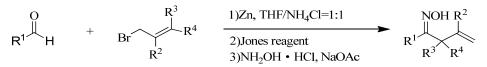
Supporting Information

Copper-Catalyzed Synthesis of Trifluoromethyl-Substituted

Isoxazolines

Yu-Tao He, Lian-Hua Li, Yan-Fang Yang, Yu-Qi Wang, Jian-Yi Luo, Xue-Yuan Liu, and Yong-Min Liang* State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000, P.R. China. E-mail: liangym@lzu.edu.cn

Table of Contents

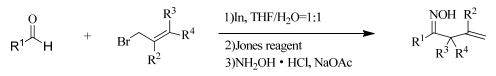

1	General remarks	S2
2	General procedure for the synthesis of ketoximes	S2
3	Characterization data	S3- S4
4	Table S1. Optimization of the reaction conditions	S4- S5
5	General experimental procedure	S6
6	Characterization data of 3a-3q, and 3s	S6-S11
7	References	S12
8	Crystallographic data of 3a	S13
9	¹ H NMR and ¹³ C NMR spectra for substrates 1d, 1g, 1h, 1l, 1m	S14-S23
10	¹ H NMR, ¹³ C NMR, ¹⁹ F NMR spectra and 1D-NOESY for products	S24-S82
	3a-3q, and 3s	

1. General remarks

Column chromatography was carried out on silica gel and analytical TLC was performed with silica gel GF254 plates. NMR spectra were recorded in CDCl₃ at 400 MHz (¹H NMR), 100 MHz (¹³C NMR) and 376 MHz (¹⁹F NMR). IR spectra were recorded on a FT-IR spectrometer and only major peaks are reported in cm⁻¹. Data collections for crystal structure were performed at room temperature (293 K) using MoKa radiation on a Bruker APEXII diffractometer. All trifluoromethylation products were further characterized by high resolution mass spectra (HRMS); copies of their ¹H NMR and ¹³C NMR spectra are provided. DMF were dried by MgSO₄ and distilled under reduced pressure before used.

2. General procedure for the synthesis of ketoximes

Procedure for the synthesis of ketoxime 1a-1h, 1j-1n:



1) Aldehyde (1.0 equiv) was dissolved in anhydrous THF. A sample was taken out for analysis and allylbromide (2.0 equiv) was added. Another sample was taken out for analysis and saturated aqueous NH₄Cl was added. Portions of activated zinc dust (2.0 equiv) were added slowly on at 0°C and the resulting suspension was stirred overnight at this temperature. The THF layer was separated from the aqueous layer, which was extracted with diethyl ether for 3 times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was directly used in the next step without further purification.^[1]

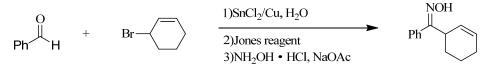
2) A solution of the homoallylic alcohol (1.0 equiv) in diethyl ether was stirred at 0° C while Jones reagent (2.0-4.0 equiv) was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for 1 h. The diethyl ether layer was then separated from the aqueous layer, which was extracted with diethyl ether for 3 times. The combined diethyl ether layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was directly used in the next step withoutfurther purification.^[2]

3) To a solution of hydroxylamine hydrochloride (5.0 equiv) in water was added a solution of sodium acetate (7.0 equiv) in ethanol. The mixture was stirred at room temperature while the β , γ -unsaturated ketone (1.0 equiv) was added as a solution in ethanol. The mixture was stirred overnight and concentrated in *vacuo*. Then, the mixture was extracted with ethyl acetate 3 times and the combined extracts were washed with water and brine, dried (Mg₂SO₄), filtered, and concentrated in *vacuo*. The crude material was purified by flash chromatography on silica gel to afford the β , γ -unsaturated oxime.^[2]

Procedure for the synthesis of ketoxime 1i, and 10-1q:

1)A round bottomed flask charged with a solution of the 3-bromo-2-methylprop-1ene (1.1 equiv) or its analogue and indium (1.1 equiv) in THF/H₂O (1:1) was kept at room temperature with stirring. The aldehyde (1.0 equiv) was added to the solution and the resulting suspension was stirred for 10-24 h. Saturated ammonium chloride or 1 N hydrochloride solution was added at 0°C. The THF layer was separated from the aqueous layer, which was extracted with diethyl ether for 3 times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was directly used in the next step without further purification.^[3]

Steps 2) and 3) are same as above-mentioned.


Procedure for the synthesis of ketoxime 1r:

$$\frac{1}{t^{BuOK}, t^{BuOH}} + \frac{1}{2}NH_2OH \cdot HCl, NaOAc$$

1)A mixture of isobutyrophenone (1.0 equiv), allyl bromide (1.1 equiv) and potassium *t*-butoxide (1.1 equiv) in *t*-butyl alcohol was heated at reflux for 2.5 h under a nitrogen atmosphere. Afterwards *t*-butanol was removed by distillation and the crude mixture was extracted with ethyl acetate 3 times and the combined extracts were washed with water and brine, dried (Mg₂SO₄), filtered, and concentrated in *vacuo*. The crude material was purified by flash chromatography on silica gel to afford the ketoxime **1s**.^[5]

Steps 2) is the same as above-mentioned.

Procedure for the synthesis of ketoxime 1s:

1)Cyclohex-2-en-1-yl(phenyl)methanol were prepared through the reaction $SnCl_2 \cdot H_2O$, copper powder, benzaldehyde and primary 3-bromocyclohex-1-ene in water at the room temperature according to the literature procedure.^[6] Steps 2) and 3) are same as above-mentioned.

3. Characterization data

1-(*m*-tolyl)but-3-en-1-one oxime 1d

NOH

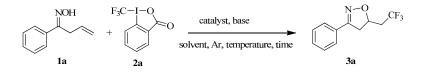
Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ ppm 9.96(s, 1H), 7.44-7.41 (m, 2H), 7.27-7.14 (m, 2H), 5.97-5.90 (m, 1H), 5.19-5.08 (m, 2H), 3.58 (d, *J* = 5.6 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 156.9, 138.1, 135.5, 132.1, 130.0, 128.4, 127.0, 123.5, 117.0, 31.2, 21.4.

1-(3-chlorophenyl)but-3-en-1-one oxime 1g

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ ppm 9.16 (d, *J* = 19.6 Hz, 1H), 7.62-7.61 (m, 1H), 7.52-7.49 (m, 1H), 7.36-7.25 (m, 2H), 5.97-5.87 (m, 1H), 5.19-5.11 (m, 2H), 3.58-3.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.9, 137.3, 134.6, 131.6, 129.8, 129.3, 126.5, 124.5, 117.4, 30.9.

1-(2-fluorophenyl)but-3-en-1-one oxime 1h

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ ppm 10.24 (s, 1H), 7.45-7.41 (m, 1H), 7.35-7.30 (m, 1H), 7.22-7.05 (m, 2H), 5.88-5.78 (m, 1H), 5.14-5.03 (m, 2H), 3.57 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.2 (d, J = 249.0 Hz), 154.9 (d, J = 2.0 Hz), 131.5, 130.7 (d, J = 8.0 Hz), 129.9 (d, J = 3.0 Hz), 124.2 (d, J = 4.0 Hz), 123.9 (d, J = 12.0 Hz), 117.6, 116.2 (d, J = 22.0 Hz), 32.8 (d, J = 3.0 Hz).

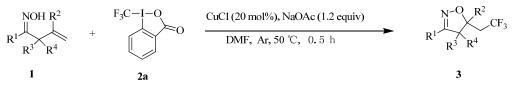

1-(furan-2-yl)but-3-en-1-one oxime 11

Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ ppm 9.50 (s, 1H), 7.48-7.46(m, 2H), 6.55-6.54 (m, 1H), 6.04-5.97 (m, 1H), 5.23-5.11 (m, 2H), 3.45 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 146.0, 145.3, 142.6, 133.6, 118.4, 117.4, 112.1, 35.8.

1-(thiophen-2-yl)but-3-en-1-one oxime 1m

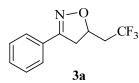
Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ ppm 9.25 (s, 1H), 7.28 (d, *J* = 4.4 Hz 2H), 7.02 (t, *J* = 4.4 Hz 1H), 5.99-5.92 (m, 1H), 5.24-5.11 (m, 2H), 3.60 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm 152.7, 139.1, 131.7, 127.2, 126.9, 126.8, 117.4, 31.3.

4. Table S1. Optimization of the reaction conditions^{*a*}

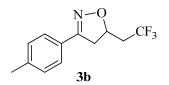

-

Entry	Catalyst (mol %)	Base (equiv)	Temperature (°C)	Time (h)	Solvent	Yield $(\%)^b$
1	CuCl (20)	KF (1.2)	50	0.5	DMF	65
2^c	CuCl (20)	KF (1.2)	50	0.5	DMF	0
3^d	CuCl (20)	KF (1.2)	50	0.5	DMF	0
4^e	—	KF (1.2)	50	0.5	DMF	0
5	Cu(OTf) ₂ (20)	KF (1.2)	50	0.5	DMF	18
6	$Cu(OAc)_2$ (20)	KF (1.2)	50	0.5	DMF	40
7	$[Cu(OTf)_2] \cdot C_6 H_6 (20)$	KF (1.2)	50	0.5	DMF	10
8	CuCl ₂ (20)	KF (1.2)	50	0.5	DMF	59
9	Cu(CH ₃ CN) ₄ F ₆	KF (1.2)	50	0.5	DMF	18
10	CuI (20)	KF (1.2)	50	0.5	DMF	62
11	CuBr (20)	KF (1.2)	50	0.5	DMF	61
12	CuCl (20)	K ₃ PO ₄ (1.2)	50	0.5	DMF	73
13	CuCl (20)	$K_2CO_3(1.2)$	50	0.5	DMF	70
14	CuCl (20)	Cs_2CO_3 (1.2)	50	0.5	DMF	59
15	CuCl (20)	t-BuOK (1.2)	50	0.5	DMF	59
16	CuCl (20)	Et ₃ N (1.2)	50	0.5	DMF	69
17	CuCl (20)	NaOAc (1.2)	50	0.5	DMF	79
18	CuCl (10)	NaOAc (1.2)	50	0.5	DMF	66
19	CuCl (50)	NaOAc (1.2)	50	0.5	DMF	77
20	CuCl (100)	NaOAc (1.2)	50	0.5	DMF	77
21	CuCl (20)	NaOAc (1.0)	50	0.5	DMF	75
22	CuCl (20)	NaOAc (1.5)	50	0.5	DMF	79
23	CuCl (20)	NaOAc (2.0)	50	0.5	DMF	78
24	CuCl (20)	NaOAc (3.0)	50	0.5	DMF	76
25	CuCl (20)	NaOAc (1.2)	50	1.0	DMF	77
26	CuCl (20)	NaOAc (1.2)	50	2.0	DMF	78
27	CuCl (20)	NaOAc (1.2)	50	5.0	DMF	78
28	CuCl (20)	NaOAc (1.2)	40	0.5	DMF	74
29	CuCl (20)	NaOAc (1.2)	60	0.5	DMF	78
30	CuCl (20)	NaOAc (1.2)	80	0.5	DMF	79
31	CuCl (20)	NaOAc (1.2)	50	0.5	CH ₃ CN	42
32	CuCl (20)	NaOAc (1.2)	50	0.5	THF	30
33	CuCl (20)	NaOAc (1.2)	50	0.5	NMP	70
34	CuCl (20)	NaOAc (1.2)	50	0.5	DMSO	69
35	CuCl (20)	NaOAc (1.2)	50	0.5	DMAC	67
36	CuCl (20)	NaOAc (1.2)	50	0.5	toluene	trace
37	CuCl (20)	NaOAc (1.2)	50	0.5	1,4-dioxane	20

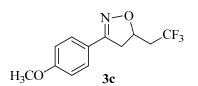
^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), copper catalyst, base, solvent (3 mL), temperature , time, under argon. ^{*b*} Isolated yield. ^{*c*} TMSCF₃ was used. ^{*d*} Umemoto reagent **2b** was used. ^{*e*} Without CuCl.


2ь CF_3

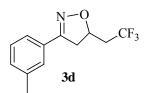
5. General experimental procedure



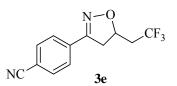
DMF (3 mL) was added to ketoxime **1** (0.2 mmol, 1.0 equiv), *Togni*-reagent **2a** (0.3 mmol, 1.5 equiv), NaOAc (0.24 mmol, 1.2 equiv) and CuCl (0.04mmol, 0.2 equiv) under Argon. The mixture was stirred for 0.5 hours at 50 °C and extracted with ethyl acetate. The combined organic layers were washed with saturated brine, dried over Na₂SO₄, concentrated in *vacuo* and purified by flash column chromatography (silica gel) to afford the product **3**.


6. Characterization data of 3a-3q, and 3s

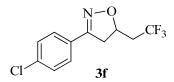
3-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3a: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.68-7.66 (m, 2H), 7.43-7.39 (m, 3H), 5.01-4.97 (m, 1H), 3.60-3.53 (m, 1H), 3.20-3.14 (m, 1H), 2.77-2.69 (m, 1H), 2.48-2.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 156.6, 130.4, 128.9, 128.8, 126.7, 125.2 (q, *J* = 275.0 Hz, CF₃), 74.7 (d, *J* = 3.0 Hz), 40.4, 39.1 (q, *J* = 27.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.82 (s, 3F). IR (neat, cm⁻¹): 3395, 2923, 2361, 1384, 1076, 767, 672. HRMS (ESI) Calcd for C₁₁H₁₀F₃NO: M+H = 230.0787. Found: 230.0784.



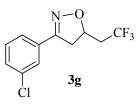
3-(p-tolyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3b: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.56 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 5.00-4.92 (m, 1H), 3.57-3.50 (m, 1H), 3.17-3.10 (m, 1H), 2.75-2.67 (m, 1H), 2.47-2.39 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 156.5, 140.7, 129.4, 126.6, 126.0, 125.3 (q, *J* = 275.0 Hz, CF₃), 74.6 (d, *J* = 3.0 Hz), 40.5, 39.3 (q, *J* = 28.0 Hz, CH₂CF₃), 21.4 . ¹⁹F NMR (376 MHz, CDCl₃): δ -63.85 (s, 3F). IR (neat, cm⁻¹): 3437, 2931, 2360, 1407, 1279, 1150, 823, 661. HRMS (ESI) Calcd for C₁₂H₁₂F₃NO: M+H = 244.0944. Found: 244.0947.



