Amine/N-Heterocyclic Carbene Cascade Catalysis for Asymmetric Synthesis of Fused Indane Derivatives with Multiple Chiral Centres

Zhi-Jun Jia,^b Kun Jiang,^a Qing-Qing Zhou,^b Lin Dong,^b and Ying-Chun Chen*^{a,b}

^a College of Pharmacy, Third Military Medical University, Chongqing 400038, China.

^b Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of

Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041,

China. E-mail: ycchen@scu.edu.cn; ycchenhuaxi@yahoo.com.cn

Supplementary Information

Table of Contents

- 1. General methods
- 2. General procedure for cascade Diels-Alder and benzoin reaction
- 3. More screenings with two 2-bromoindanones
- 4. Sequential transformations with the Diels-Alder intermediate
- 5. Crystal data and structure refinement for 2,4-dinitrobenzenehydrazone of 5a
- 6. NMR spectra and HPLC chromatograms

1. General methods

NMR data were obtained for ¹H at 400 MHz, and for ¹³C at 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI-HRMS was recorded on a Bruker Apex-2. In each case, enantiomeric excess was determined by HPLC analysis on Chiralpak AS, IC, AD and Chiralcel OD columns in comparison with authentic racemic samples. UV detection was monitored at 220 nm. Optical rotation data were examined at 589 nm in CHCl₃ solution at 20 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I₂ were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. All types of 3-bromo-1-indanone were prepared from substituted benzaldehyde and Meldrum's acid according to literature procedures.¹

(1) N. Griebenow, T. Flessner, A. Buchmueller, M. Raabe, H. Bischoff and P. Kolkhof, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 2554.

(2) (*a*) M. Marigo, T. C. Wabnitz, D. Fielenbach and K. A. Jørgensen, *Angew. Chem., Int. Ed.*, 2005, 44, 794; (*b*) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, *Angew. Chem., Int. Ed.*, 2005, 44, 4212;
(*c*) Y.-K. Liu, C. Ma, K. Jiang, T.-Y. Liu and Y.-C. Chen, *Org. Lett.*, 2009, 11, 2848.

2. General procedure for cascade Diels-Alder and benzoin reaction

The reactions were performed with 3-bromo-1-indanone **3** (0.2 mmol), 2,4-dienal **4** (0.1 mmol), amine catalyst **1b** (0.02 mmol), carbene precursor **2** (0.02 mmol) and PhCOONa (0.3 mmol) in CHCl₃ (1 mL) at 55 °C for a specified reaction time. After the reaction completed, the mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford fused indane derivative **5**.

(2aR,2a¹S,5aR,9bR)-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-hexahydro-1*H* -cyclopenta[*jk*]fluoren-1-one (5a): 4 h; 57% yield; $[\alpha]_D^{20} = -160.2$ (c = 0.60in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak AD, *n*hexane/*i*PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.02 min, t

(minor) = 9.49 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.39-7.35 (m, 1H), 7.30-7.19 (m, 8H), 6.08 (t, *J* = 4.8 Hz, 1H), 3.87 (dd, *J* = 13.6, 7.2 Hz, 1H), 3.65 (dd, *J* = 20.4, 10.0 Hz, 1H), 3.28 (t, *J* = 9.2

Hz, 1H), 2.89-2.81 (m, 1H), 2.60-2.54 (m, 2H), 2.08 (dd, J = 17.6, 11.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 215.0$, 148.2, 142.2, 141.1, 140.3, 130.1, 128.3, 127.8, 127.1, 125.9, 123.7, 123.5, 123.3, 89.0, 48.8, 41.5, 39.4, 31.2, 26.9 ppm; ESI-HRMS: calcd. for C₂₁H₁₈O₂+Na: 325.1204, found 325.1202.

