Electronic Supplementary Information

Changes of Major Charge Transport by Molecular Spatial Orientation on Graphene Channel Field Effect Transistors

Experimental Methods

Materials

Synthesis of benzene diazonium salts. Functionalized benzene molecules (e.g., nitrobenzene (phenyl-NO₂), carboxylbenzene (phenyl-COOH), bromobenzene (phenyl-Br), and aminobenzene (phenyl-NH₂) and their diazonium *p*-toluenesulfonate salts (e.g., 4-nitrobenzene (N_2^+ -phenyl-NO₂), 4-carboxylbenzene (N_2^+ -phenyl-COOH), 4-bromobenzene (N_2^+ -phenyl-Br), and 4-aminobenzene (N_2^+ -phenyl-NH₂) and a benzene diazonium *p*-toluenesulfonate salt (N_2^+ -phenyl-H) were prepared for physisorption and chemisorption, respectively. Benzene diazonium salts were synthesized by using ion exchange resin (*e.g.*, resin-NO₂⁻) with p-substituted aniline compounds as described in the previous report.¹

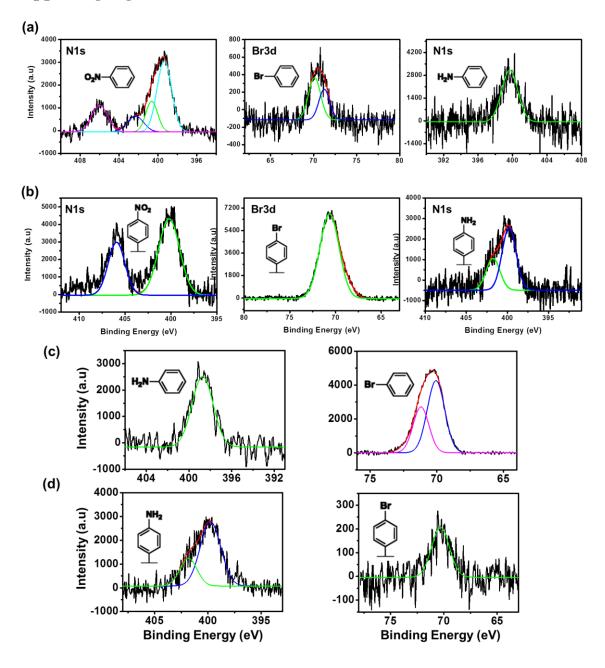
Sodium nitrite (4.1 g, Aldrich) was added to a solution of ion exchange resin AV-17-8 (7.0 g, Aldrich) in the de-ionized (DI) H₂O (16 ml) and stirred at room temperature for 20 min. The resulting solid (i.e., resin-NO₂⁻) was filtered, washed with H₂O until the pH of the filtrate became neutral (pH 6–7), and dried at room temperature for 30 min (a yield of 6.4 g). The resin-NO₂⁻ (4.5 g containing 16 mmol NO₂⁻) was added to a solution of monohydrate *p*-toluenesulfonic acid (2.3 g, 16 mmol) in AcOH (8 mL) and stirred for 5 min. The *p*-substituted aniline compound (e.g., 4-bromoaniline, 4-nitroaniline, 4-carboxylaniline, 4-aminoaniline, and aniline) (5.3 mmol) was added to the above solution four times and the mixture was stirred for 5–20 min until TLC indicated complete consumption of the aniline (hexane-ether 1:1). The mixture was filtered from the resin and the filtrate was poured into ether (100–140 mL). The resulting solid was filtered, washed with ether (20–40 mL), and dried under vacuum.

Graphene oxide and graphene GO was prepared according to literature procedures, which was characterized by Raman spectroscopy, X-ray diffraction (XRD), and XPS.² Large-single layer graphene on Cu foil was supplied from Graphene Center at Sungkyunkwan University, which was characterized by Raman spectroscopy and AFM.³

Fabrication of molecular functionalized FET devices with different graphenes

FET devices were composed of channels (5-10 μ m length and 25-250 μ m width) and the pre-patterned Au source and drain electrodes (50-60 nm thickness) on the SiO₂ (300 nm thickness)/Si substrate, which were sonicated in DI water, acetone, and EtOH for 10 min, immersed in a piranha solution for 5 min, washed with DI water several times, and dried with N₂.