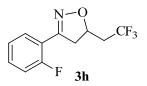
3-(4-methoxyphenyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3c: Solid, ¹H


NMR (400 MHz, CDCl₃) δ ppm 7.60 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 4.99-4.91 (m, 1H), 3.84 (s, 3H), 3.56-3.50 (m, 1H), 3.16-3.10 (m, 1H), 2.75-2.67 (m, 1H), 2.47-2.39 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.3, 156.1, 128.3, 128.1, 125.3 (q, J = 275.0 Hz, CF₃), 114.2, 74.5, 55.3, 40.6, 39.1 (q, J = 27.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.84 (s, 3F). IR (neat, cm⁻¹): 3438, 2924, 1516, 1256, 1118, 1040, 838, 658 . HRMS (ESI) Calcd for C₁₂H₁₂F₃NO₂: M+H = 260.0893. Found: 260.0890.

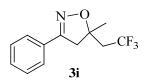
3-(m-tolyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3d: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.50-7.43 (m, 2H), 7.32-7.23 (m, 2H), 5.00-4.92 (m, 1H), 3.57-3.50 (m, 1H), 3.17-3.11 (m, 1H), 2.75-2.67 (m, 1H), 2.46-2.38 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 156.7, 138.5, 131.2, 128.8, 128.7, 127.3, 125.3 (q, *J* = 275.0 Hz, CF₃), 123.9, 74.7 (d, *J* = 3.0 Hz), 40.5, 39.1 (q, *J* = 28.0 Hz, CH₂CF₃), 21.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.83 (s, 3F). IR (neat, cm⁻¹): 3396, 2924, 2361, 1385, 1255, 1113, 912, 792. HRMS (ESI) Calcd for C₁₂H₁₂F₃NO: M+H = 244.0944. Found: 244.0941.



4-(5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazol-3-yl)benzonitrile 3e: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78-7.70 (m, 2H), 5.10-5.02 (m, 1H), 3.61-3.54 (m, 1H), 3.20-3.14 (m, 1H), 2.79-2.71 (m, 1H), 2.52-2.44 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.3, 133.2, 132.5, 127.1, 125.0 (q, J = 275.0 Hz, CF₃), 118.1, 113.7, 75.7 (d, J = 3.0 Hz), 39.7, 39.0 (q, J = 28.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.81 (s, 3F). IR (neat, cm⁻¹): 3439, 2922, 2361, 1388, 1253, 1114, 915, 837. HRMS (ESI) Calcd for C₁₂H₉F₃N₂O: M+H = 255.0740. Found: 255.0743.



3-(4-chlorophenyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3f: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.60 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 5.04-4.96 (m, 1H), 3.57-3.51 (m, 1H), 3.17-3.11 (m, 1H), 2.77-2.67 (m, 1H), 2.52-2.41 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 155.7, 136.5, 129.1, 127.9, 127.4, 125.2 (q, J = 275.0 Hz, CF₃), 75.07, 40.3, 39.0 (q, J = 28.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.84 (s, 3F). IR (neat, cm⁻¹): 3437, 2950, 1403, 1247,


1156, 1077, 819, 654. HRMS (ESI) Calcd for $C_{11}H_9ClF_3NO$: M+H = 264.0398. Found: 264.0402.

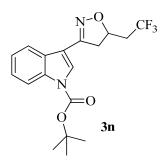
3-(3-chlorophenyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3g: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.64 (s, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.41-7.33 (m, 2H), 5.05-4.97 (m, 1H), 3.57-3.50 (m, 1H), 3.17-3.10 (m, 1H), 2.77-2.66 (m, 1H), 2.49-2.41 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 125.5, 134.8, 130.7, 130.4, 130.1, 126.7, 125.2 (q, *J* =275.0 Hz, CF₃), 124.8, 75.1 (d, *J* = 3.0 Hz), 40.1, 39.0 (q, *J* = 28.0 Hz, CH₂CF₃). IR (neat, cm⁻¹): 2921, 1774, 1490, 1383, 1283, 1067. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.83 (s, 3F). IR (neat, cm⁻¹): 3439, 2927, 1562, 1431, 1255, 1150, 915, 787. HRMS (ESI) Calcd for C₁₁H₉ClF₃NO: M+H = 264.0398. Found: 264.0401.

3-(2-fluorophenyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3h: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.85 (d, J = 7.6 Hz, 1H), 7.42-7.39 (m, 1H), 7.21-7.10 (m, 2H), 5.03-4.95 (m, 1H), 3.69-3.61 (m, 1H), 3.28-3.72 (m, 1H) , 2.75-2.66 (m, 1H), 2.49-2.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.3 (d, J = 251.0 Hz,) 153.4 (d, J = 3.0 Hz, CF), 132.1 (d, J = 9.0 Hz), 129.0, 125.2 (q, J = 275.0 Hz, CF₃), 124.6 (d, J = 3.0 Hz), 117.1 (d, J = 9.0 Hz), 116.4 (d, J = 22.0 Hz), 75.0 (t, J = 3.0 Hz), 42.1 (d, J = 7.0 Hz), 39.2 (q, J = 28.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.89 (s, 3F). IR (neat, cm⁻¹): 3419, 2924, 1594, 1455, 1254, 1114, 824, 762. HRMS (APCI) Calcd for C₁₁H₉F₄NO: M+H = 248.0693. Found: 248.0697.

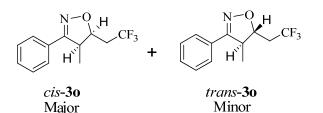
5-methyl-3-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3i: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.65 (t, J = 3.6 Hz, 2H), 7.40 (d, J = 3.6 Hz, 3H), 3.39 (d, J = 16.8 Hz, 1H), 3.18-3.10 (m, 1H), 2.68-2.57 (m, 2H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 156.5, 130.2, 128.7, 128.6, 126.5, 125.2 (q, J = 276.0 Hz, CF₃), 83.2 (d, J = 2.0 Hz), 45.6, 42.8 (q, J = 27.0 Hz, CH₂CF₃), 25.5 (d, J = 1.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -61.33 (s, 3F). IR (neat, cm⁻¹): 3396, 2925, 1597, 1365, 1259, 1157, 918, 759. HRMS (ESI) Calcd for C₁₂H₁₂F₃NO: M+H = 244.0944.

Found: 244.0941.

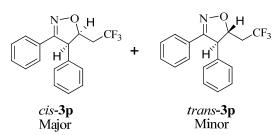
3-benzyl-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3j: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.35-7.22 (m, 5H), 4.80-4.72 (m, 1H), 3.69 (s, 2H), 3.04-2.98 (m, 1H), 2.63-2.51 (m, 2H), 2.32-2.22 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.0, 135.2, 128.9, 128.7, 127.2, 125.2 (q, *J* = 275.0 Hz, CF₃), 74.0, 41.7, 38.9 (q, *J* = 28.0 Hz, CH₂CF₃), 33.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.98 (s, 3F). IR (neat, cm⁻¹): 3438, 2920, 1388, 1254, 1143, 855, 702. HRMS (ESI) Calcd for C₁₂H₁₂F₃NO: M+H = 244.0944. Found: 244.0941.

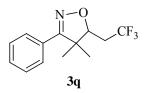

$$\sim 10^{10} \text{CF}_3$$

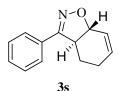
3-(tert-butyl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3k: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 4.81-4.74 (m, 1H), 3.19-3.12 (m, 1H), 2.79-2.73 (m, 1H), 2.66-2.55 (m, 1H), 2.38-2.27 (m, 1H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.1, 125.3 (q, *J* = 275.0 Hz, CF₃), 74.0 (d, *J* = 3.0 Hz), 39.74, 38.8 (q, *J* = 27.0 Hz, CH₂CF₃), 33.0, 28.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.86 (s, 3F). IR (neat, cm⁻¹): 3439, 2920, 1624, 1384, 1067, 772, 548. HRMS (ESI) Calcd for C₉H₁₄F₃NO: M+H = 210.1100. Found: 210.1096.


3-(furan-2-yl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 31: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (s, 1H), 6.76 (d, J = 3.2 Hz, 1H), 6.52 (s, 1H), 4.99-4.92 (m, 1H), 3.56-3.50 (m, 1H), 3.17-3.11 (m, 1H), 2.76-2.67 (m, 1H), 2.47-2.39 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 148.8, 144.7, 144.2, 125.1 (q, J = 275.0 Hz, CF₃), 112.3, 111.8, 74.6, 40.3, 38.9 (q, J = 28.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.87 (s, 3F). IR (neat, cm⁻¹): 3389, 2923, 1695, 1384, 1252, 1043, 763, 586. HRMS (APCI) Calcd for C₉H₈F₃NO₂: M+H = 220.0580. Found: 220.0586.

3-(thiophen-2-yl)-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3m: Solid, ¹H


NMR (400 MHz, CDCl₃) δ ppm 7.42 (d, J = 4.8 Hz, 1H), 7.22 (d, J = 3.2 Hz, 1H), 7.09-7.06 (m, 1H), 5.01-4.94 (m, 1H), 3.60-3.53 (m, 1H), 3.20-3.14 (m, 1H), 2.76-2.68 (m, 1H), 2.48-2.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 152.3, 131.3, 128.8, 128.7, 127.3, 125.2 (q, J = 275.0 Hz, CF₃), 75.0 (d, J = 3.0 Hz), 41.2, 38.9 (q, J = 28.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -63.83 (s, 3F). IR (neat, cm⁻¹): 3438, 2921, 2361, 1434, 1258, 1121, 810, 719. HRMS (ESI) Calcd for C₉H₈F₃NOS: M+H = 236.0351. Found: 236.0355.


tert-butyl-3-(5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazol-3-yl)-1H-indole-1-carbo xylate 3n: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.22 (d, J = 7.6 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.73 (s, 1H), 7.43-7.33 (m, 1H), 7.27 (s, 1H), 5.00-4.92 (m, 1H), 3.62-3.56 (m, 1H), 3.23-3.17 (m, 1H), 2.81-2.69 (m, 1H), 2.53-2.39 (m, 1H), 1.71 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 152.2, 149.3, 135.8, 127.0, 126.9, 125.7, 125.4 (q, J = 275.0 Hz, CF₃), 123.9, 123.0, 115.1, 111.3, 84.9, 73.7, 41.4, 39.1 (q, J = 28.0 Hz, CH₂CF₃), 28.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.81 (s, 3F) IR (neat, cm⁻¹): 3428, 2980. 1736, 1627, 1371, 1251, 1155, 891, 754. HRMS (APCI) Calcd for C₁₈H₁₉F₃N₂O₃: M+H = 369.1421. Found: 369.1426.


4-methyl-3-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3o: Solid, d.r.(*cis:trans*) = 3.3:1, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73-7.67 (m, 2.8H), 7.44-7.42 (m, 4.2 H), 4.76-4.74 (m, 0.3H), 4.64-4.60 (m, 1.0H), 3.65-3.62 (m, 0.3H), 3.58-3.52 (m, 1.0H), 2.65-2.55 (m, 1.6H), 2.41-2.33 (m, 1.0H), 1.37 (s, 3.1H), 1.35 (s, 0.9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 162.9, 160.4, 130.4, 130.3, 128.9, 128.9, 128.3, 128.1, 127.0, 127.0, 125.6 (q, *J* = 275.0 Hz, CF₃), 125.4 (q, *J* = 275.0 Hz, CF₃), 81.8 (d, *J* = 3.0Hz), 78.0 (d, *J* = 3.0Hz), 47.7, 43.7, 38.5 (q, *J* = 27.0 Hz, CH₂CF₃), 32.9 (q, *J* = 29.0 Hz, CH₂CF₃), 17.5, 11.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.31 (s, 3F), δ -64.34 (s, 3F). IR (neat, cm⁻¹): 3394, 2924, 1651, 1384, 1255, 1077, 769, 699. HRMS (ESI) Calcd for C₁₂H₁₂F₃NO: M+H = 244.0944. Found: 244.0940.

3,4-diphenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3p: Solid, d.r.(*cis:trans*) = 3.4:1, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.61-7.59 (m, 2.6H), 7.37-7.16 (m, 10.3H), 5.02-4.99 (m, 0.3H), 4.83-4.79 (m, 1.0H), 4.67-4.65 (m, 0.3H), 4.56-4.55 (m, 1.0H), 2.73-2.56 (m, 1.0H), 2.54-2.48 (m, 1.0H), 2.28-2.24 (m, 0.3H), 2.22-2.12 (m, 0.3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.7, 158.0, 137.7, 132.9, 130.2, 130.2, 129.4, 129.4, 129.2, 128.7, 128.5, 128.2, 128.1, 127.4, 127.3, 127.3, 127.2, 127.1, 125.6 (q, *J* = 275.0 Hz, CF₃), 125.3 (q, *J* = 275.0 Hz, CF₃), 83.6 (d, *J* = 3.0 Hz), 79.1 (d, *J* = 3.0 Hz), 59.7, 56.8, 38.8 (q, *J* = 27.0 Hz, CH₂CF₃), 34.0 (q, *J* = 29.0 Hz, CH₂CF₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -62.88 (s, 3F), δ -64.23 (s, 3F). IR (neat, cm⁻¹): 3435, 2922, 1597, 1385, 1255, 1126, 770, 696. HRMS (ESI) Calcd for C₁₇H₁₄F₃NO: M+H = 306.1100. Found: 306.1097.

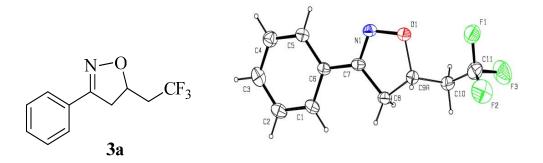
4,4-dimethyl-3-phenyl-5-(2,2,2-trifluoroethyl)-4,5-dihydroisoxazole 3q: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.65-7.62 (m, 2H), 7.44-7.39 (m, 3H), 4.41-4.38 (m, 1H), 2.63-2.55 (m, 1H), 2.45-2.37 (m, 1H), 1.41 (s, 3H), 1.25 (s, 3H),. ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.9, 130.0, 128.8, 128.7, 127.4, 125.9 (q, *J* = 275.0 Hz, CF₃), 83.9 (d, *J* = 3.0 Hz), 51.5, 33.2 (q, *J* = 29.0 Hz, CH₂CF₃), 23.3, 19.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.72 (s, 3F). IR (neat, cm⁻¹): 3395, 2923, 1654, 1403, 1257, 1120, 903, 694. HRMS (ESI) Calcd for C₁₃H₁₄F₃NO: M+H = 258.1100. Found: 258.1103.

3-phenyl-3a,4,5,7a-tetrahydrobenzo[d]isoxazole 3s: Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73-7.71 (m, 2H), 7.42-7.41 (m, 3H), 6.20-6.17 (m, 1H), 6.05-6.03 (m, 1H), 4.84-4.82 (m, 1H), 3.54-3.48 (m, 1H), 2.14-2.09 (m, 1H), 2.03-1.97 (m, 2H), 1.58-1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.1, 133.1, 129.9, 129.2, 128.8, 126.9, 122.4, 76.7, 44.1, 23.0, 22.4. HRMS (ESI) Calcd for C₁₃H₁₃NO: M+H = 200.1070. Found: 200.1067.