(2a*R*,2a¹*S*,5a*R*,9b*R*)-8-fluoro-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-hex ahydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5b): 3 h; 52% yield; $[\alpha]_D^{20} =$ -183.0 (*c* = 0.20 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*hexane/*i*PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major)

= 20.53 min, t (minor) = 12.72 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.31-7.20 (m, 6H), 7.05 (td, J = 8.8, 2.4 Hz, 1H), 6.91 (dd, J = 8.0, 2.0 Hz, 1H), 6.08 (t, J = 4.8 Hz, 1H), 3.86-3.83 (m, 1H), 3.66 (dd, J = 20.0, 10.0 Hz, 1H), 3.30 (t, J = 9.2 Hz, 1H), 2.87-2.82 (m, 1H), 2.59 (dd, J = 18.0, 8.8 Hz, 1H), 2.54 (dt, J = 17.2, 5.6 Hz, 1H), 2.11 (dd, J = 18.0, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 214.7, 163.8, 161.3, 143.9, 143.7, 141.0, 140.4, 135.6, 130.1, 128.4, 127.2, 125.9, 125.0, 124.9, 123.3, 117.5, 117.2, 110.3, 110.1, 88.1, 49.3, 41.6, 38.9, 31.3, 27.1 ppm; ESI-HRMS: calcd. for C₂₁H₁₇FO₂+H: 321.1291, found 321.1293.

(2aR,2a¹S,5aR,9bR)-9-chloro-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-hexah ydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5c): 4 h; 36% yield; $[\alpha]_D^{20} = -57.5$ (*c* = 0.12 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak IC, *n*hexane/*i*PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.08 min, t

(minor) = 20.92 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.33-7.20 (m, 8H), 6.06 (t, *J* = 4.4 Hz, 1H), 3.89 (dd, *J* = 13.2, 6.8 Hz, 1H), 3.57 (dd, *J* = 20.4, 10.0 Hz, 1H), 3.20 (dd, *J* = 10.4, 8.8 Hz, 1H), 2.86-2.81 (m, 1H), 2.64-2.56 (m, 2H), 2.13 (dd, *J* = 16.8, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 211.8, 150.9, 140.9, 140.3, 139.6, 139.0, 130.9, 128.7, 128.4, 127.2, 126.0, 123.1, 122.2, 89.1, 48.3, 41.3, 39.5, 30.6, 26.5 ppm; ESI-HRMS: calcd. for C₂₁H₁₇ClO₂+Na: 359.0815, found 359.0816.

 $(2aR,2a^{1}S,5aR,9bR)$ -7-chloro-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-h exahydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5d): 3 h; 49% yield; $[\alpha]_{D}^{20} =$ -282.6 (c = 0.14 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak IC, *n*hexane/*i*PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.08 min, t (minor) = 11.17 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30-7.20$ (m, 7H), 7.14 (d, J = 8.4 Hz, 1H), 6.07 (t, J = 4.0 Hz, 1H), 3.87 (dd, J = 13.2, 7.2 Hz, 1H), 3.65 (dd, J = 20.4, 10.0 Hz, 1H), 3.29 (t, J = 9.6 Hz, 1H), 2.86-2.82 (m, 1H), 2.62-2.54 (m, 2H), 2.05 (dd, J = 17.6, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 214.6, 150.2, 140.7, 136.2, 133.7, 130.1, 128.4, 128.2, 127.2, 125.9, 124.5, 124.1, 123.1, 88.4, 48.9, 41.4, 39.3, 31.0, 26.6 ppm; ESI-HRMS: calcd. for C₂₁H₁₇ClO₂+Na: 359.0815, found 359.0816.

(2a*R*,2a¹*S*,5a*R*,9b*R*)-6-chloro-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-hexah ydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5e): 2 h; 61% yield; $[\alpha]_D^{20} = -263.0$ (*c* = 0.60 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak IC, *n*hexane/*i*PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.87 min, t

(minor) = 7.60 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.41-7.22 (m, 8H), 6.38 (dd, *J* = 7.2, 2.8 Hz, 1H), 3.83-3.71 (m, 2H), 3.39-3.34 (m, 2H), 2.82 (dd, *J* = 18.0, 8.0 Hz, 1H), 2.46 (dd, *J* = 18.4, 12.8 Hz, 1H), 2.08-2.01 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 216.0, 145.8, 143.7, 141.3, 140.6, 133.7, 130.2, 129.5, 128.6, 127.3, 125.1, 124.3, 122.3, 89.1, 51.5, 42.6, 41.3, 34.1, 27.3 ppm; ESI-HRMS: calcd. for C₂₁H₁₇ClO₂+Na: 359.0815, found 359.0814.