(1) n-RGO channel FETs: Water-dispersed GO solution (0.5 mg mL⁻¹) was spin-coated on the cleaned FET devices. The GO-coated FET devices were dried at 80 $^{\circ}$ C in a vacuum oven for 24 h, which can improve the adhesion of GO sheets on the SiO₂/Si substrate. The GO channel FET devices were chemically reduced with a 98% hydrazine (N₂H₄) hydrate vapor at 80 $^{\circ}$ C for 24 h. The resulting reduced GO (RGO) channel FET devices were washed with DI water for 1 h and then dried at 80 $^{\circ}$ C in a vacuum oven for 24 h. Finally, the RGO FET devices were thermally annealed using a process of rapid thermal annealing at 200~250 $^{\circ}$ C. Thermally annealed N₂H₄-RGO FET devices using rapid thermal annealing produced a nitrogen-doped RGO channels (n-RGO).


(2) p-CVD-G channel FETs: Single layer CVD-G on Cu foil was transferred on the cleaned FET devices using (poly(methyl methacrylate), PMMA)-mediated method as described in the previous paper.³ Finally, the CVD-G FET devices were thermally annealed using a process of rapid thermal annealing at 200~250 $^{\circ}$ C. Usually, the CVD-G FET devices showed p-type behaviors (p-CVD-G).

(3) Molecular functionalization of the graphene FETs: the graphene FET devices were immersed in a 70 mM anhydrous DMF solution of the functionalized benzene molecules and the functionalized benzene diazonium tosylate ($N_2^+TsO^-$) compounds for physisorption and chemisorption, respectively, in a glove box for 24 h. The functionalized graphene FET devices were thoroughly washed with DMF several times and then dried for >24 h in vacuum desiccators.

Measurement of electrical properties

The source-drain current *versus* the back gate voltage for the FET devices was measured by a 4200 Keithely semiconductor characterization system at room temperature in a vacuum of $1 \times 10^{-4} - 1 \times 10^{-5}$ torr. Raman spectroscopy (Reinshaw, RM 1000-In Via), XPS (VG microtech ESCA 2000), AFM (SPA 3800, Seiko), TEM (JEOL JEM-2100F) were used for surface characterization. Raman spectroscopy (with 514 nm) was performed under ambient condition.

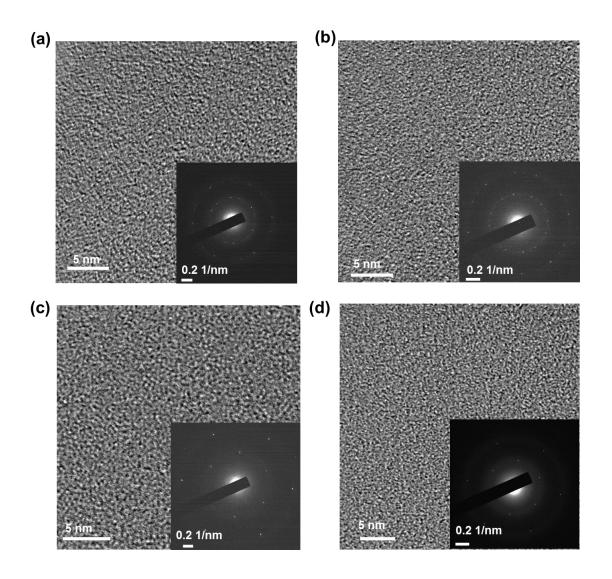

Supporting Figures

Fig. S1. (a) (b) XPS spectra of the functionalized n-RGO channels on FET devices with (a) benzene molecules (e.g., phenyl-NO₂, phenyl-Br, and phenyl-NH₂) and (b) benzene diazonium compounds (e.g., N_2^+ -phenyl-NO₂, N_2^+ -phenyl-Br, and N_2^+ -phenyl-NH₂). (c) (d) XPS spectra of the functionalized p-CVD-G channels on FET devices with (c) benzene molecules (e.g., phenyl-NH₂ and phenyl-Br) and (b) benzene diazonium compounds (e.g., N_2^+ -phenyl-NH₂ and N_2^+ -phenyl-NH₂ and N_2^+ -phenyl-NH₂.

High resolution X-ray photoelectron spectroscopy (XPS) could characterize physisorption of the benzene molecules on the n-RGO channels of FET devices (Fig. S1a) and chemisorption of the

