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Experimental Section 

Catalyst preparation 

The catalysts are prepared by a co-precipitation method. Appropriate amounts of 

cerium nitrate and ammonium molybdate are dissolved and excess urea solution is added 

with stirring, resulting in the precipitation of a solid. The precipitated solids are collected 

by filtration and then washed with distilled water, followed by drying at 120 °C for 12 

hours and calcination at 500 °C for 5 hours. Finally, the catalysts are crushed and sieved 

to 40−60 mesh. The sample, denoted as the MoxCe, suggests a mass percent ratio of 

MoO3 to CeO2. 

Activity measurement 

Activity measurements are performed in a fixed−bed quartz reactor (inner diameter of 

5 mm) using 100 mg of catalyst measuring 40−60 mesh. The feed gas mixture contains 

500 ppm NO, 500 ppm NH3, 3 % O2, and the balance is N2. The total flow rate of the 

feed gas is 200 cm
3
·min

-1
 and the gas hourly space velocity is approximately 120,000 h

-1
. 

Here, to ensure the reaction order is zero with respect to the NH3, the concentration of 

NH3 is usually slightly higher (5−10 ppm) than that of NO. The concentrations of the 

gases (NO, NO2, N2O, and NH3) are continually monitored by an FTIR spectrometer 

(MultiGas TM 2030 FTIR Continuous Gas Analyzer). The concentration data are 

collected when the reaction reaches a steady state after 30 min at each temperature. To 

better evaluate the catalytic activity, kinetic parameters are calculated according to the 

following equation, applied to the NOx conversion: 

 
ln(1 )

V
k x

W
   

 
⑴ 
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In the above equation, k is the reaction rate constant (cm
3
·g

-1
·s

-1
), V is the total gas 

flow rate (cm
3
·s

-1
), W is the mass of catalyst in the reactor, and x is the NO conversion in 

the testing activity. The equation is based on the understanding that the reaction is first 

order dependent on NO and zero order dependent on NH3.
1, 2

  

Catalyst characterization 

Characterization of the BET surface area of the samples is carried out with a 

Micromeritics ASAP 2020 apparatus. The crystal structure is determined using X-ray 

diffraction (XRD) measurements (Rigaku, D/max-2200/PC) between 20 ° and 80 ° at a 

step rate of 10 °·min
-1

 operating at 40 kV and 30 mA using Cu Kα radiation. X-ray 

photoelectron spectroscopy (XPS) is performed with an ESCALab220i-XL electron 

spectrometer from VG Scientific using 300 W Al Kα radiations. The binding energies are 

referenced to the C1s line at 284.8 eV. The temperature programmed desorption (TPD) of 

NH3 and temperature programmed reduction (TPR) of H2 experiments are performed on a 

chemisorption analyzer (Micromeritics, ChemiSorb 2920 TPx) under a 10 % NH3/He or 

10 % H2/Ar gas flow (50 mL·min
-1

) at a rate of 10 °C·min
-1 

up to 550 °C for NH3−TPD 

and 750 °C for H2−TPR. Each sample is pretreated in He for 1 h at 350 °C before testing.  

In situ Raman spectroscopy 

In situ Raman spectra are measured using a Raman microscope (InVia Reflex, 

Renishaw) equipped with a deep-depleted thermoelectrically cooled charge-coupled 

device (CCD) array detector and a high-grade Leica microscope (long working distance 

objective 50×). The sample is placed into the sample cell, which is specially designed for 

catalytic reactions carried out at high temperature and pressure (CCR 1000, Linkam fitted 

with quartz windows). The samples (25 mg) with larger than 60 meshes are mounted on 
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unreactive disposable ceramic fabric filters, placed inside the ceramic heating element, 

which is capable of heating samples from ambient up to 1000 °C. The 532 nm line (5 

mW at sample) of laser is used for recording the Raman spectra. The sample is pretreated 

in flowing N2 at 350 °C for 1 h then cooled down to room temperature and switch to N2 

purging. The gas used for the experiments is a mixture 500 ppm NO/N2 and 5 % O2/N2 

with a total flow rate of 50 cm
3
·min

-1
.  

In situ IR spectroscopy 

In situ IR spectra are recorded on a Fourier transform infrared spectrometer (FTIR, 

Nicolet 6700) equipped with a SMART collector and an MCT detector cooled by liquid 

N2. Diffuse reflectance measurements are performed in situ in a high-temperature cell 

with a ZnSe window. The catalyst with larger than 60 meshes is loaded in the Harrick IR 

cell and heat to 350 °C under N2 at a total flow rate of 100 cm
3
·min

-1
 for 1 h to remove 

any adsorbed impurities. The background spectrum is collected in a flowing N2 

atmosphere and subtracted from each sample spectrum. The spectra are recorded by 

accumulating 32 scans at a resolution of 4 cm
-1

. Here, to diminish the influence of 

absorbance for different catalysts, the absorbance intensity was set to 3.00 for every 

sample at 100 °C when collecting the background spectra. 
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Basic properties of the MoxCe catalysts 

Table 1 summarizes the basic physic-chemical properties of the prepared catalysts. 

