Weihe, H. Mutka, O. Waldmann, P. Oppeneer, J. Bendix, F. Nolting, H. Brune, Chem. Sci., 2012, 3, 1024-1032.
${ }^{\text {iv }}$ D. Richard, M. Ferrand and G. J. Kearley, J. Neutron Res., 1996, 4, 33-39.
${ }^{\text {v. }}$ L. Noodleman, J. Chem. Phys., 1981, 74, 5737.
${ }^{\text {vi. }}$ E. Ruiz, S. Alvarez, A. Rodriguez-Fortea, P. Alemany, Y. Pouillon and C. Massobrio, in "Magnetism: Molecules to Materials", Vol. II ed J. S. Miller, M. Drillon, Wiley-VCH, Weinheim, 2001, pp-227
vii. A. Bencini and F. Totti, Int. J. Quan. Chem., 2005, 6, 819.
${ }^{\text {viii. }}$ E. Ruiz, S. Alvarez, J. Cano and P. Alemany, J. Comput. Chem., 1999, 20, 1391; E. Ruiz, A. R. Fortea, J. Cano, S. Alvarez and P. Alemany, J. Comput, Chem., 2003, 24, 982; E. Ruiz, J. Cano, S. Alvarez, A. Caneschi and D. Gatteschi, J. Am. Chem. Soc., 2003, 152, 6791; G. Rajaraman, J. Cano, E. K. Brechin and E. J. L. McInnes, Chem. Comm., 2004, 1476; P. Christian, G. Rajaraman, A. Harrison, M. Helliwell, J. J. W. McDouall, J. Raftery and R. E. P. Winpenny, Dalton Trans., 2004, 2550.

Electronic Supporting Information

[^0]
[^0]: ${ }^{\text {ix }}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09 (Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.
 ${ }^{x}$ T. R. Cundari and W. J. Stevens, J. Chem. Phys., 1993, 98, 5555.
 ${ }^{x i}$ A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
 ${ }^{\text {xii }}$ A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.