7. References:

[1] J. H. Dam, P. Fristrup and R. Madsen, J. Org. Chem., 2008, 73, 3228.

[2] D. Jiang, J. Peng and Y. Chen, Org. Lett., 2008, 10, 1695.

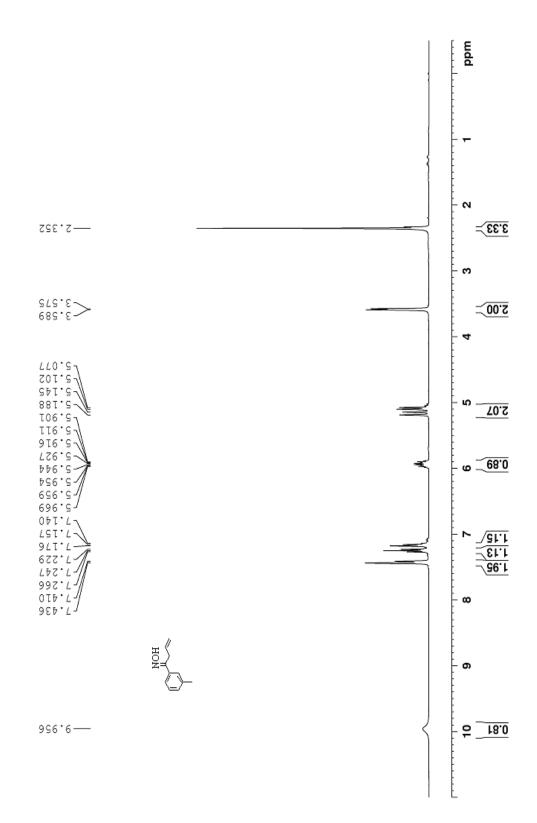

[3] M.-K. Zhu, J.-F. Zhao and T.-P. Loh, J. Am. Chem. Soc. 2010, 132, 6284.

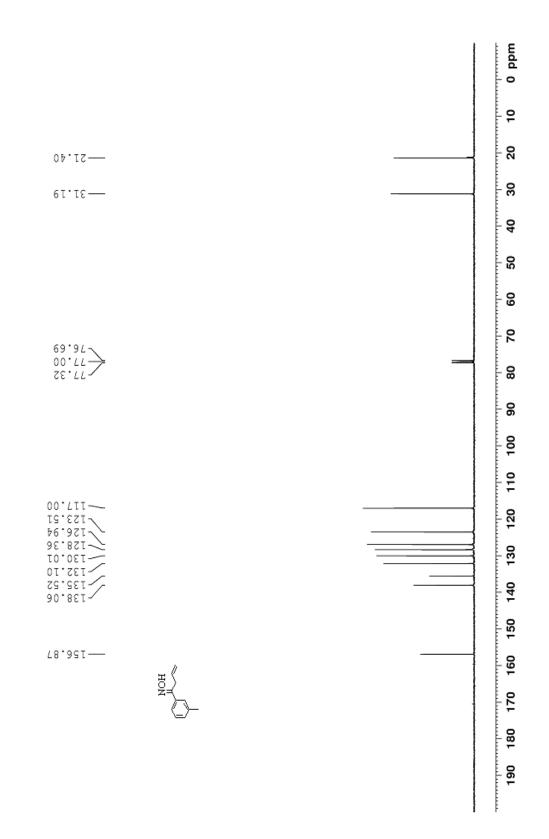
[4] F. Miege, C. Meyer and J. Cossy, Angew. Chem. Int. Ed., 2011, 123, 6054.

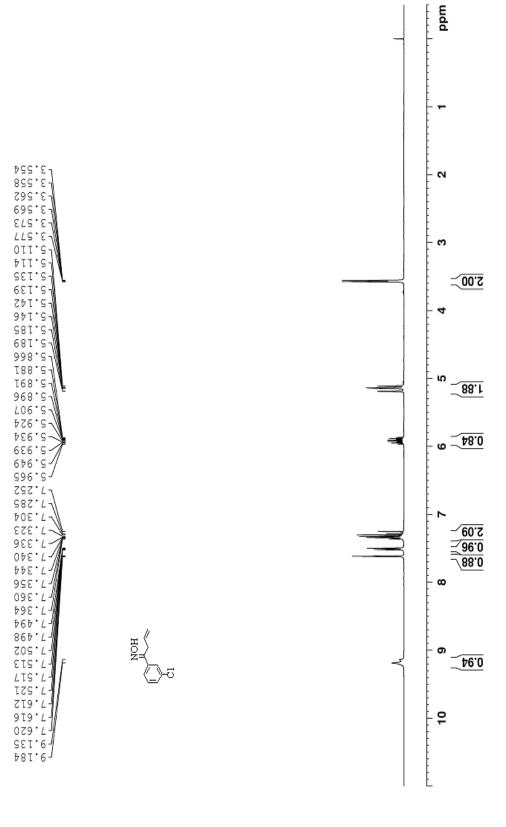
[5] H. M. Barentsen, A. B. Sieval and J. Corenelisse, *Tetrahedron*, 1995, **51**, 7495.

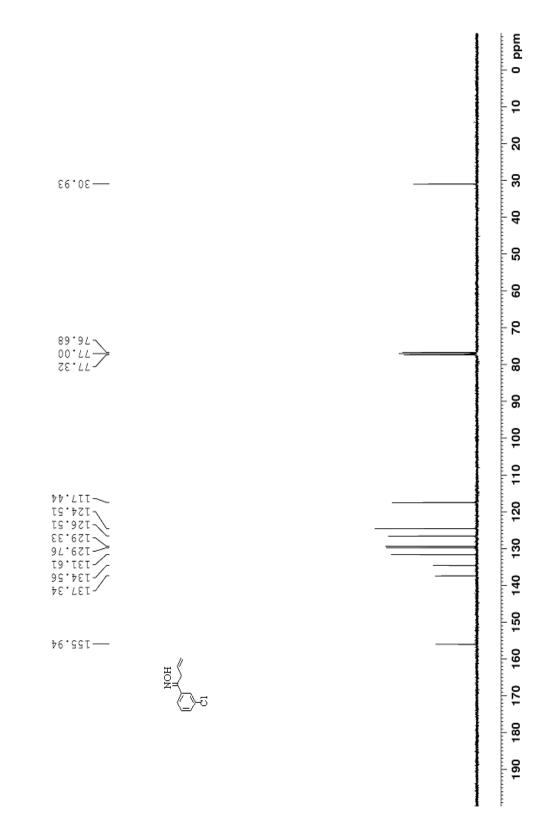
[6] X.-H. Tan, C.-Z. Tao, Y.-Q. Hou, L. Luo, L. Liu and Q.-X. Guo, *Chinese J. Chem.*, 2005, 23, 237.

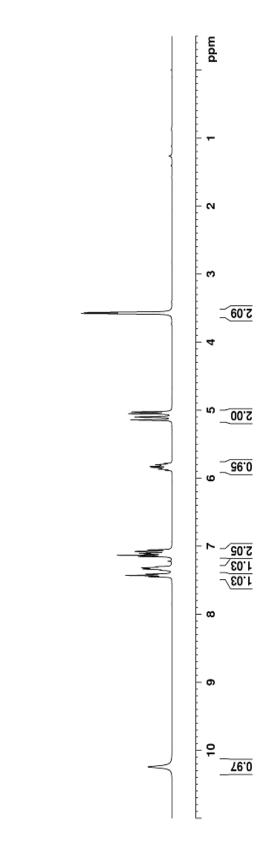
8. Crystallographic data of 3a

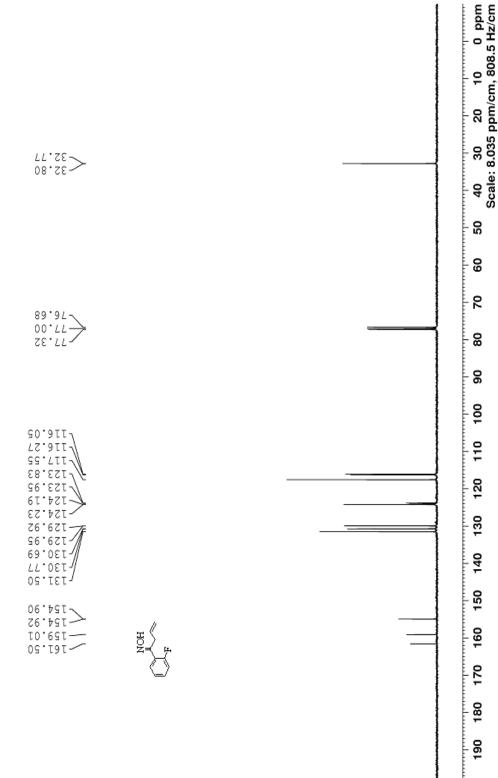

structure of 3a

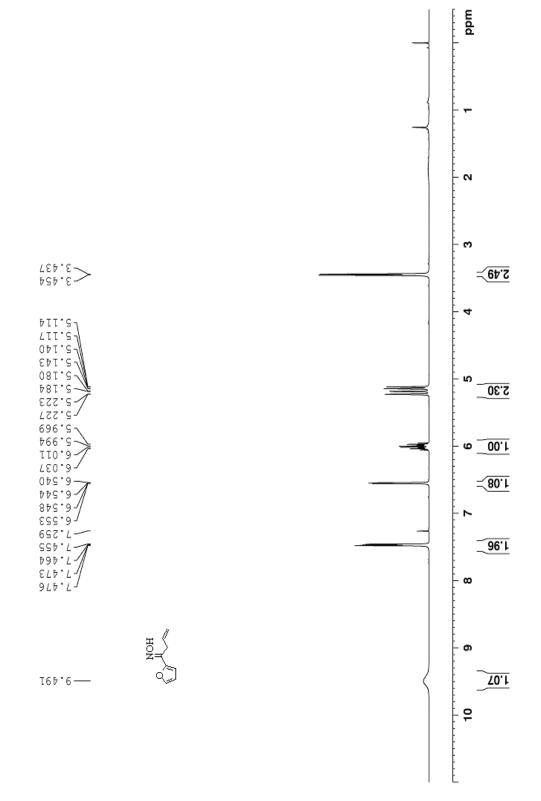

Datablock:


Bond precis	ion: C-	C-C = 0.0099 A			Wavelength=0.71073			
Cell:	a=8.6562 (9) b=19	9. 9373 (18)	c=12.6	769(15)			
	alpha=90	00 beta=102.331(12) gamma) gamma=	90			
Temperature: 293 K								
	Cal	culated			Reported			
Volume	213	7.3(4)			2137.3(4)			
Space group	P 2	1/a			P 1 21/a 1			
Hall group	-Р	-P 2yab			-P 2yab			
Moiety form	ula C11	C11 H10 F3 N 0		C11 H10 F3 N O				
Sum formula	C11	C11 H10 F3 N 0		C11 H10 F3 N O				
Mr	229	. 20			229.20			
Dx,g cm-3	1.4	25			1.425			
Ζ	8				8			
Mu (mm-1)	0.1	27			0.127			
F000	944	. 0			944.0			
F000'	944	. 70						
h,k,lmax	10,	24,15			10, 24, 15			
Nref	407	7			4070			
Tmin, Tmax	0.9	67, 0. 974						
Tmin'	0.9	65						
Correction method= Not given								
Data completeness= 0.998 Theta(max)= 25.680								
R(reflections) = 0.1012(1376) wR2(reflections) = 0.3854(4070)								
S = 1.029		Npar= 325	ō					


Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

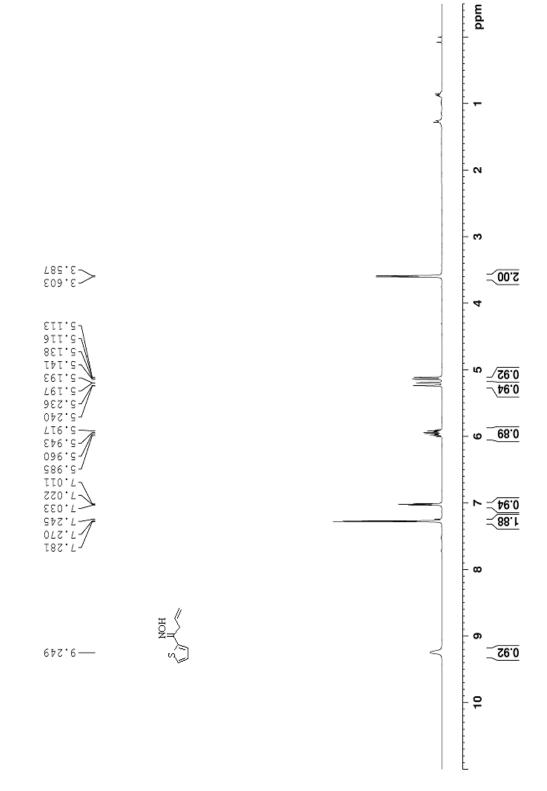

9. ¹H NMR and ¹³C NMR spectra for substrates 1d, 1g, 1h, 1l, 1m

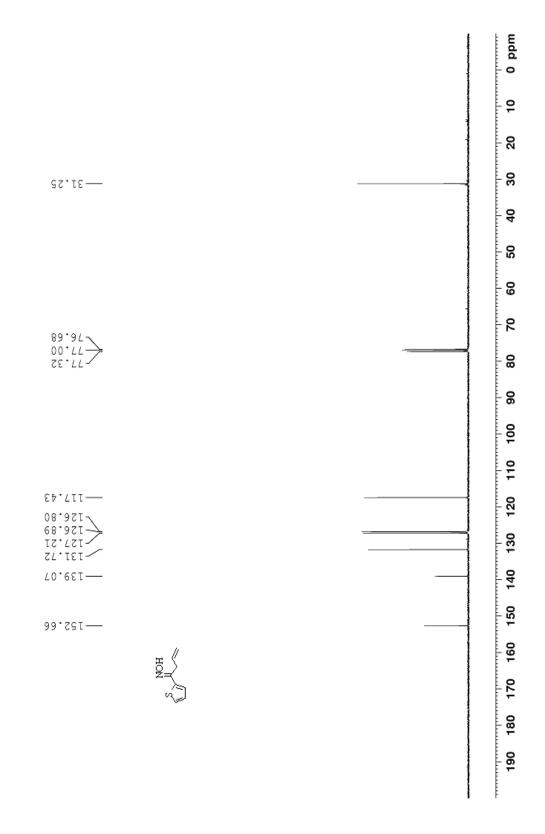




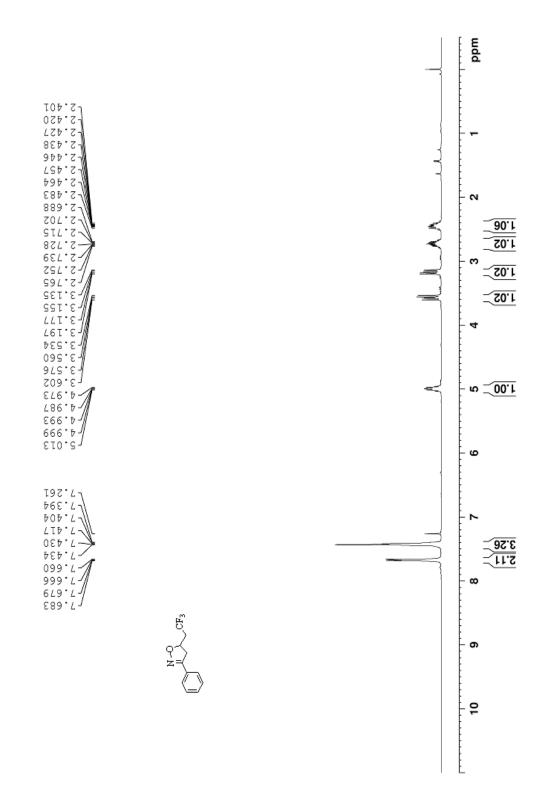
012.01-

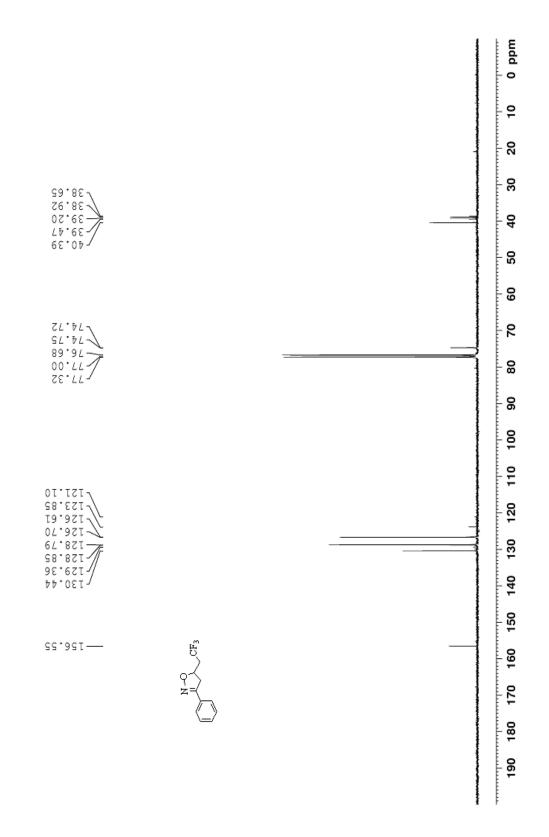
Н


Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013



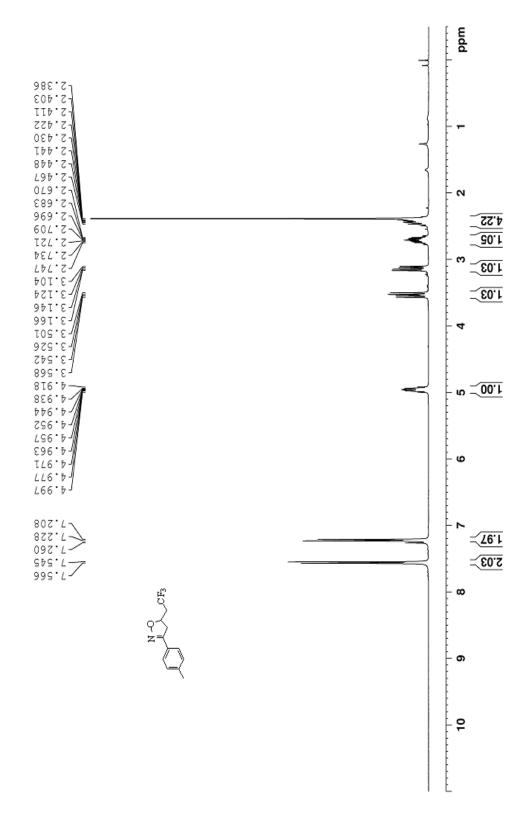
mdd 92*98----89:9L 00:LL 28:LL ≽ ZI,SII — 07.717 07.811 218.40 746.04 746.04 746.04 HON