BET surface areas and labile surface oxygen (Oα) continuously decrease, while surface 

Mo:Ce ratio calculated and Mo surface density increase with elevating MoO3 content. 

Table 1. Basic properties of the MoxCe catalysts. 

 SBET 

(m
2
/g) 

Oα ratio 

(%) 

Surface Mo:Ce Mo surface density 

(Mo/nm
2
) 

Mo5Ce 69.4 58.1% 0.11 2.9 

Mo10Ce 57.4 55.8% 0.26 6.6 

Mo20Ce 46.0 46.9% 0.41 15.1 

Mo50Ce 39.8 45.1% 0.74 35.0 

Mo100Ce 31.7 26.7% 0.93 65.9 

Comparison of the SCR catalysts 

Fig. S1 shows the activities of state-of-art SCR catalysts under GHSV of 60000 h
-1

. 

CeO2-WO3 exhibited remarkable high NOx removal efficiency than the other two 

catalysts, while CeO2-MoO3 exhibited more active than V2O5-WO3/TiO2 at low 

temperature. The loss of activity at 400 °C for CeO2-MoO3 could be responsible for the 

NH3 oxidation. 
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Fig. S1 Comparison of the SCR activity on CeO2-MoO3, CeO2-WO3 and V2O5-WO3/TiO2 catalysts. 
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Phase structures of the MoxCe catalysts 

Fig. S2 shows the XRD patterns of the MoxCe catalysts, all the peaks can be 

attributed to the cubic fluorite phase of CeO2 (PDF# 34−0394). With increasing the 

MoO3 content, the diffraction peaks are broadened, accompanied by a decrease in their 

intensities. This can be attributed to a transformation from the bulk, regular crystals to an 

amorphous structure. The MoO3 phase cannot be directly determined through the XRD 

results, indicating that MoO3 could be highly dispersed on the CeO2 surface. 
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Fig. S2 XRD patterns of the MoxCe catalysts. 

Raman peaks assignments 

 The main peak at 464 cm
-1

 can be assigned to the F2g mode of oxygen atoms around 

cerium ions in the cubic phase CeO2, the peaks at 267 cm
-1

 and 594 cm
-1

 can be assigned 

to a second-order transverse acoustic mode and a defect-induced mode of CeO2, 

respectively.
3, 4

  The peaks at 998 and 980 cm
-1

 can be attributed to the Mo=O vibrational 

modes,
5
 and the peaks at 886 and 786 cm

-1
 can be assigned to the Mo−O−Mo vibrational 

modes. The bands (327, 814 and 945 cm
-1

) can be assigned to Ce2Mo4O15.
6, 7
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XPS results 

The XPS results of Ce 3d are shown in Fig. S3(a). The bands labeled µ, µ’’, µ’’’, ν, ν’’ 

and ν’’’ represent the 3d
10

4f
0
 state of Ce

4+
, whereas u’ and v’ represent the 3d

10
4f

1
 state, 

corresponding to Ce
3+

,
8
 and the corresponding Mo 3d spectra are shown in Fig. S3 (b). 
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Fig. S3 XPS spectra of (a) Ce 3d and (b) Mo 3d for the MoxCe catalysts. 
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The XPS spectra of O 1s for the MoxCe catalysts are shown in Fig. S4. The O 1s 

peaks can be fitted into two peaks, referred to as the lattice oxygen at 529.3−530.3 eV 

(Oβ) and the chemisorbed surface oxygen at 530.9−531.9 eV (Oα).
8
 The Oα appears 

highly active in oxidation reactions due to its higher mobility than the lattice oxygen Oβ. 

The ratio of the Oα (Table S1) decrease with increasing MoO3 content, suggesting that 

surface active oxygen species in ceria might be covered by molybdenum oxides. 
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Fig. S4 XPS spectra of O 1s for the MoxCe catalysts. 

NH3 adsorption at 100 °C 

Fig. S5 displays the in situ IR spectra of NH3 adsorption on the MoxCe catalysts at 

100 °C. The band centered in the range of 1100−1200 cm
-1

 can be assigned to the Lewis 

acid sites, while the peaks at 1440 and 1660 cm
-1

 can be attributed to the Brønsted acid 

sites.
9
 Lewis acid sites decrease while Brønsted acid sites are remarkably improved with 

elevating the MoO3 content. Moreover, two distinct peaks for the Lewis acid sites over 

Mo5Ce could be due to the different sites for NH3 adsorption on surface cerium or 
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molybdenum atoms. The similar IR spectra can be also found when study the vanadia 

supported on ceria. 
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Fig. S5 In situ IR spectra of NH3 adsorption on the MoxCe catalysts at 100 °C. 