(2a*R*,2a¹*S*,5a*R*,9b*R*)-8-bromo-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-h exahydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5f): 3 h; 55% yield; $[\alpha]_D^{20} =$ -95.3 (*c* = 0.32 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*hexane/*i*PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major)

= 23.31 min, t (minor) = 15.04 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (dd, *J* = 8.0, 5.6 Hz, 1H), 7.34 (d, *J* = 1.6 Hz, 1H), 7.30-7.16 (m, 6H), 6.07 (t, *J* = 4.4 Hz, 1H), 3.82 (dd, *J* = 13.2, 7.2 Hz, 1H), 3.65 (dd, *J* = 20.4, 10.4 Hz, 1H), 3.28 (t, *J* = 9.6 Hz, 1H), 2.88-2.82 (m, 1H), 2.64-2.52 (m, 1H), 2.09 (dd, *J* = 18.0, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 214.4, 147.1, 144.3, 141.0, 140.4, 133.1, 130.1, 128.4, 127.2, 126.6, 125.9, 125.3, 123.2, 88.6, 48.9, 41.5, 39.1, 31.1, 26.7 ppm; ESI-HRMS: calcd. for C₂₁H₁₇BrO₂+H: 381.0490, found 381.0490.

(2a*R*,2a¹*S*,5a*R*,9b*R*)-8-methyl-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-he xahydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5g): 3 h; 65% yield; $[\alpha]_D^{20} =$ -140.0 (*c* = 0.20 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*hexane/*i*PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major)

= 13.11 min, t (minor) = 9.31 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.30-7.17 (m, 7H), 7.02 (s, 1H), 6.08 (t, *J* = 4.8 Hz, 1H), 3.84 (dd, *J* = 13.6, 7.2 Hz, 1H), 3.64 (dd, *J* = 20.0, 10.0 Hz, 1H), 3.26 (t, *J* = 9.2 Hz, 1H), 2.86-2.80 (m, 1H), 2.59-2.52 (m, 2H), 2.31 (s, 3H), 2.09 (dd, *J* = 17.6, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 215.2, 145.3, 142.2, 141.2, 140.2, 137.7, 131.0, 128.3, 127.1, 125.9, 123.6, 123.5, 123.4, 89.0, 49.0, 41.5, 39.0, 31.2, 27.0, 21.2 ppm; ESI-HRMS: calcd. for C₂₂H₂₀O₂+Na: 339.1361, found 339.1352.

(2a*R*,2a¹*S*,5a*R*,9b*R*)-7-methyl-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-he xahydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5h): 4 h; 55% yield; $[\alpha]_D^{20} =$ -186.9 (*c* = 0.16 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak AD, *n*hexane/*i*PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major)

= 14.99 min, t (minor) = 9.58 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.32-7.26 (m, 3H), 7.23-7.21 (m, 2H), 7.11-7.04 (m, 3H), 6.08 (t, *J* = 4.8 Hz, 1H), 3.84 (dd, *J* = 14.0, 7.2 Hz, 1H), 3.65 (dd, *J* = 20.4, 10.0 Hz, 1H), 3.27 (t, *J* = 9.2 Hz, 1H), 2.85-2.80 (m, 1H), 2.60-2.52 (m, 2H), 2.38 (s, 3H), 2.09 (dd, *J* = 17.6, 12.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 214.8, 148.4, 141.0, 140.0, 139.2, 128.6, 128.1, 126.9, 125.7, 124.1, 123.3, 122.8, 88.7, 48.9, 41.3, 39.1, 31.0, 26.6, 21.3 ppm; ESI-HRMS: calcd. for C₂₂H₂₀O₂+Na: 339.1361, found 339.1352.

