Supporting Information

Pyridine-Based Dicarbene Ligand: Synthesis and Structure of Bis-2-pyridylidene Palladium Complex

Tetsushi Yoshidomi,^a Yasutomo Segawa,*^a and Kenichiro Itami^{a,b}

 ^a Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan)
^b Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

E-mail: ysegawa@nagoya-u.jp

Table of Contents

1. Experimental Section	S2–S7
2. X-ray Crystallography	S8–S10
3. ¹ H and ¹³ C NMR Spectra	S11–S14

1. Experimental Section

General

Unless otherwise noted, all materials including dry solvents were obtained from commercial suppliers and used without further purification. Toluene, tetrahydrofuran (THF), and diethyl ether (Et₂O) were purified by passing through a solvent purification system (Glass Contour). All reactions were performed using standard vacuum-line and Schlenk techniques under nitrogen gas or in the argon-filled glovebox (Miwa MFG). Work-up and purification procedures were carried out with reagent-grade solvents under air.

Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). The developed chromatogram was analyzed by UV lamp (254 nm and 365 nm). Flash column chromatography was performed with E. Merck silica gel 60 (230-400 mesh). High-resolution mass spectra (HRMS) was obtained from a Bruker micrOTOF-QII (electrospray ionization, ESI MS). Melting points were measured on a MPA100 Optimelt automated melting point system. Nuclear magnetic resonance (NMR) spectra were recorded on JEOL JNM-ECA-600 (¹H 600 MHz, ¹³C 150 MHz) spectrometer and JEOL JNM-ECS-400 (¹H 400 MHz, ¹³C 100 MHz, ¹¹B 128 MHz, ¹⁹F 376 MHz, ³¹P 162 MHz) spectrometer. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to CDCl₃ (δ 7.26 ppm), CD₃CN (δ 1.94 ppm), and CD₃OD (δ 3.31 ppm). Chemical shifts for ¹³C NMR are expressed in ppm relative to CDCl₃ (δ 77.0 ppm), CD₃CN (δ 118.3 ppm), and CD₃OD (δ 49.0 ppm). Chemical shifts for ¹¹B, ¹⁹F, and ³¹P NMR are expressed in ppm relative to external standards (BF₃·OEt₂, CFCl₃, and H₃PO₄ as 0.0 ppm, respectively). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, ddd = doublet of doublets of doublets, vt = virtual triplet, m = multiplet, br = broad), coupling constant (Hz), and integration.

Synthesis of 2-chloro-3,3'-bipyridine (1)

To a 300 mL two-necked flask equipped with three-way stopcock and a magnetic stirring bar were added 2-chloro-3-bromopyridine (2.13 g, 11.1 mmol), 3-pyridineboronic acid (2.32 g, 18.9 mmol), sodium carbonate (8.32 g, 78.9 mmol), PdCl₂(dppf)·CH₂Cl₂ (1.28 g, 1.57 mmol), 120 mL of toluene and 30 mL of water under nitrogen atmosphere. The mixture was stirred at reflux for 44 h. The resulting suspension was cooled to room temperature and quenched with 50 mL of water, extracted with EtOAc (50 mL × 3), dried over Na₂SO₄, and evaporated *in vacuo* to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/EtOAc = 1:2, $R_f = 0.4$) to afford 2-chloro-3,3'-bipyridine (1) (1.37 g, 65%) as a yellow solid.

¹H NMR (CDCl₃, 400 MHz) δ 7.36 (dd, J = 8, 5 Hz, 1H), 7.40 (ddd, J = 8, 5, 1 Hz, 1H), 7.69 (dd, J = 8, 2 Hz, 1H), 7.82 (ddd, J = 8, 2, 2 Hz, 1H), 8.45 (dd, J = 5, 2 Hz, 1H), 8.67 (dd, J = 5, 2 Hz, 1H), 8.68 (dd, J = 2, 1 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 122.2 (CH), 122.3 (CH), 132.4 (4°), 132.7 (4°), 135.9 (CH), 139.0 (CH), 148.4 (CH), 148.6 (CH), 148.8 (CH), 148.9 (4°)

Synthesis of 2-chloro-1,1'-dimethyl-[3,3'-bipyridine]-1,1'-diium bis(tetrafluoroborate) (2)

To a 100mL two-necked flask equipped with three-way stopcock and a magnetic stirring bar was added **1** (600 mg, 3.15 mmol) and $(CH_3)_3OBF_4$ (2.80 g, 18.9 mmol) and acetonitrile (10 mL) under nitrogen atmosphere. The resulting solution was stirred at 60 °C for 14 h. After the reaction mixture was concentrated *in vacuo*, acetone and Et₂O were added to yield white precipitate. The solid was washed with THF and recrystallized with acetonitrile/Et₂O to afford compound **2** (701 mg, 57%).