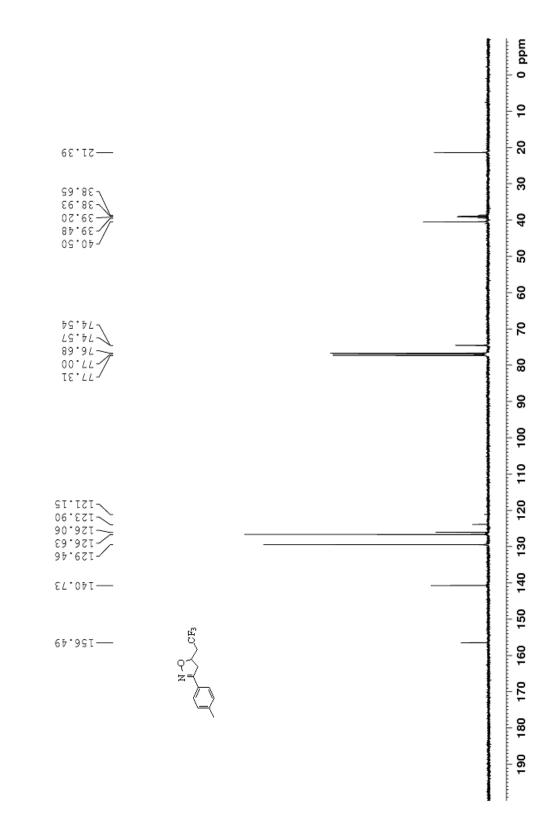

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

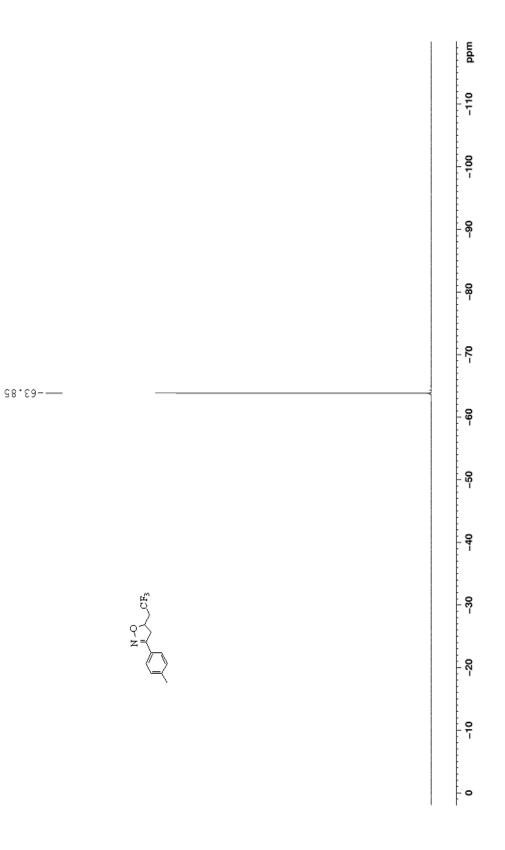


10. ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra and 1D-NOESY for

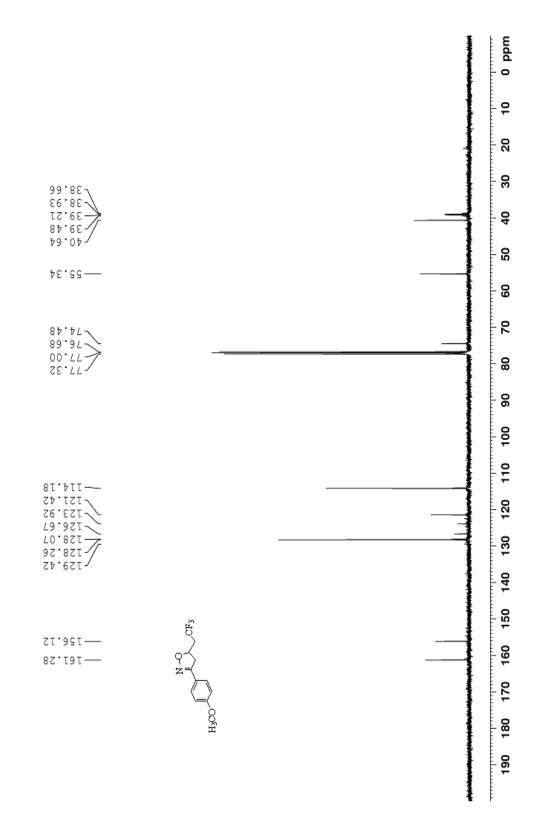
products 3a-3q, and 3s






28.63----

P P P



₽8'89----H₃CO L L CF3 mdd

-1-

-100

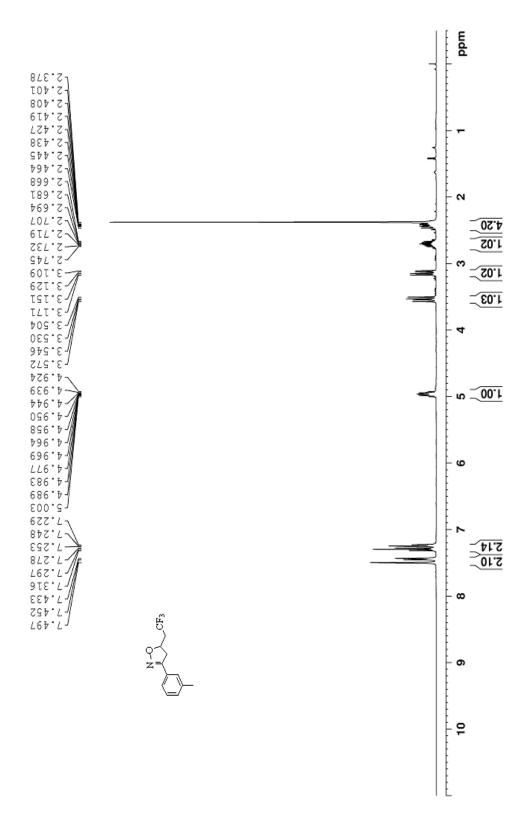
ရှိ

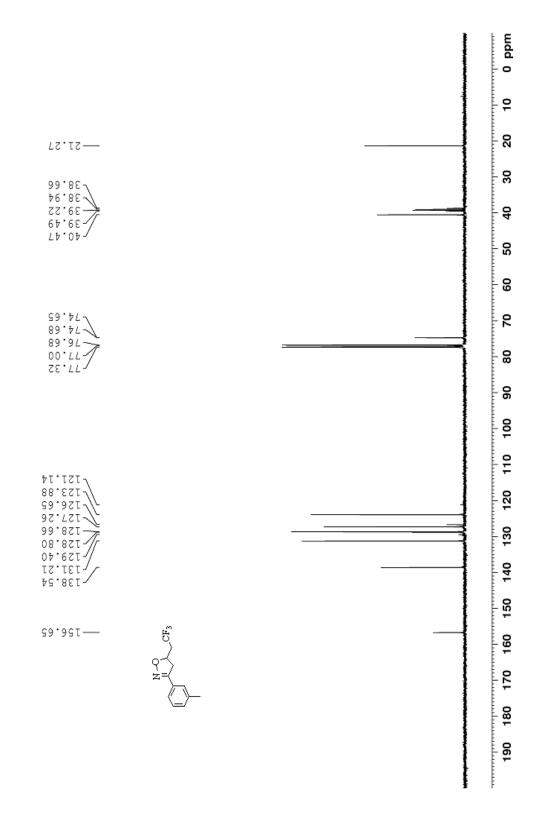
- 8

Ŗ

- G

- 22

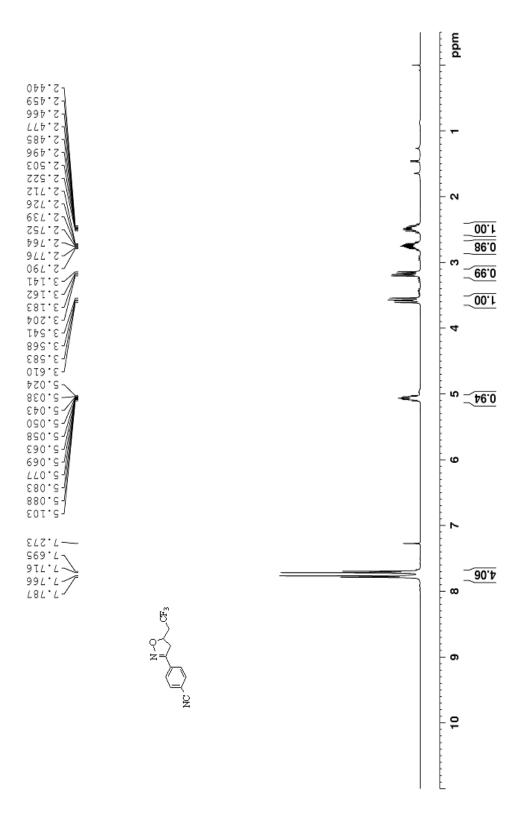

- 4

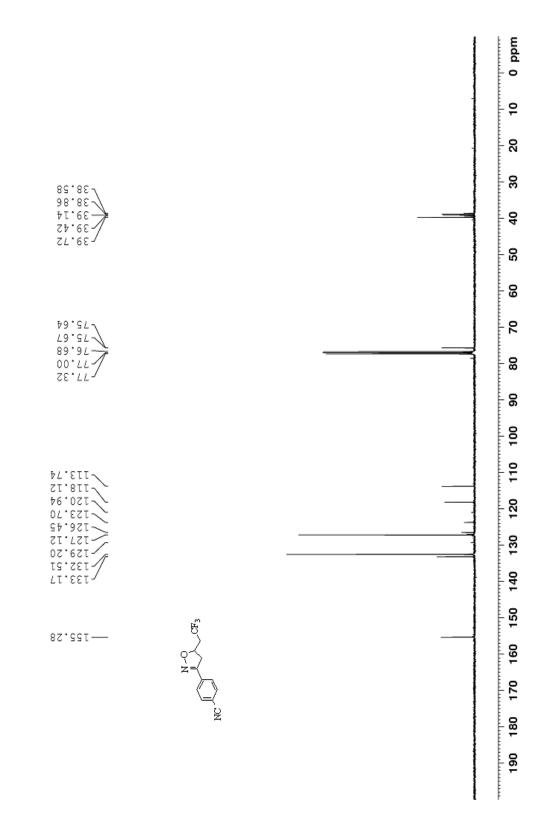

- R

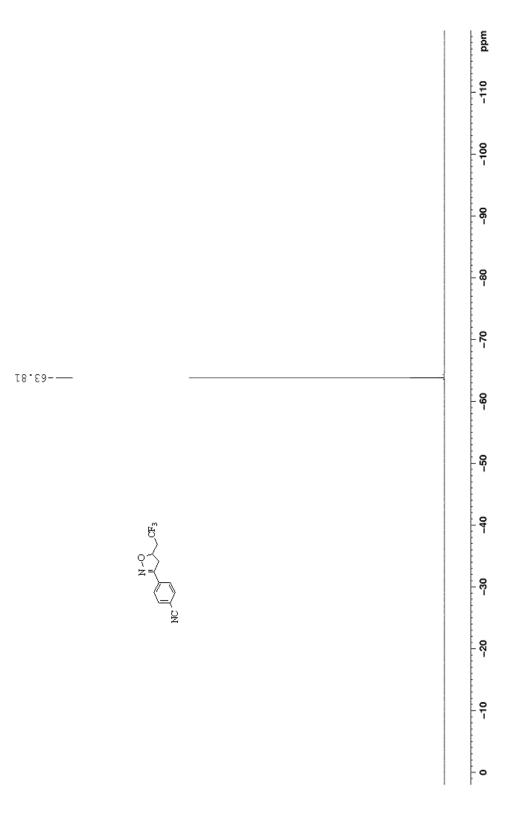
- 8

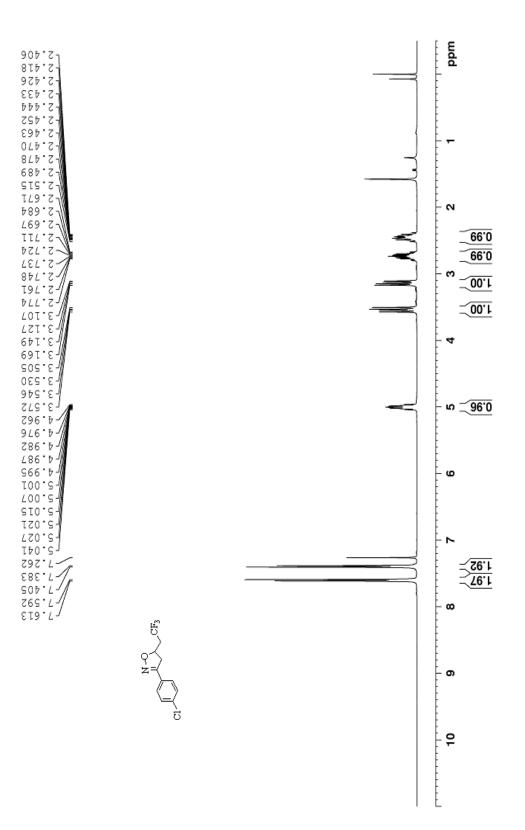
- 9