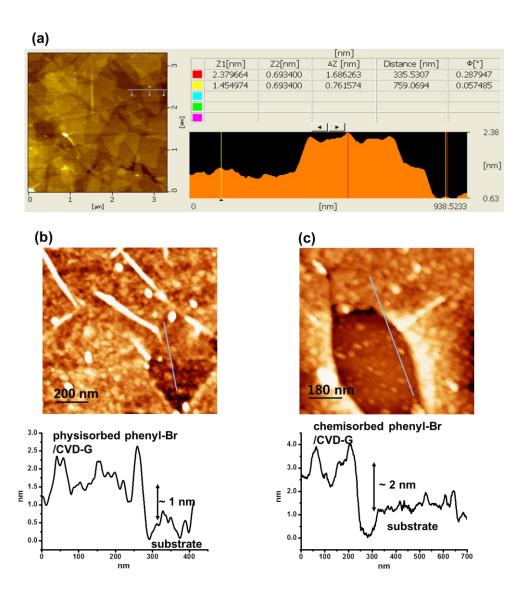

benzene diazonium compounds on the n-RGO channels of FET devices (Fig. S1b). The XPS spectra confirmed the existence of N (for -NO₂ and -NH₂ groups) and Br (for -Br groups) elements on n-RGO for both cases of physisorption and chemisorption. For the physisorption (Fig. S1a), N1s of nitrobenzene was detected at 406.1 eV for -NO₂ groups (accompanying with an additional peak at 399.5 eV from -NH₂ groups due to X-ray beam-induced reduction). Br3d of bromobenzene was detected at 70.5 eV. N1s of aminobenzene was detected at 399.6 eV. For the chemisorption (Fig. S1b), N1s of 4-nitrobenzene was detected at 406.0 eV for -NO₂ groups. Br3d of 4-bromobenzene and N1s of 4-aminobenzene were detected at 70.7 eV and 399.8 eV, respectively. These XPS spectra suggested that the molecular functionalization on the n-RGO channel was successfully prepared. Also, XPS spectra for physisorption and chemisorption of molecules on p-CVD-G (Fig. S1c,d) confirmed the existence of N (for -NH₂ groups) and Br (for -Br groups) elements.

Fig. S2. (a) (b) High-resolution transmission electron microscopy (TEM) images and selected area electron diffraction (SAED) patterns of n-RGO after molecular (a) physisorption and (b) chemisorption.

(c) (d) High-resolution TEM images and SAED patterns of p-CVD-G after molecular (c) physisorption and (d) chemisorption.

In Fig. S2a and b, the n-RGO channels were fabricated with n-RGO sheets (having a 2~3 micrometerslateral size) over layered at the each edge of them. The SAED patterns of n-RGO displayed a hexagonally symmetric pattern indicating a bilayer region of n-RGO. Fig. S2a show that the lattice constant was measured with 2.44±0.01 Å, similar to that of the intrinsic graphene,⁴ indicating that physical functionalization of molecules does not change the conjugated framework of n-RGO. In Fig. S2b, the lattice constant of n-RGO was slightly increased (2.48±0.01 Å) after the chemical functionalization, revealing the expansion of bonding length from C=C sp² to C-C sp³.⁴ In Fig. S2c and d, the SAED patterns displayed a hexagonally symmetric pattern of single-layer graphene, which confirmed that the lattice constant of p-CVD-G also was slightly increased (2.49±0.01 Å) after the chemical functionalization as compared with that (2.45±0.02 Å) of the physical functionalization.

Fig. S3. (a) AFM image and line profiles of an n-RGO channel on a FET device. Single or double sheets of n-RGO showed a thickness of 0.76 nm or 1.7 nm from the substrate, respectively. (b) (c) AFM images and line profiles of (b) physisorbed phenyl-Br on p-CVD-G and (c) chemisorbed phenyl-Br on p-CVD-G. Considering the molecular length of phenyl-Br (~0.63 nm calculated with ChemBio3D), thickness of graphene (0.5~0.8 nm in an AFM image), and surface roughness (~0.5 nm), the height (or thickness) difference (~1 nm) between (c) and (d) images imply that chemically functionalized phenyl-Br molecules are vertically attached on the p-CVD-G surface.

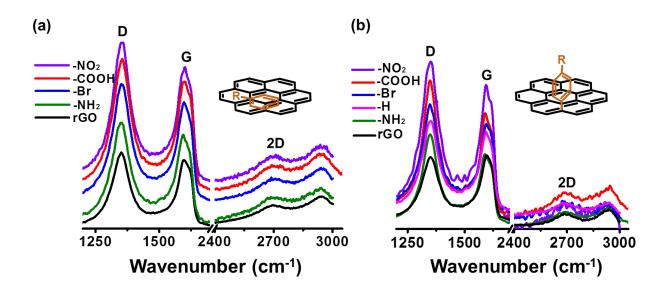


Fig. S4. (a) (b) Raman spectra of (a) physically- and (b) chemically-functionalized p-CVD-G frameworks.

