Electric field induced DNA damage: an open door for selective mutations (Supporting Information)

José P. Cerón-Carrasco*,† and D. Jacquemin*,†,‡

Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, and Institut Universitaire de France, 103 bd St Michel, 75005 Paris Cedex 5, France.

E-mail: Jose.Ceron@univ-nantes.fr; Denis.Jacquemin@univ-nantes.fr

*To whom correspondence should be addressed [†]CEISAM, Nantes [‡]IUF

(i) Computational Details

The well-known polarisable continuum model $(PCM)^1$ is included through single point energy calculations performed on the gas phase geometries. These single-point calculations have been performed with larger basis sets (including diffuse functions) aiming to provide the most accurate results. The used level of theory is: PCM-(M06-2X/6-311++G(d,p):M06-2X/6-31+G(d):PM6)//M06-2X/6-311G(d,p):M06-2X/6-31G(d):PM6.

(ii) Relatives energies

 Table S-1: Relative total electronic energies for all located minima and transition states (in kcal/mol). The canonical GC base pair is taken as reference for computing energies.

	Negative strengths				Positive strengths			
E _{ext}	GC1ts	GC1	GC21ts	GC21	GC1ts	GC1	GC21ts	GC21
0			19.54	11.42				
10			19.56	10.48			18.28	10.73
20			19.75	10.30			17.52	10.78
40			8.99	9.97			16.48	11.25
60			-	9.75	_	4.46	15.33	11.26
80	4.81	-3.80	_	9.61	_	-0.71	13.90	11.52
100	2.81	-9.29	_	8.52	_	-1.37	14.64	13.76

The energies listed in Table S-2 confirm the larger impact of electric fields in the stability of GC1 and GC2 rare tautomeres compared to the effect on the GC21 form. Indeed, at -100 and -100×10^{-4} au, GC1 and GC2 become ca. 20 and 15 kcal mol⁻¹ more stable than GC21. Consequently, in our paper we only discuss the effects of the most stable mutated forms at each field strength.

¹J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3093.

(iii) Rare tautomer structures

Figure S-1: Chemical structures and atomic numbering for the canonical and rare tautomeric forms of the GC base pairs.

Table S-2: Stacking effect on the GC H-bond distances (Å) under several external electric fields (au/ 10^{-4}). $\overline{E_{ext} \quad O_6 - N_4 \quad N_1 - N_3 \quad N_2 - O_2}$

E _{ext}	O_6-N_4	N_1-N_3	N_2-O_2				
Single GC pair ^a							
0	2.80	2.94	2.92				
-10	2.83	2.94	2.90				
-20	2.85	2.93	2.88				
-40	2.89	2.93	2.84				
-60	2.93	2.92	2.79				
-80	2.97	2.92	2.75				
-100	3.01	2.92	2.71				
DNA-embedded GC pair							
0	2.74	2.96	2.99				
-10	2.76	2.96	2.97				
-20	2.78	2.96	2.97				
-40	2.80	2.97	2.95				
-60	2.83	2.97	2.94				
-80	2.86	2.97	2.92				
-100	2.90	2.97	2.88				

^{*a*} Data from Ref. 12 (see main text).