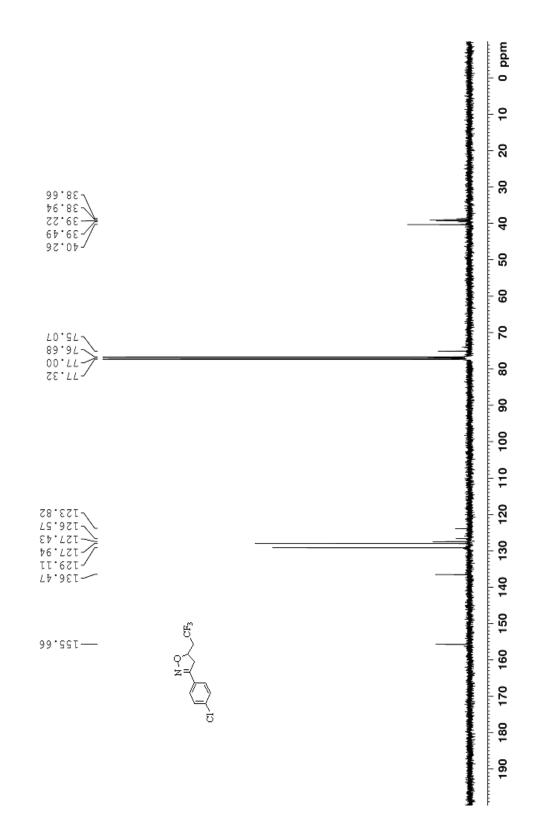
- 0

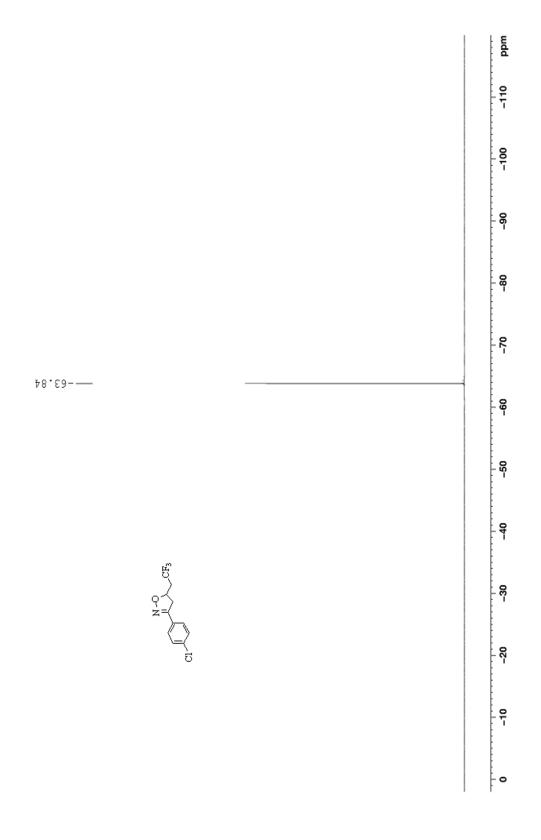

9 ြီ - 🖗 - P 99--50 - 9 N-O CF3 ြုန် -20 - 7 0

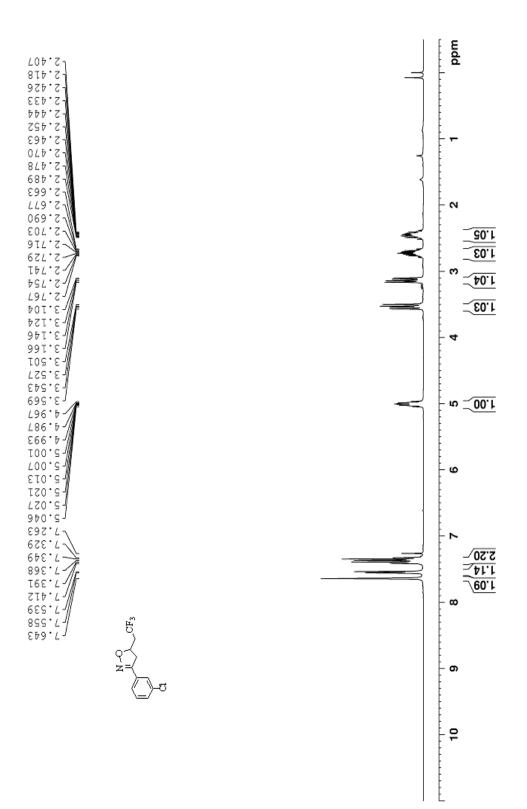

mdd

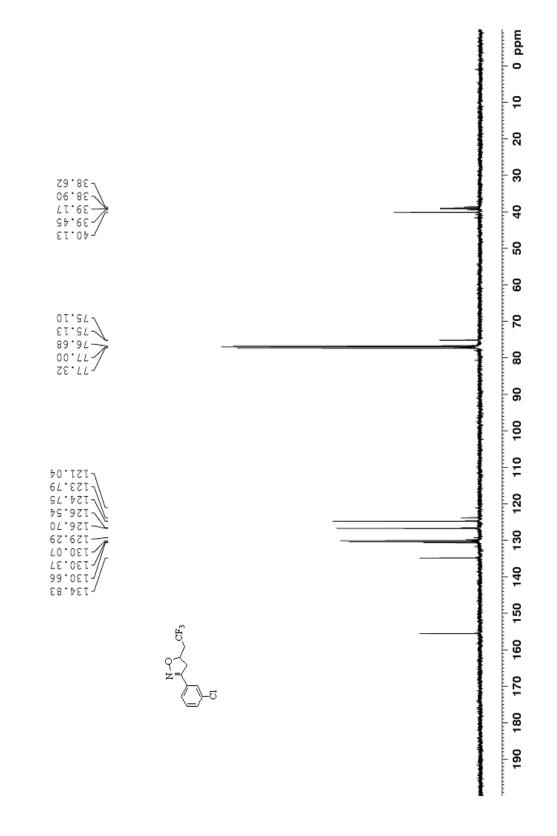

-110

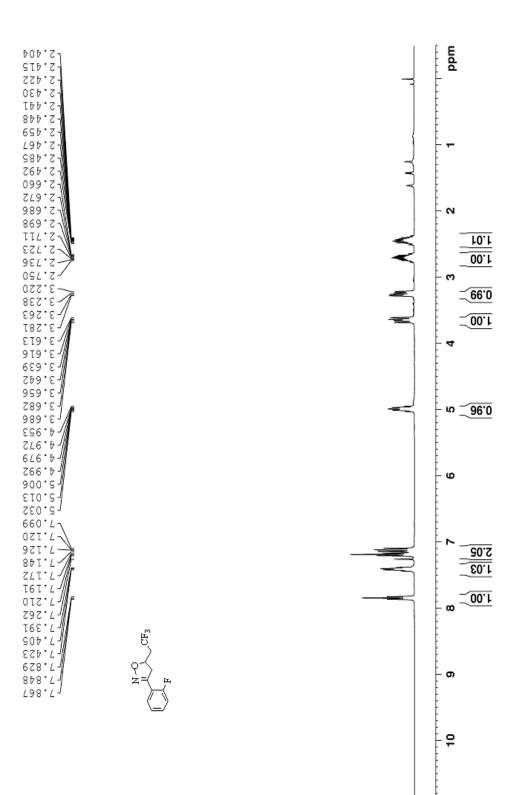

£8.£ð-—

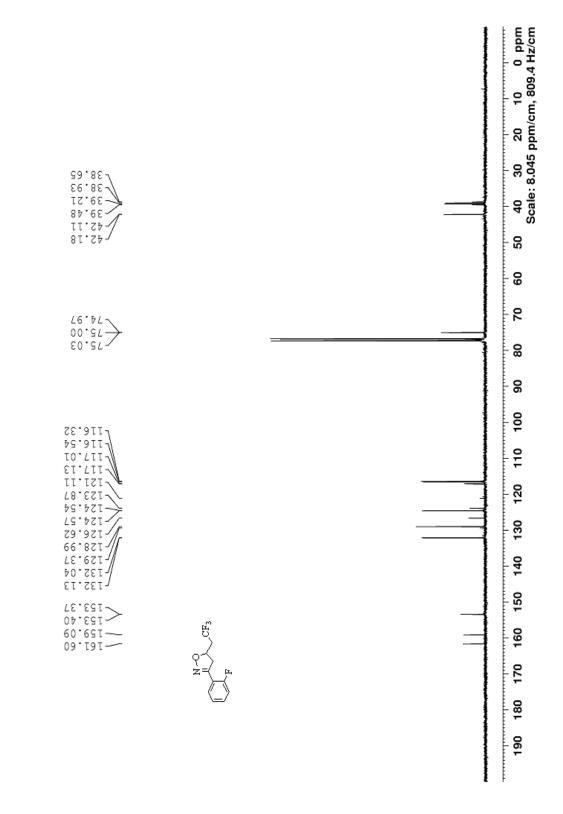

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

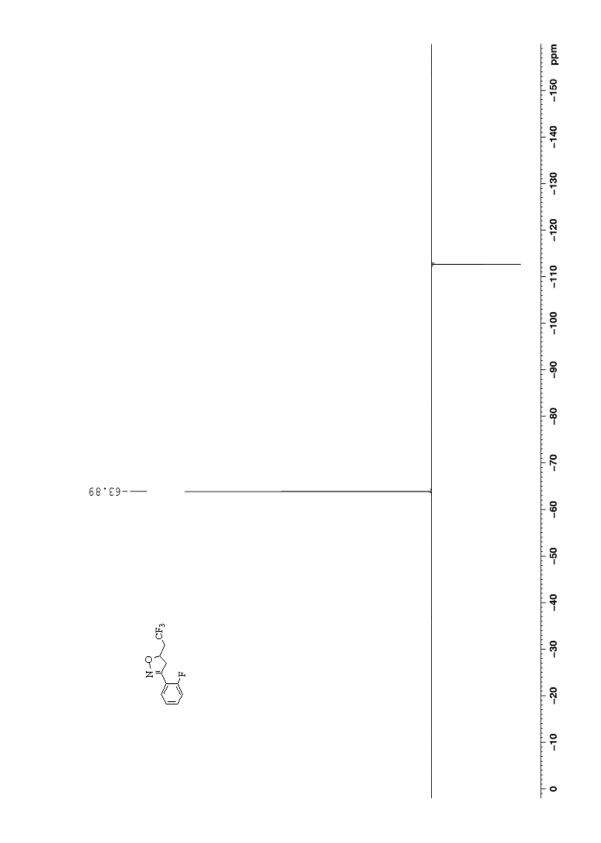


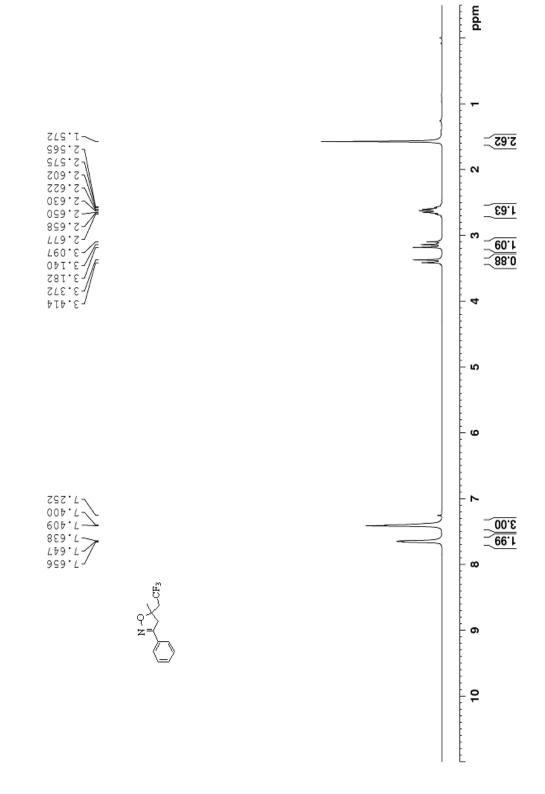


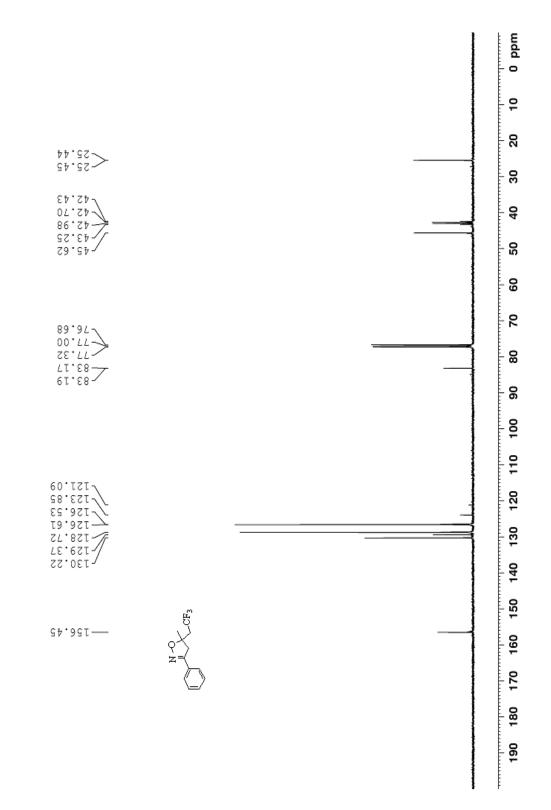


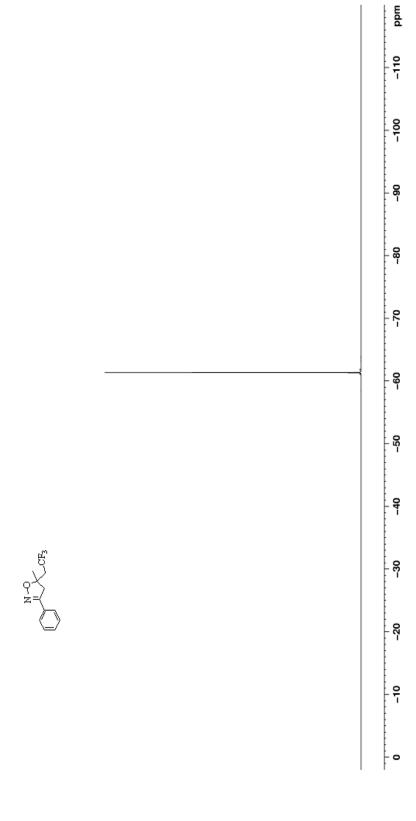


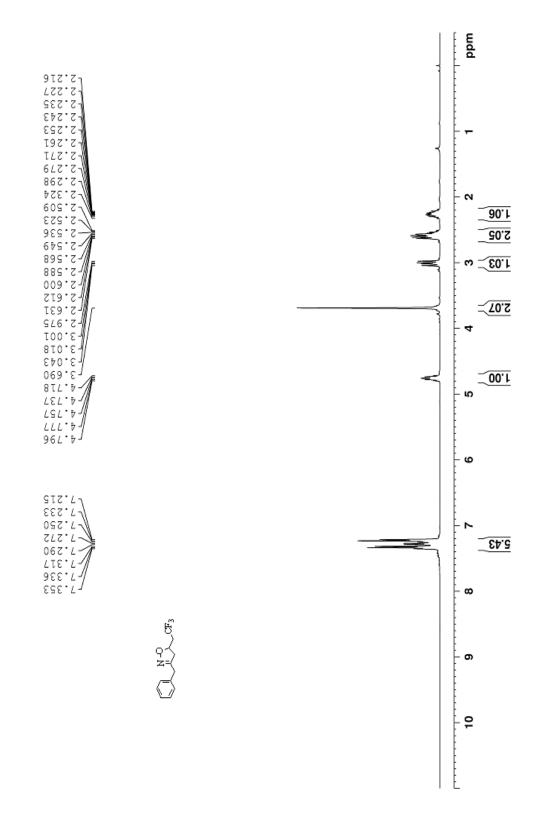


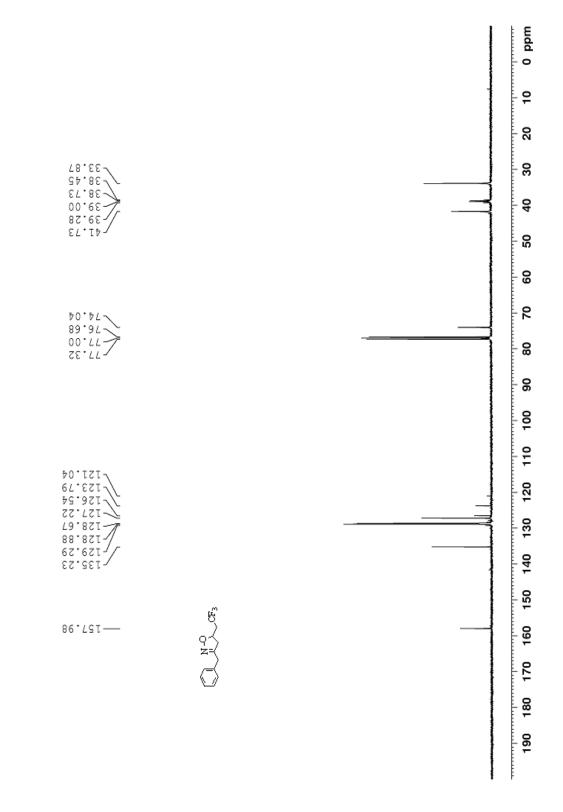

£8.£ð-—

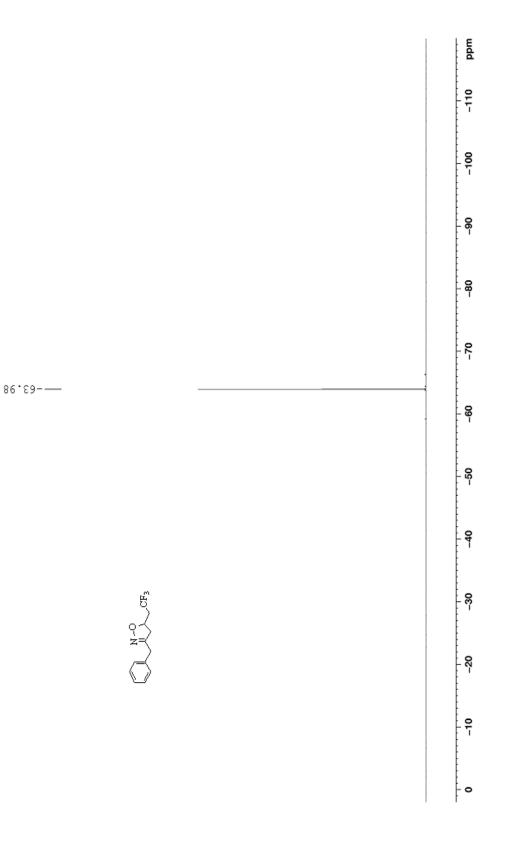