(2aR,2a¹S,5aR,9bR)-6-methyl-9b-hydroxy-3-phenyl-2,2a,2a¹,5,5a,9b-hexa hydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5i): 4 h; 57% yield; $[\alpha]_D^{20} = -208.1$ (c = 0.16 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*hexane/*i*PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 21.70

min, t (minor) = 19.54 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.42-7.15 (m, 8H), 6.37 (dd, *J* = 7.6, 3.2 Hz, 1H), 3.79-3.70 (m, 2H), 3.33 (t, *J* = 9.6 Hz, 1H), 3.12 (dt, *J* = 16.4, 7.2 Hz, 1H), 2.77 (ddd, *J* = 18.0, 8.0, 1.2 Hz, 1H), 2.47 (dd, *J* = 18.0, 13.2 Hz, 1H), 2.40 (s, 3H), 2.03 (ddd, *J* = 16.4, 10.4, 3.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 216.5, 147.0, 141.6, 141.4, 140.7, 134.4, 131.2, 128.6, 128.2, 127.3, 125.1, 124.2, 121.2, 89.0, 51.7, 42.6, 41.0, 34.3, 28.2, 19.1 ppm; ESI-HRMS:

calcd. for C₂₂H₂₀O₂+Na: 339.1361, found 339.1353.

(2a*R*,2a¹*S*,5a*R*,9b*R*)-9b-hydroxy-3-phenyl-8-(trifluoromethoxy)-2,2 a,2a¹,5,5a,9b-hexahydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5j): 4 h; 57% yield; $[\alpha]_D^{20} = -161.2$ (c = 0.30 in CHCl₃); 85% ee, determined by HPLC analysis [Daicel Chiralpak AD, *n*hexane/*i*PrOH = 70/30, 1.0

mL/min, $\lambda = 254$ nm, t (major) = 9.39 min, t (minor) = 7.50 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.48$ (t, J = 8.0 Hz, 1H), 7.36 (dd, J = 8.4, 2.4 Hz, 1H), 7.29-7.21 (m, 6H), 6.10 (t, J = 4.4 Hz, 1H), 3.87 (dd, J = 14.0, 6.4 Hz, 1H), 3.67 (dd, J = 20.0, 10.0 Hz, 1H), 3.35-3.31 (m, 1H), 2.90-2.84 (m, 1H), 2.63 (dd, J = 18.0, 8.4 Hz, 1H), 2.56 (dt, J = 17.2, 5.6 Hz, 1H), 2.17-2.05 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 214.7$, 151.9, 147.0, 143.5, 140.9, 140.5, 133.7, 130.2, 128.5, 128.4, 127.3, 125.8, 124.5, 123.2, 117.8, 88.6, 49.4, 41.6, 39.2, 31.5, 27.0 ppm; ESI-HRMS: calcd. for C₂₂H₁₇F₃O₃+K: 425.0767, found 425.0769.

(2aR,2a¹S,5aR,9bR)-9b-hydroxy-3-methyl-2,2a,2a¹,5,5a,9b-hexahydro-1*H*-c yclopenta[*jk*]fluoren-1-one (5k): 5 h; 66% yield; $[\alpha]_D^{20} = -226.3$ (c = 0.16 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak IC, *n*hexane/*i*PrOH = 95/5, 1.0 mL/min, $\lambda = 220$ nm, t (major) = 27.31 min, t (minor)

= 36.38 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.35 (td, *J* = 8.0, 1.2 Hz, 1H), 7.26-7.16 (m, 3H), 5.46 (d, *J* = 1.2 Hz, 1H), 3.86 (dd, *J* = 10.4, 6.8 Hz, 1H), 3.07 (dd, *J* = 11.2, 8.0 Hz, 1H), 2.89 (dd, *J* = 20.4, 10.4 Hz, 1H), 2.59-2.56 (m, 2H), 2.52 (dd, *J* = 16.8, 8.8 Hz, 1H), 2.10 (dd, *J* = 16.8, 11.2 Hz, 1H), 1.58 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 214.9, 148.2, 142.7, 134.7, 130.0, 127.7, 123.5, 122.9, 119.3, 89.0, 47.3, 40.1, 39.0, 32.4, 25.1, 22.2 ppm; ESI-HRMS: calcd. for C₁₆H₁₆O₂+K: 279.0787, found 279.0787.