NH3−TPD  

Fig. S6 shows the NH3−TPD profiles of the MoxCe catalysts in the temperature range 

of 80−500 °C. Two peaks, at 175 and 260 °C for the Mo5Ce catalyst can be assigned to 

the weak acid sites and strong acid sites, respectively. Both the peaks move to the low 

temperature, indicating the weakened stability of surface acidity. Considering the NH3 

desorption behaviors from in situ IR spectra (Fig. S7(b)-(f)), the unstable acid sites are 

originated from the Brønsted acid sites, especially for the Mo50Ce and Mo100Ce 

catalysts. It appears that the Ce2Mo4O15 compound on the catalysts significantly 

decreases the acid sites and shows the influences on the acid stability. 
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Fig. S6 NH3−TPD for the MoxCe catalysts in the temperature range of 80-500 °C. 

NH3 desorption in IR spectra in the range of 100-300 °C 

Fig. S7 (a)−(f) shows the in situ IR spectra of NH3 desorption in the temperature range 

of 100−300 °C. All the samples decrease in intensities with the elevated temperature. 
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Fig. S7 In situ IR spectra of NH3 desorption on the MoxCe catalysts in the temperature range of 100-

300 °C. 

NOx adsorption at 100 °C 

Fig. S8 shows the ad-NOx
-
 (mainly nitrate or nitrite species) on the MoxCe catalysts at 

100 °C. The bands centered at 1606, 1580, 1514, 1468, 1306 and 1237 cm
-1

 can be 

attributed to the bridged, bidentate and monodentate nitrate and bridged, bidentate, 

monodentate nitrite species, respectively.
9
 The ad-NOx

-
 for all the catalysts decrease with 

increasing the MoO3 content, only weak bridged and monodentate nitrate species are 

observable on the Mo100Ce catalyst. 

Fig. S9 (a)−(f) presents the NOx desorption on the MoxCe catalysts in the temperature 

range of 100−300 °C. Correlated with the surface structures of molybdenum oxides, the 

monomeric [MoOx] units could slightly promote nitrite species, while the polymeric or 

cerium molybdenum compound suppress the ad-NOx
-
. 
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Fig. S8 In situ IR spectra of NOx adsorption on the MoxCe catalysts at 100 °C. 
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Fig. S9 In situ IR spectra of NOx desorption on the MoxCe catalysts in the temperature range of 100-

300 °C. 

Reaction details on the Mo20Ce catalyst 

First the reactive ad-NH3 are studied shown in Fig. S10 (a). Nearly after NO and O2 

are introduced to the IR cell for 10 min, part of Lewis and Brønsted acid sites bands are 

consumed. Considering the low SCR activity of the catalyst at 150 °C, it appears that 

Lewis and Brønsted acid sites are reactive on the CeO2-MoO3 catalysts. When the gas 

order is reversed, the ad-NOx
-
 stable exist on the spectra within 10 min of NH3 purging, 

while the ad-NH3 appear and grow at 3 min. The results indicate that ad-NOx
-
 is inactive. 

The same reaction are carried out at 250 °C and shown in Fig. S11. Both Lewis and 

Brønsted acid sites can be consumed by NO and O2 purging for 10 min, and the pre- 

adsorbed NOx
-
 nearly unchange during the whole experiment. 
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Fig. S10 In situ sequential Raman spectra of the Mo20Ce catalyst at 150 °C 
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Fig. S11 In situ sequential Raman spectra of the Mo20Ce catalyst at 150 °C 

Influences of SO2 and H2O on the Mo20Ce at 300 °C 

Fig. S12 shows the SO2 and H2O resistance on the Mo20Ce catalyst at 300 °C for 12 h. 

SO2 significantly decreases the NOx conversion of the Mo20Ce catalyst. When shut down 

the SO2 gas flow, the SCR activity cannot be recovered. That indicates the sulfate or 
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sulfite species strongly boned to the surface active sites. Considering the similar 

acid/base properties of SO2 with NO2, we assume that the sulfate could occupy the 

surface defect sites. When SO2 and H2O are sequentially introduced to the gas flow, the 

NO conversion of the Mo20Ce catalysts decreases from approximately 85 % to 45 %. As 

soon as shutting down the SO2 and H2O, the catalyst activity is partly recovered, the NO 

conversion are similar as that the SO2 influence alone showed. That indicate the influence 

of H2O on the Mo20Ce catalyst is temporary and recovered. 
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Fig. S12 Influences of SO2 and H2O on the Mo20Ce catalyst at 300 °C. 
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