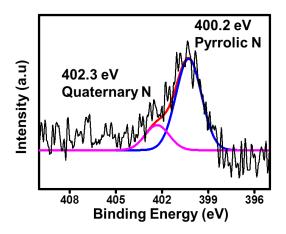
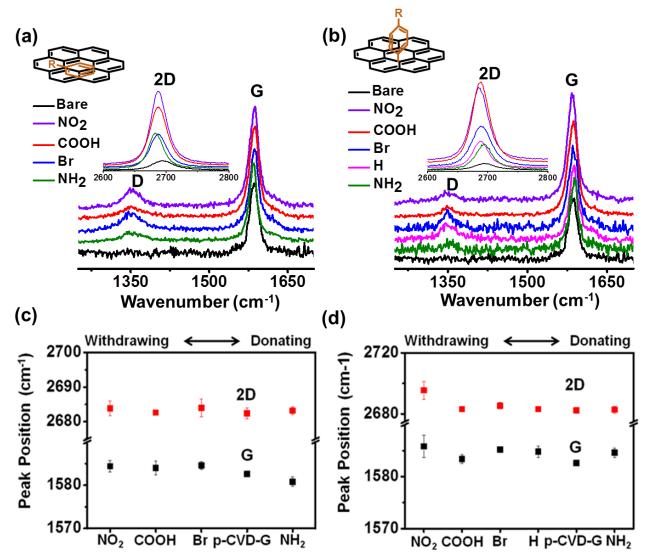



Fig. S5. XPS spectrum of N 1s for n-RGO.

Table S1. Raman peak positions and the I(D)/I(G) ratios for the D- and the G-bands of the molecularly-

R	D	G	<i>I</i> (D)/ <i>I</i> (G)	R L	D	D G	<i>I</i> (D)/ <i>I</i> (G)
	/cm ⁻¹	/cm ⁻¹		\mathbf{Q}	/cm ⁻¹	/cm ⁻¹	I(D)/I(G)
Pristine	1350	1593	1.12	Pristine	1346	1595	0.9
$\mathbf{R} = \mathbf{NO}_2$	1350	1597	1.13	$\mathbf{R} = \mathbf{NO}_2$	1350	1593	1.17
СООН	1354	1594	1.14	C00	1343	1591	1.32
Br	1350	1594	1.13	Br	1347	1593	1.21
\mathbf{NH}_2	1350	1592	1.08	NH_2	1350	1591	1.27
				Н	1351	1593	1.14

functionalized n-RGO FET devices for Fig. 1a and b.

Fig. S6 (a) (b) Raman spectra of (a) physically- and (b) chemically-functionalized p-CVD-G frameworks. (c) (d) Plots of the peak positions for the G-band and the 2D-band with regard to (c) physically- and (d) chemically-functionalized p-CVD-G frameworks. Peak position plots were average values with the error bars denoting the standard deviations, which were obtained by each 5~10 place with 2~3 samples.

In Raman spectroscopy analysis for molecular functionalized p-CVD-G FETs, the physically adsorbed benzene molecules with the electron withdrawing groups induced a slight up-shift compared to the Gband of the pristine p-CVD-G, while the benzene molecule with the electron donating group induced a down-shift (Fig. S6a). On the other hand, the G-bands of all samples modified with the covalently-bound benzene molecules with different functional groups up-shifted from that of pristine p-CVD-G, indicating that all p-CVD-G channels modified with the covalently-bound benzene molecules produced the only hole-doped p-CVD-G channel (*i.e.*, p-type) (Fig. S6b). Such phenomenon is assumed to come from the pprone nature of p-CVD-G as reported in the previous literature.⁵ Furthermore, the 2D-band for all p-CVD-G samples exhibited the up-shift regardless of the adsorption process or the molecular functionality. The 2D- and G-band shifts revealed molecular doping characteristics for the physical functionalization; ndoping has the 2D- and G-bands shift to the reverse direction while p-doping has those bands shift to the same direction (Fig. S6c).⁶ However, molecular doping characteristics for the chemical functionalization of p-CVD-G were not observed; both molecular electron donating or electron withdrawing groups have the 2D- and G-bands shift to the same direction (Fig. S6d). As shown in Fig. 1 for the chemisorption of n-RGO, no effects of functional groups on p-CVD-G covalently bound molecules is assumed by the molecular orientation of new C-C bonds.

Supporting reference

- 1. V. D. Filimonov, M. Trusova, P. Postnikov, E. A. Krasnokutskaya, Y. M. Lee, H. Y. Hwang, H. Kim and K.-W. Chi, *Org. Lett.*, 2008, **10**, 3961-3964.
- 2. I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, Nat. Commun., 2010, 1, 73.
- 3. M. S. Choi, S. H. Lee and W. J. Yoo, J. Appl. Phys., 2011, 110, 073305-073306.
- 4. H. Zhu, P. Huang, L. Jing, T. Zuo, Y. Zhao and X. Gao, J. Mater. Chem., 2012, 22, 2063-2068.
- 5. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, *Science*, 2009, **324**, 768-771.
- 6. X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen and L.-J. Li, Small, 2009, 5, 1422-1426.