(2aR,2a¹S,5aR,9bR)-9b-hydroxy-3-ethyl-2,2a,2a¹,5,5a,9b-hexahydro-1*H*-cy clopenta[*jk*]fluoren-1-one (5l): 4 h; 72% yield; $[\alpha]_D^{20} = -178.3$ (c = 0.24 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak IC, *n*hexane/*i*PrOH = 95/5, 1.0 mL/min, $\lambda = 220$ nm, t (major) = 23.63 min, t

(minor) = 32.62 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.34 (td, *J* = 7.2, 1.6 Hz, 1H), 7.26-7.20 (m, 3H), 5.51 (s, 1H), 3.81 (dd, *J* = 12.4, 7.2 Hz, 1H), 3.09 (dd, *J* = 10.4, 8.4 Hz, 1H), 3.00 (dd, *J* = 20.0,

10.0 Hz, 1H), 2.68-2.62 (m, 1H), 2.53 (dd, J = 17.2, 8.8 Hz, 1H), 2.46 (dt, J = 17.2, 4.4 Hz, 1H), 2.14 (dd, J = 17.2, 11.6 Hz, 1H), 1..92 (qd, J = 15.6, 8.0 Hz, 1H),0.97 (t, J = 15.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 215.4$, 148.5, 142.4, 140.8, 130.0, 127.7, 123.7, 123.1, 117.7, 89.0, 48.0, 40.4, 39.6, 31.8, 28.7, 25.8, 12.1 ppm; ESI-HRMS: calcd. for C₁₇H₁₈O₂+K: 293.0944, found 293.0946.

(2a*R*,2a¹*S*,5a*R*,9b*R*)-9b-hydroxy-4-methyl-2,2a,2a¹,5,5a,9b-hexahydro-1*H*-cy clopenta[*jk*]fluoren-1-one (5m): 4 h; 42% yield; $[\alpha]_D^{20} = -176.7$ (*c* = 0.06 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak AD, *n*hexane/*i*PrOH = 95/5, 1.0 mL/min, $\lambda = 220$ nm, t (major) = 27.16 min, t (minor)

= 23.59 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.34 (td, *J* = 8.0, 1.6 Hz, 1H), 7.21 (dd, *J* = 14.4, 3.6 Hz, 1H, 3H), 5.20 (s, 1H), 3.94-3.93 (m, 1H), 3.06-3.00 (m, 2H), 2.62 (dd, *J* = 18.0, 9.2 Hz, 1H), 2.50 (d, *J* = 3.2 Hz, 2H), 2.08 (dd, *J* = 18.0, 8.0 Hz, 1H), 1.66 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 215.8, 148.0, 142.6, 133.6, 130.1, 127.6, 123.7, 123.1, 123.0, 88.7, 47.1, 42.3, 40.1, 29.6, 28.3, 24.5 ppm; ESI-HRMS: calcd. for C₁₆H₁₆O₂+K: 279.0787, found 279.0789.

(2aR,2a¹S,5R,5aR,9bR)-9b-hydroxy-5-methyl-3-phenyl-2,2a,2a¹,5,5a,9b-he xahydro-1*H*-cyclopenta[*jk*]fluoren-1-one (5n): 4 h; 29% yield; $[\alpha]_D^{20} =$ -75.5 (*c* = 0.20 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak IC, *n*hexane/*i*PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) =

28.31 min, t (minor) = 45.71 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (d, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.6, 1.2 Hz, 1H), 7.21-7.10 (m, 5H), 7.00 (d, *J* = 6.8 Hz, 2H), 5.72 (t, *J* = 2.4 Hz, 1H), 4.01 (t, *J* = 5.6 Hz, 1H), 3.60-3.52 (m, 1H), 3.27 (dd, *J* = 11.6, 6.8 Hz, 1H), 2.95-2.93 (m, 1H), 2.58 (dd, *J* = 18.0, 10.0 Hz, 1H), 1.97 (dd, *J* = 18.0, 10.0 Hz, 1H), 1.63 (d, *J* = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 214.9, 146.3, 143.9, 141.0, 140.4, 130.5, 129.9, 128.1, 127.6, 126.9, 126.7, 125.8, 123.1, 88.0, 50.0, 46.0, 41.3, 31.5, 29.7, 20.0 ppm; ESI-HRMS: calcd. for C₂₂H₂₀O₂+K: 355.1100, found 355.1102.