¹H NMR (CD₃CN, 400 MHz) δ 4.41 (s, 6H), 8.13 (dd, J = 8, 6 Hz, 1H), 8.21 (dd, J = 8, 6 Hz, 1H), 8.53 (dd, J = 8, 2 Hz, 1H), 8.61 (d, J = 8 Hz, 1H), 8.81 (s, 1H), 8.82 (d, J = 8 Hz, 1H), 8.92 (dd, J = 6, 2 Hz, 1H); ¹³ C NMR (CD₃CN, 100 MHz); δ 49.8 (CH₃), 127.1 (CH), 129.3 (CH), 135.1 (4°), 135.8 (4°), 146.5 (CH), 146.9 (CH), 147.3 (CH), 148.8 (CH), 149.9 (CH); ¹¹B (CD₃CN, 128 MHz) δ -2.14; ¹⁹F NMR (CD₃CN, 376 MHz) δ -151.5; mp: 215–218 °C; Anal. calcd. for C₁₂H₁₃N₂: C 36.55, H 3.32, N 7.10. found: C 36.49, H 3.32, N 6.70.

Synthesis of monodentate 2-pyridylidene palladium complex (3)

To a 50-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar were added **2** (62.0 mg, 160 μ mol), tetrakis(triphenylphosphine)palladium (200 mg, 176 μ mol), and THF (20 mL) in a glovebox. The mixture was stirred at 100 °C for 48 h. The resulting suspension was filtered by Celite[®] pad and acetonitrile was added to dissolve the white residue. The resulting acetonitrile solution was concentrated and recrystallized with acetonitrile/Et₂O to afford 2-pyridylidene complex **3** (117 mg, 71%) as a white crystal.

¹H NMR (CD₃CN, 600 MHz) δ 3.93 (s, 3H), 4.05 (s, 3H), 7.38 (dd, J = 8, 6 Hz, 1H), 7.44 (brs, 24H), 7.59 (brs, 6H), 7.73 (d, J = 8 Hz, 1H), 7.78 (d, J = 6 Hz, 1H), 7.92 (dd, J = 8, 6 Hz, 1H), 8.01 (s, 1H), 8.73 (d, J = 6 Hz, 1H), 9.04 (d, J = 8 Hz, 1H); ¹³C NMR (CD₃CN, 150 MHz) δ 49.5 (CH₃), 55.3 (CH₃), 124.9 (CH), 128.5 (CH), 128.8 (vt, ¹ $J_{PC} = 24$ Hz, 4°), 130.2 (vt, ² $J_{PC} = 5$ Hz, CH), 132.9 (CH), 134.9 (br, 4°), 140.3 (4°), 141.7 (CH), 144.4 (CH), 145.4 (CH), 146.9 (CH), 147.2 (CH), 190.0 (4°); ³¹P NMR (CD₃CN, 162 MHz) δ 20.1; ¹¹B (CD₃CN, 128 MHz) δ -2.14; ¹⁹F NMR (CD₃CN, 376 MHz) δ -151.5; mp: 213–215 °C; Anal. calcd. for C₄₈H₄₃N₂: C 56.23, H 4.23, N 2.73. found: C 56.14, H 4.27, N 3.04.

$Me \xrightarrow{PPh_3}_{PPh_3} \xrightarrow{Na_2CO_3}_{PPh_3} \xrightarrow{Na_2CO_3}_{Pd} \xrightarrow{Pd}_{O} \xrightarrow{O}_{O} \xrightarrow{Pd}_{O}$

Synthesis of bidentate 2-pyridylidene palladium complex (4) from 3

To a 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar were added **3** (30.0 mg, 290 μ mol) and Na₂CO₃ (24.0 mg, 1.45 mmol) in a glovebox. Dry methanol (3.0 mL) was added and the mixture was stirred at room temperature for 10 h. The reaction mixture was filtered and the solution was concentrated under reduced pressure. The crude product was purified by recrystallization with MeOH/Et₂O at room temperature to afford bidentate 2-pyridylidene complex (6.9 mg, 58%) as a yellow crystal of **4**·1/2NaBF₄. A NaBF₄-free crystal of **4** (**4**·2H₂O) was also obtained from the reaction with Cs₂CO₃ instead of Na₂CO₃.

¹H NMR (CD₃OD, 400 MHz) δ 4.30 (s, 6H), 7.50 (dd, J = 8, 6 Hz, 2H), 8.18 (d, J = 8 Hz, 2H), 8.32 (d, J = 6 Hz, 2H); ¹³C NMR (CD₃OD, 150 MHz) δ 50.4 (CH₃), 123.6 (CH), 131.8 (CH), 144.6 (CH), 152.3 (4°), 171.2 (4°), 183.9 (4°).; HRMS (ESI) *m*/*z* calcd for C₁₃H₁₂N₂O₃PdNa [M·Na]⁺: 372.9780, found: 372.9724; mp: 230.0–240.0 °C (dec.)