N-O CF3

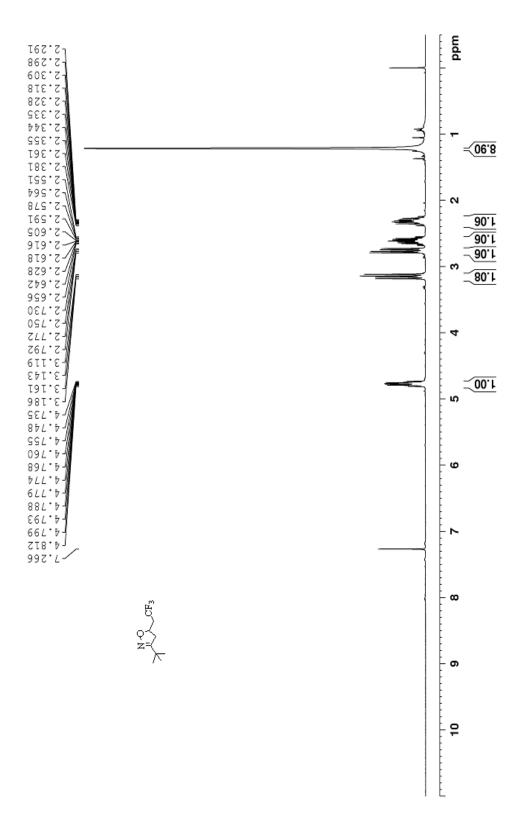


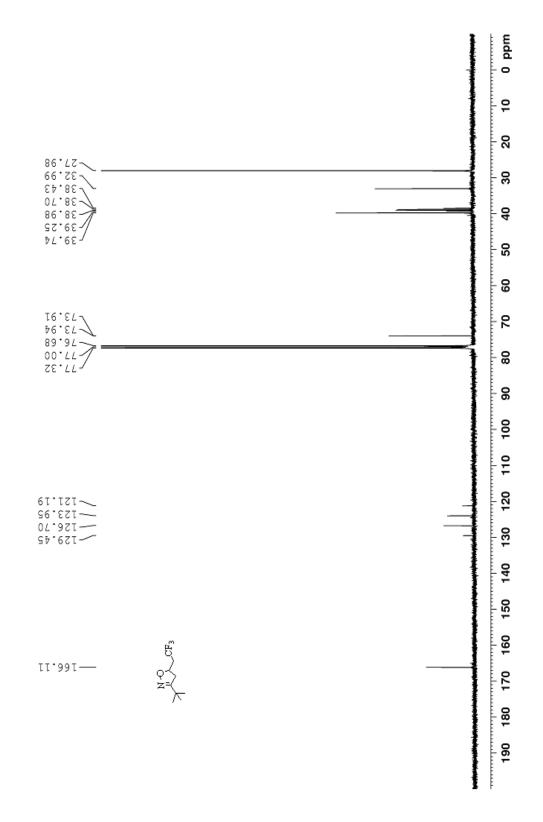


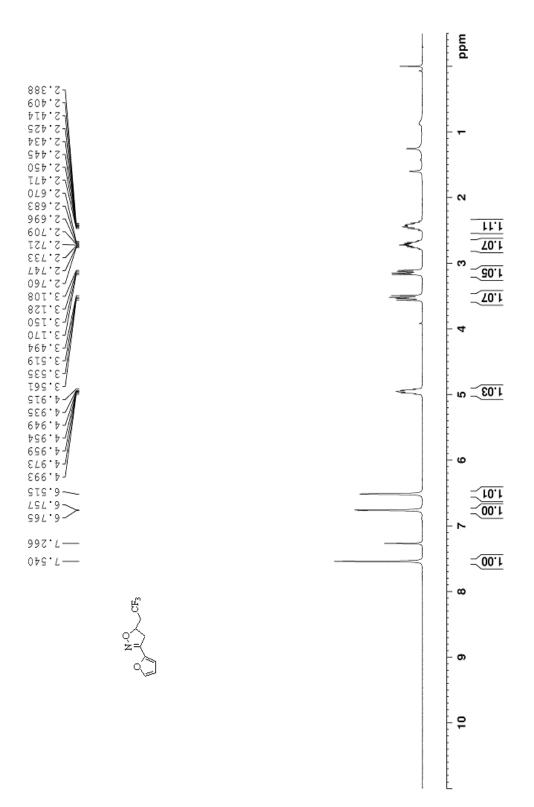


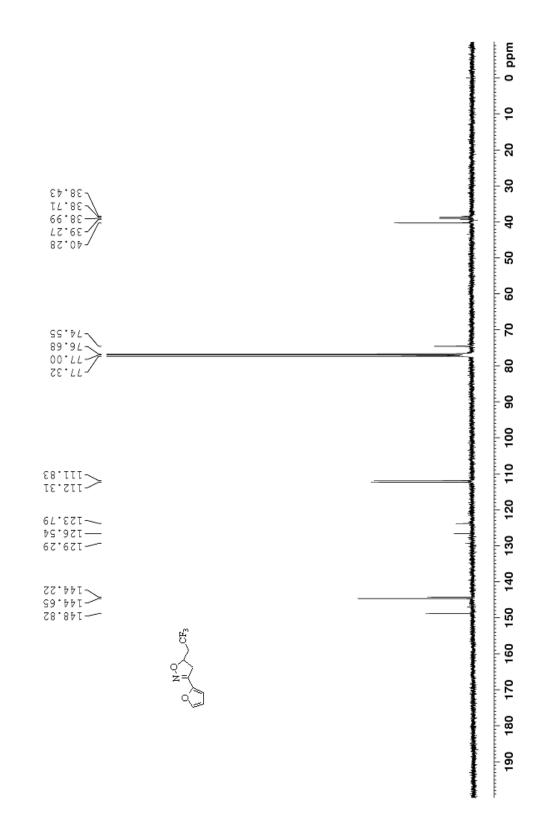


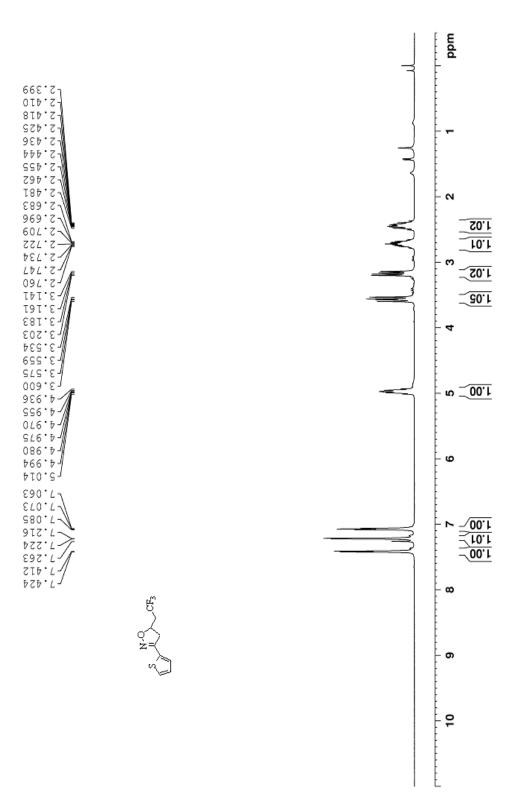


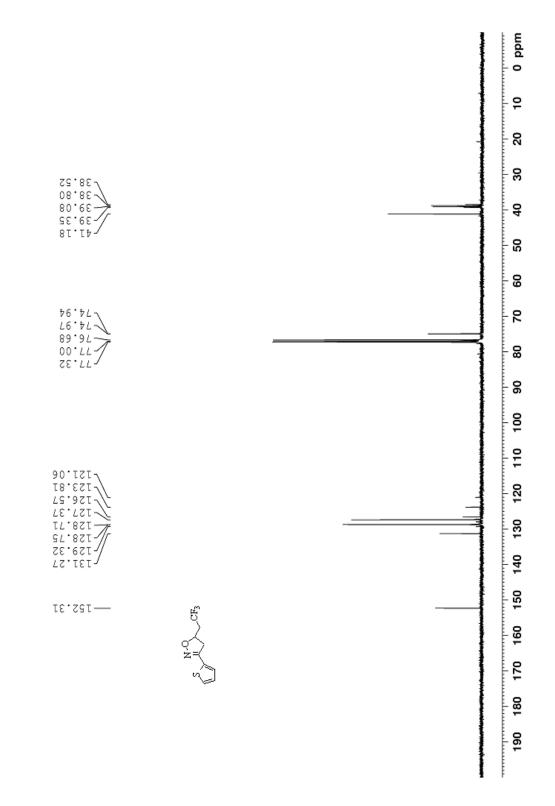

££.13-—

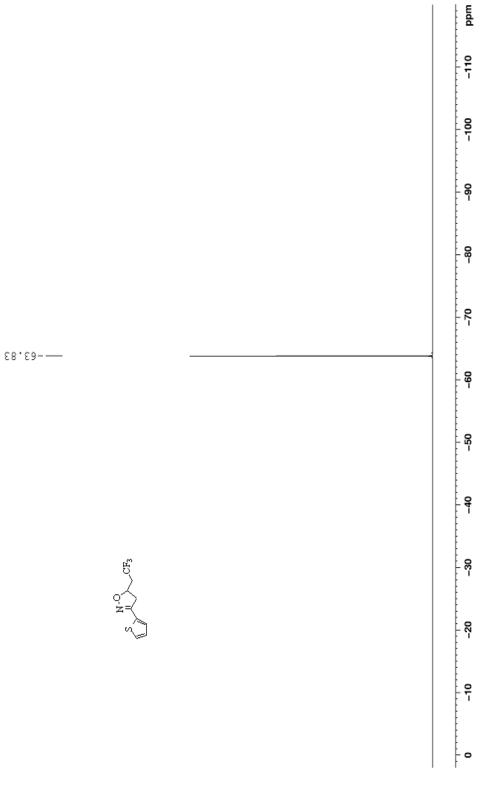


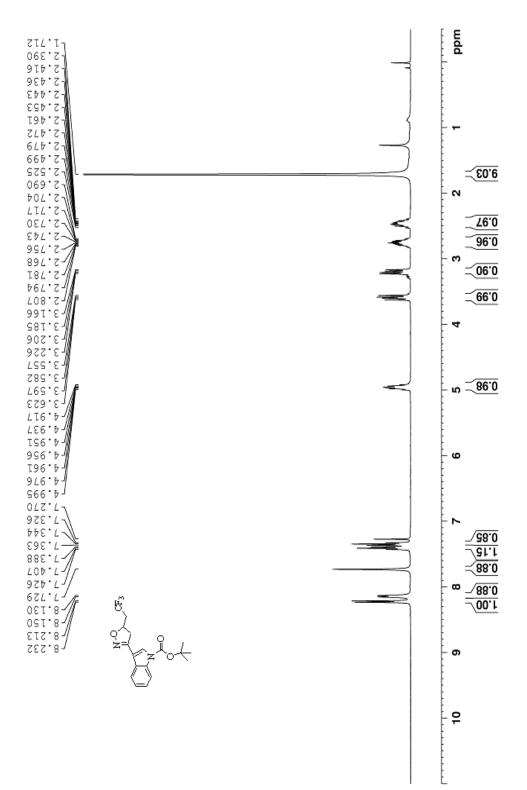


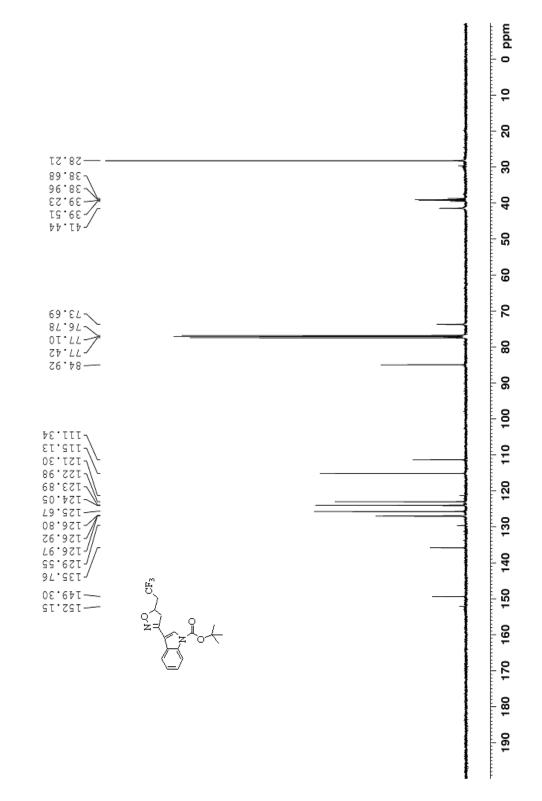





N-O CE³






mdd -110 100 6 - 8 ۴ L8.E9----- 09 -20 40 N.O CF3 ခု - R 우 0

τ8·ε9-— mdd

-110

-100

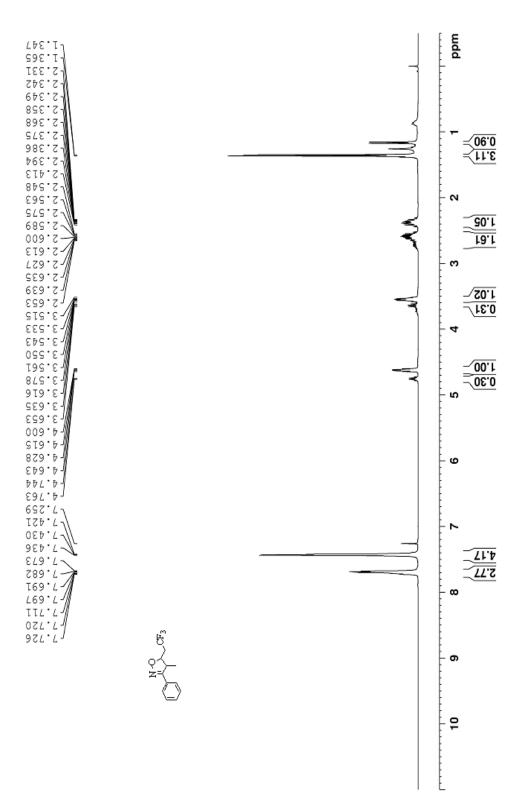
6

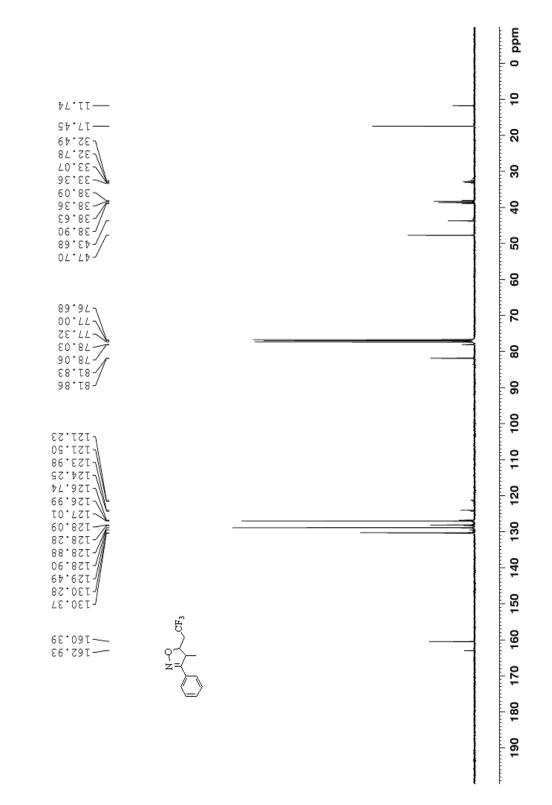
8

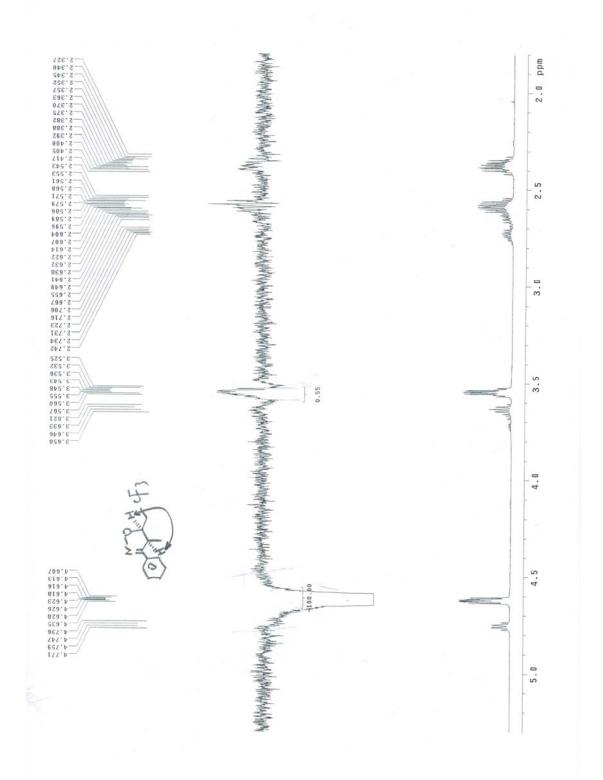