3. More screenings with two 2-bromoindanones

Except 3-bromoindanones **3**, two 2-bromoindanones **A** and **B** were tested under the optimized conditions, but there was no reaction between both substrates and 2,4-dienal **4a**. In this process, we found these two substrates couldn't even be eliminated with PhCOONa. So we tested other bases, including AcONa, triethylamine and pyridine, but no desired product was detected.

4. Sequential transformations with the Diels-Alder intermediate

The reaction was performed with 3-bromo-1-indanone **3a** (0.2 mmol), 2,4-dienal **4a** (0.1 mmol), amine catalyst **1b** (0.02 mmol) and PhCOONa (0.2 mmol) in CHCl₃ (1 mL) at 55 °C for 4 h. Then, to the mixture was added PCC (0.3 mmol) and silica at 55 °C. After the reaction completed, the reaction was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford lactone **6**.

(3a*S*,6a*S*)-4-phenyl-3,3a,6,6a-tetrahydro-2*H*-indeno[1,2,3-*ij*]isochromen-2-one (6): $[\alpha]_D^{20} =$ -28.9 (*c* = 0.18 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralcel OD, *n*hexane/*i*PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.63 min, t (minor) = 13.32 min]; dr = 4.6:1, determined by ¹H NMR analysis; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.69$ (t, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 7.6, 1H), 7.50-7.26 (m, 4H), 7.09 (dd, *J* = 8.0, 2.0 Hz, 2H), 5.68-5.64 (m, 1H), 3.86 (t, *J* = 8.4 Hz, 1H), 3.73-3.66 (m, 1H), 3.61-3.59 (m, 1H), 3.01-2.95 (m, 1H), 2.83 (dd, *J* = 16.0, 7.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 175.9$, 156.4, 140.9, 137.7, 136.7, 135.0, 134.7, 133.7, 128.6, 128.5, 127.8, 126.8, 125.8, 124.2, 124.0, 44.8, 41.0, 32.7, 31.6 ppm; ESI-HRMS: calcd. for C₂₁H₁₆O₂+K: 339.0787, found 339.0789.

The reaction was performed with 2,4-dienal **4a** (0.1 mmol), **3a** (0.2 mmol), catalyst **1b** (0.02 mmol), and PhCOONa (0.2 mmol) in CHCl₃ (1 mL) at 55 °C for 4 h. Then, the mixture was concentrated and re-dissolved in 1 mL THF. To the solution of DA intermediate was added MeNH₂ (1 mmol) and NaBH(AcO)₃ (0.2 mmol) at 0 °C. After the reaction completed, the reaction was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford enamine **7** in 57% yield.

(3aS,6aS)-1-methyl-4-phenyl-1,2,3,3a,6,6a-hexahydroindeno[1,2,3-*ij*]isoquinoline (7): $[\alpha]_D^{20} =$ -50.0 (*c* = 0.06 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak AD, *n*hexane/*i*PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.61 min, t (minor) = 6.04 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49$ (d, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 7.6, 1H), 7.38-7.27 (m, 6H), 7.18 (t, *J* = 7.2 Hz, 1H), 5.96 (d, *J* = 5.6 Hz, 1H), 3.83-3.82 (m, 1H), 3.39 (t, *J* = 8.8 Hz, 1H), 3.22-3.14 (m, 2H), 3.05-2.97 (m, 1H), 2.95 (s, 3H), 1.95 (dt, *J* = 13.2, 2.4 Hz, 1H), 1.75-1.68 (m, 1H), 1.33-1.24 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.2$, 148.6, 143.4, 141.3, 140.8, 140.7, 128.3, 126.8, 126.3, 126.2, 124.1, 123.8, 123.1, 119.5, 53.7, 41.4, 40.8, 34.7, 31.1, 27.2 ppm; ESI-HRMS: calcd. for C₂₂H₂₁N+H: 300.1752, found 300.1753.