Synthesis of bidentate 2-pyridylidene palladium complex (4) from 2

To a 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar were added **2** (15.5 mg, 40.0 μ mol), Pd(PPh₃)₄ (50.0 mg, 44.0 μ mol), Cs₂CO₃ (65.2 mg, 20.0 μ mol), and dry THF (5.0 mL). The mixture was stirred at 100 °C for 12 h. The resulting solution was concentrated under reduced pressure. The yield of **4** was estimated to be 70% measured by ¹H NMR spectroscopy (solvent: CD₃OD, internal standard: THF).

2. X-ray Crystallography

Details of the crystal data and a summary of the intensity data collection parameters for 3.2MeCN and 4 are listed in Table S1. In each case, a suitable crystal was mounted with mineral oil on a glass fiber and transferred to the goniometer of a Rigaku Saturn CCD diffractometer. Graphite-monochromated Mo K α radiation was used. The structures were solved by direct methods with (SIR-97)^{S 1} and refined by full-matrix least-squares techniques against F^2 (SHELXL-97).^{S 2} The intensities were corrected for Lorentz and polarization effects. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.

	3·2MeCN	$4 \cdot 1/2 \text{NaBF}_4$	4 ·2H ₂ O
formula	$C_{52}H_{49}B_2ClF_8N_4P_2Pd$	$C_{26}H_{24}BF_4N_4NaO_6Pd_2\\$	$C_{13}H_{12}N_2O_5Pd$
fw	107.36	811.09	382.65
<i>T</i> (K)	103(2)	103(2)	103(2)
λ (Å)	0.71075	0.71075	0.71070
cryst syst	Monoclinic	Triclinic	Monoclinic
space group	$P2_{1}/c$	P-1	$P2_1/a$
a, (Å)	11.8013(7)	6.894(4)	6.8562(12)
b, (Å)	9.4307(6)	10.276(6)	20.450(4)
c, (Å)	44.208(3)	18.762(11)	9.9565(18)
$\alpha, \Box(\deg\Box)$	90	89.999(13)	90
β , (deg \Box	92.807(3)	86.530(16)	102.657(2)
$\gamma, \Box(\deg \Box)$	90	86.072(14)	90
$V, (Å^3)$	4914.3(5)	1323.6(139	1362.1(4)
Ζ	4	2	4
D_{calc} , (g / cm ³)	1.497	2.035	1.866
μ (mm ⁻¹)	0.569	1.456	1.386
F(000)	2256	800	760
cryst size (mm)	$0.20\times0.20\times0.20$	$0.20\times 0.02\times 0.01$	$0.20\times0.10\times0.05$
2θ range, (deg \Box	3.06-25.00	3.10-25.00	3.20-25.00
reflns collected	50454	18004	8946
indep reflns/R _{int}	8608/0.0497	4651/0.0571	2374/0.0279
params	663	401	192
GOF on F^2	1.067	1.095	1.067
$R_1, WR_2 [I > 2\sigma(I)]$	0.0382, 0.0902	0.0476, 0.1140	0.0289, 0.0713
R_1 , w R_2 (all data)	0.0411, 0.0923	0.0561, 0.1205	0.0327, 0.0738

Table S1. Crystallographic data and refinement details for $3 \cdot 2$ MeCN, $4 \cdot 1/2$ NaBF₄ and $4 \cdot 2$ H₂O.

S1) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr., 1999, 32, 115–119.

S2) G. M. Sheldrick, University of Göttingen: Göttingen, Germany, 1997.

Supporting Information (Yoshidomi, Segawa, Itami) Pyridine-Based Dicarbene Ligand: Synthesis and Structure of Bis-2-pyridylidene Palladium Complex

Figure S1. Drawing of $3 \cdot 2$ MeCN with 50% thermal ellipsoid. All hydrogen atoms and minor part of disordered BF₄ are omitted for clarity.

Figure S2. Drawing of $4 \cdot 1/2$ NaBF₄ with 50% thermal ellipsoid. All hydrogen atoms are omitted for clarity.

Figure S2. Drawing of $4.2H_2O$ with 50% thermal ellipsoid. All hydrogen atoms are omitted for clarity.

4. ¹H and ¹³C NMR Spectra

¹H NMR spectrum of the single crystal of 3.2CH₃CN (600 MHz, CD₃OD)

¹H NMR spectrum of **4** (400 MHz, CD₃OD)

¹³C NMR spectrum of 4 (150 MHz, CD₃OD)

Mass spectrum of $4 \cdot \text{Na}^+$ (ESI)

Simulated isotope pattern of $4 \cdot Na^+$