24

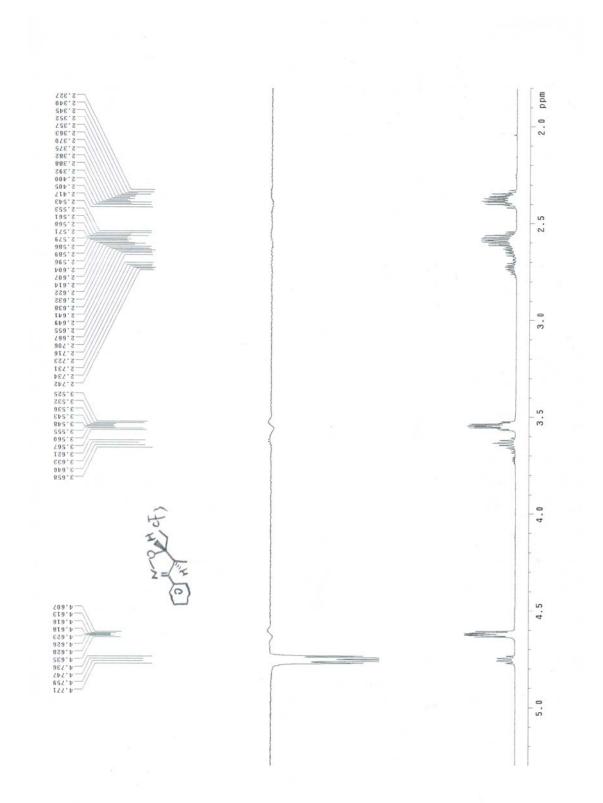
09-

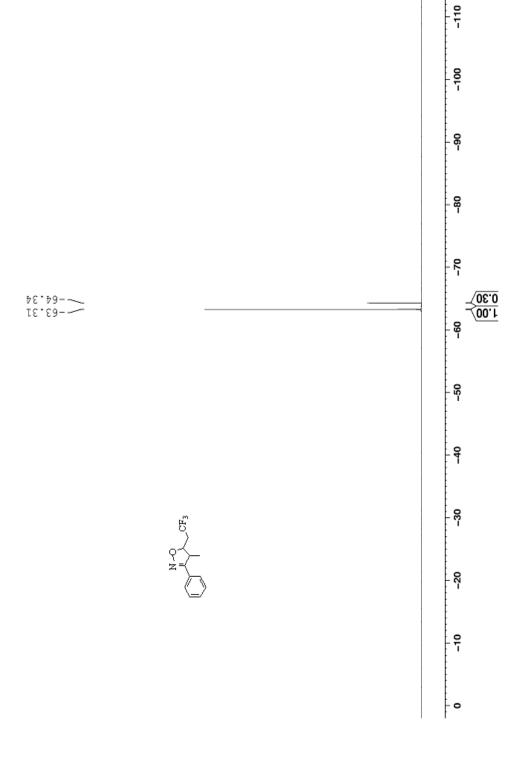
-20

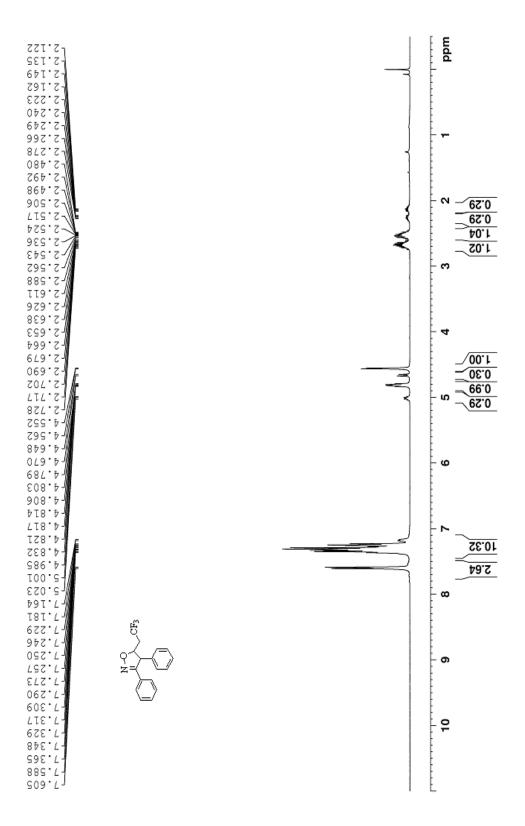

40

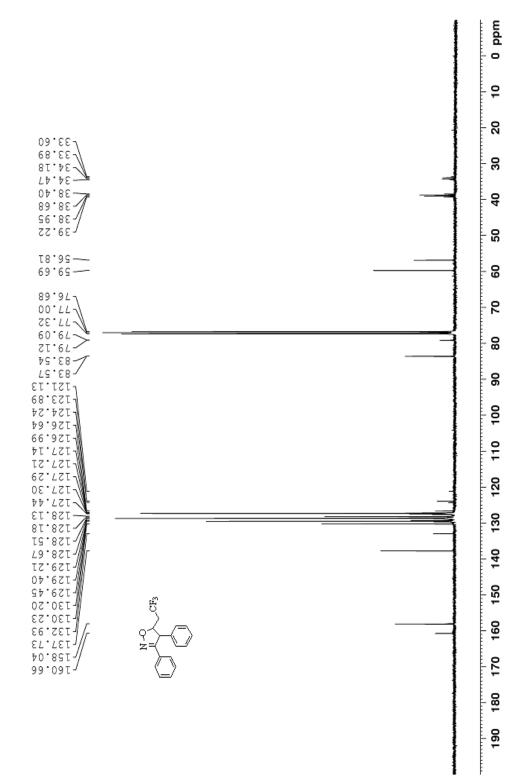

ြုန်

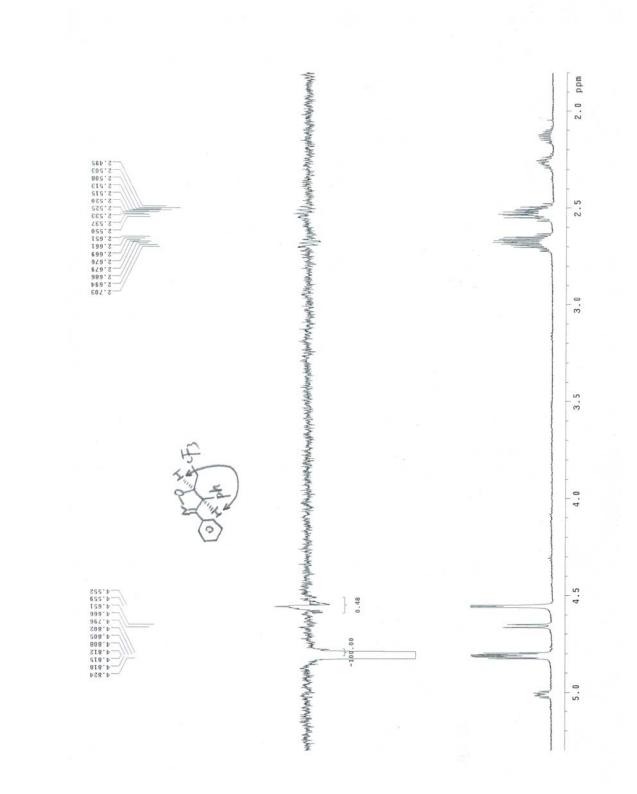

- R

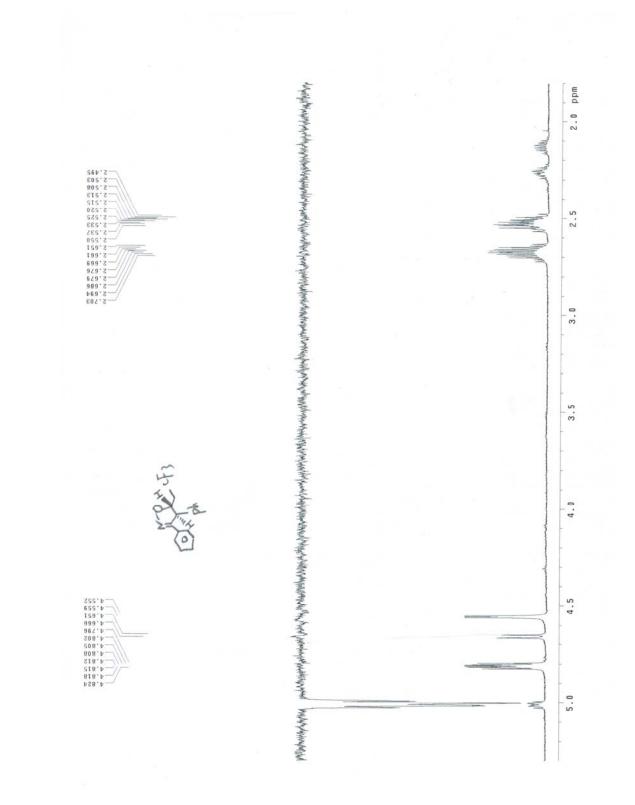

19

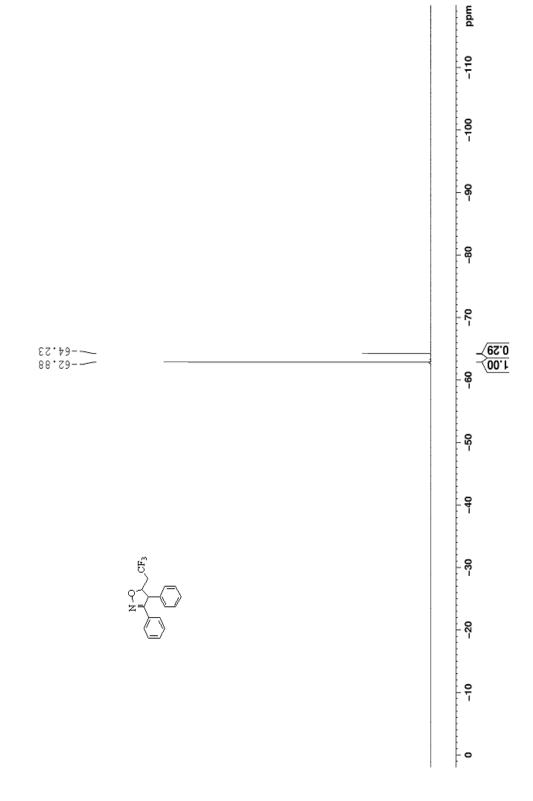

0

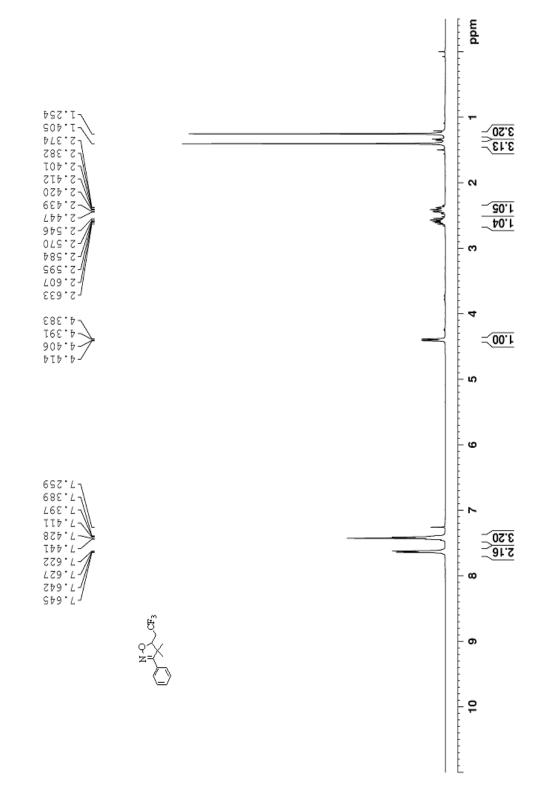


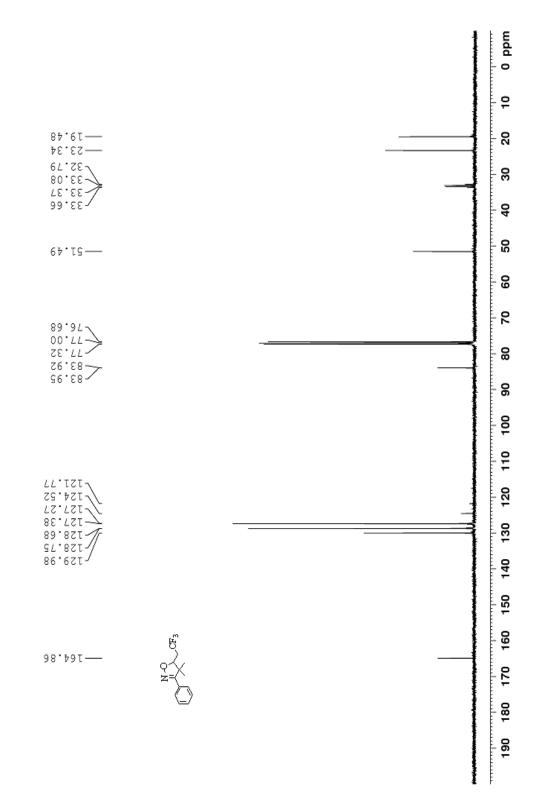


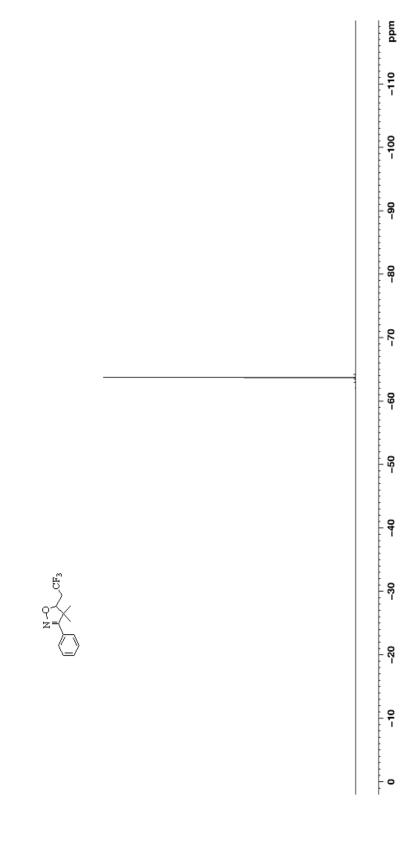


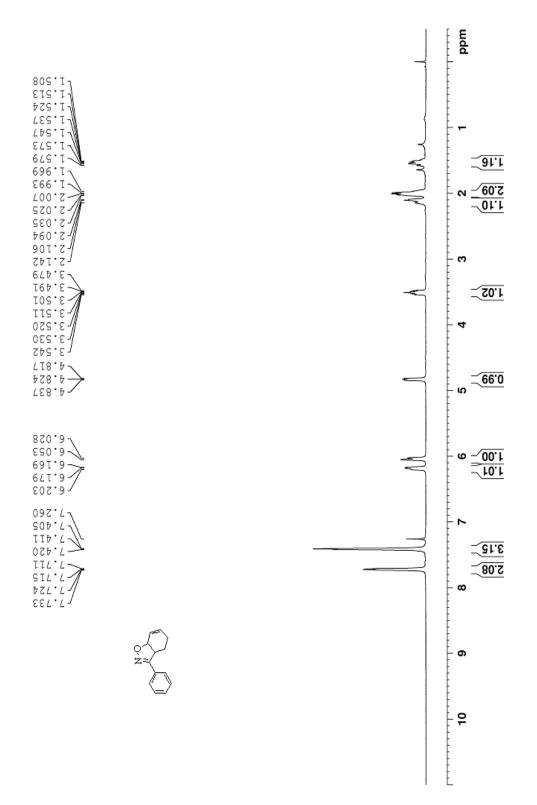


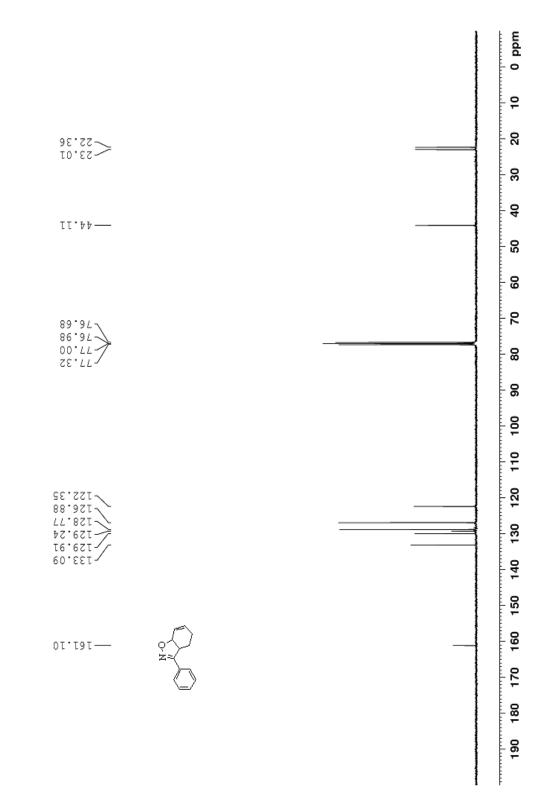

mdd

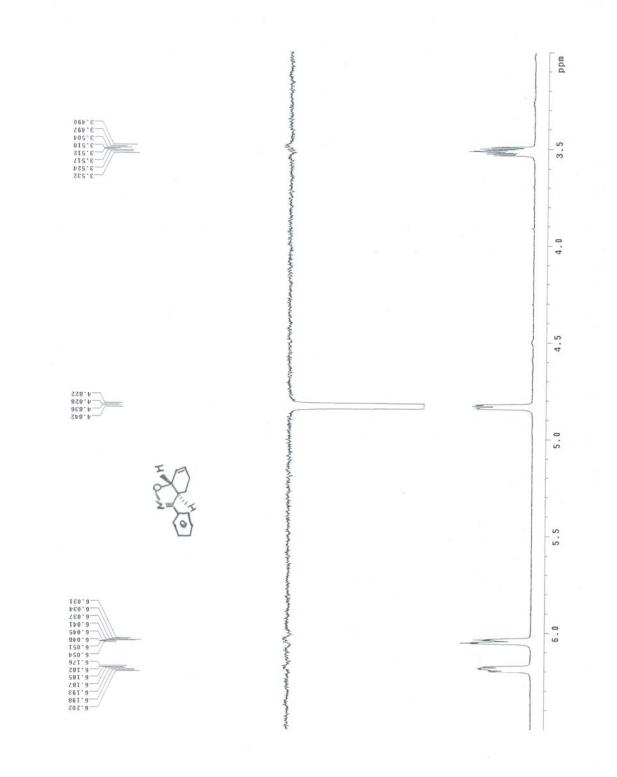


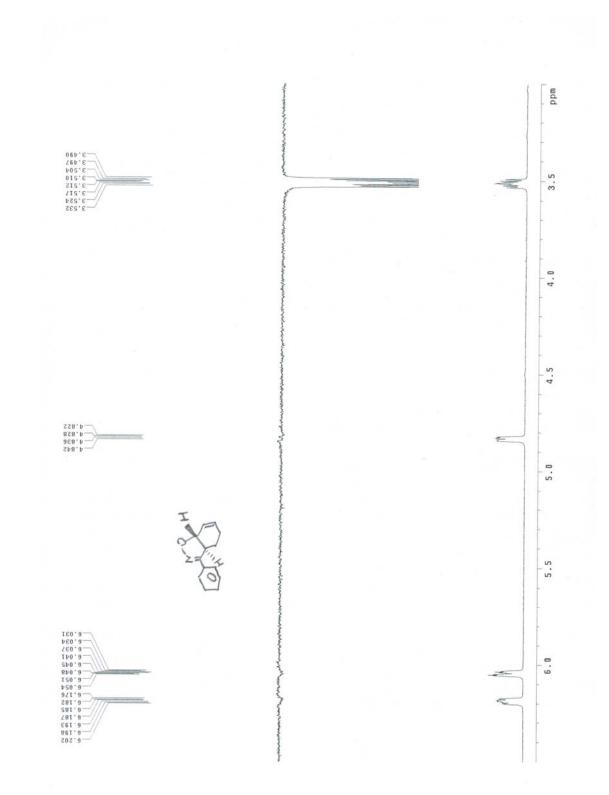











ZL'E9-—