5. Crystal data and structure refinement for 2,4-dinitrobenzenehydrazone of 5a

Empirical formula	$C_{27}H_{22}O_5N_4$
Formula weight	482.49
Temperature	150(2)
Crystal system	Orthorhombic
Space group	P212121
a/Å, b/Å, c/Å	6.08870(10), 18.70010(10), 19.54790(10)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90.00, 90.00, 90.00
Volume/Å ³	2225.71(4)
Ζ	4
$\rho_{calc}mg/mm^3$	1.440
m/mm ⁻¹	0.836
F(000)	1008
Crystal size	$0.36 \times 0.30 \times 0.24$
Theta range for data collection	3.27 to 69.54°
Index ranges	$-7 \le h \le 6, -22 \le k \le 22, -23 \le l \le 23$
Reflections collected	16749
Independent reflections	4134[R(int) = 0.0164]
Data/restraints/parameters	4134/0/326
Goodness-of-fit on F^2	1.069
Final R indexes [I> 2σ (I)]	$R_1 = 0.0256, wR_2 = 0.0669$
Final R indexes [all data]	$R_1 = 0.0258, wR_2 = 0.0672$
Largest diff. peak/hole	0.129/-0.175

6. NMR spectra and HPLC chromatograms


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


2 20.752

30629162

	0.25	20.528
	0.20	но П
D	0.15-	F H H
A	0.10	Bhow Ph
	0.05	12.718
	0.00	
		2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 Minutes

50.21 432072

34.78

		RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
ſ	1	12.718	991567	4.92	27470	8.76
	2	20.528	19145078	95.08	285991	91.24

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	13.084	7299019	95.54	269754	96.93
2	20.920	340350	4.46	8535	3.07

	Peak Name	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	Peak1	6.865	10566578	50.18	769411	52.54
2	Peak2	7.584	10492043	49.82	695046	47.46

Minutes

		RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
Γ	1	6.869	16539009	94.70	1222212	95.06
	2	7.597	926170	5.30	63572	4.94

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	14.877	10255800	50.46	200310	65.83
2	23.140	10067201	49.54	103982	34.17

	Peak Name	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	Peak1	15.040	318683	5.42	5871	9.34
2	Peak2	23.318	5563516	94.58	56976	90.66


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	9.313	1234383	4.83	43829	7.28
2	13.108	24313390	95.17	557986	92.72


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


	Name	(min)	(µV*sec)	% Area	(µV)	Height
1	Peak1	19.492	15105431	49.49	253462	53.54
2	Peak2	21.920	15415204	50.51	219933	46.46

		Peak Name	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
Ī	1	Peak1	19.537	1422259	6.03	24229	7.05
I	2	Peak2	21.695	22144652	93.97	319628	92.95

	(min)	(µV*sec)	% Area	(µV)	Height
1	27.257	11269354	50.32	234335	56.17
2	36.243	11124401	49.68	182822	43.83

		(min)	Area (µV*sec)	% Area	Height (µV)	% Height
Γ	1	23.632	40376449	93.30	1028975	94.88
	2	32.623	2900159	6.70	55488	5.12

2

45.898

11046759

55.99

129780

45.48

		RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	1	28.310	25249305	95.35	458275	96.86
	2	45.707	1230675	4.65	14848	3.14

#	RT [min]		Width [min]	Area mAU	*S	Height [mAU]	Area %
	-					-	
1	10.626	VV	0.4388 1	.10340	∋4	377.28128	52.0812
2	13.135	VB	0.5688 1	.01521	e4	267.91684	47.9188


```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2013
```


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	6.036	1636876	5.93	129901	6.24
2	6.609	25986140	94.07	1953187	93.76