Supporting Information

Dispersion of Al_2O_3 Nanoparticles with Mussel-Inspired Amphiphilic Copolymers in Organic Solvents and Formation of Hierarchic Porous Films by the Breath Figure Technique

Yuta Saito[†], Masatsugu Shimomura[‡], Hiroshi Yabu^{‡,§}

[†]Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

[‡]IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan [§]PRESTO, JST, Department of Research Promotion, Research Division, Gobancho Building 5F, 7 Gobancho, Chiyodaku, Tokyo 102-0076, Japan

• Chemicals

Dopamine hydrochloride, methacrylate anhydride, and Al_2O_3 NPs (gamma phase, <50 nm) were purchased from Aldrich. Benzene, tetrahydrofuran, and dimethylsulfoxide (DMSO) were purchased from Wako. Azobisisobutyronitrile (AIBN) was purchased from Aldrich and was purified by recrystallization in MeOH before use.

Characterization Equipment

TG and FT-IR analyses were performed on a TG analyzer TG8120 (Rigaku) and a FT/IR-6100TY spectrometer (JASCO), respectively. The DLS measurements were recorded on an FDLS-3000 spectrometer (Otsuka Electronics). The film structure and NP shape were observed by using S-5200 and H-7650 microscopes (Hitachi).

• Experimental Method

• Synthesis of Catecholic Amphiphilic Copolymer

N-(3,4-Dihydroxyphenthyl)methacrylamide (DMA) was prepared from dopamine hydrochloride and methacrylate anhydride. A solution of sodium bicarbonate and sodium borate was used to protect the dihydroxybenzene moiety, as previously reported.¹ The DMA was recrystallized in ethyl acetate and dried under vacuum, to yield the monomer as a light brown powder (78.9%). ¹H NMR (Bruker 400 MHz, MeOD) $\delta_{\rm H}$ 6.71-6.67 (m, 2H, C₆H H_2 (OH)₂-), 6.56-6.54 (m, 1H, C₆HH₂(OH)₂-), 5.65 (s, 1H, -C(=O)-C(-CH₃)=CHH), 5.35 (s, 1H, -C(=O)-C(-CH₃)=CHH), 3.42-3.34 (m, 2H, C₆H₃(OH)₂-CH₂-C H_2 (NH)-C(=O)), 2.71-2.67 (t, 2H, C₆H₃(OH)₂-C H_2 -CH₂(NH)-), 1.93 (s, 3H, -C(=O)-C(-C H_3)=CH₂) ppm. Each peak was identified by comparison with the literature data.¹

The amphiphilic copolymers which contained the catechol group were synthesized from DMA, and *N*-dodecylacrylamide (DAA) by free-radical polymerization. DAA (1.73 g), DMA (0.41 g), and AIBN (29.7 mg) were dissolved in benzene/DMSO (10:0.5) in a three-necked round-bottomed flask equipped with a thermometer, a nitrogen inlet, and a reflux funnel. The reaction mixture was degassed by three freeze-evacuate-thaw cycles, and the flask was filled with dry nitrogen. The mixture was heated at 72 °C for 5 h. The polymer was purified by reprecipitation in a large volume of acetonitrile. The white powder was collected by centrifugation and dried under vacuum.

1. Haeshin Lee, Bruce P. Lee, Phillip B. Messersmith, Nature, 2007, 448, 338-341

• Preparation of Surface-Coated Al₂O₃ NPs

The Al_2O_3 NPs were stabilized for dispersion in organic solvent by using the amphiphilic copolymer polymer 1. The Al_2O_3 NPs (150 mg; average diameter ~289.8 nm in water) were added to chloroform (5 mL). The dispersion was ultrasonicated for 5 min and then a 10 g/L chloroform solution of the amphiphilic copolymer (5 mL) was added dropwise to the dispersion. The mixture was ultrasonicated for 1 min and then stirred overnight. The excess amphiphilic copolymer was removed by centrifugation in chloroform/acetone (1:1 v/v) three times. The solid was dried in vacuo and then re-dispersed in chloroform. The solution was allowed to stand overnight, and the supernatant was collected.

• Preparation of Honeycomb-Patterned Porous Al₂O₃ NP Films

Honeycomb-patterned porous films containing Al_2O_3 NPs were prepared on a glass substrate. A chloroform solution of the amphiphilic copolymer (1.67 g/L) containing the surface-coated Al_2O_3 NPs (12.5 g/L) was cast on a glass substrate under a flow of humid air at a flow rate of 1.0 L/min. The weight ratio of the surface-coated Al_2O_3 NPs to the amphiphilic copolymer was 7.5:1.

• Evaluation of Nano-Sized Pores

Sizes of nano-sized pores were estimated from cross-sectional TEM images by using an image software (Image J). Fig. S1 plots frequency as a function of cross-sectional area of nano-sized pores. The histogram suggested that the hierarchic porous structure ranging from few to several hundreds nm² are formed.

Fig. S1, Histogram of size of nano-sized pores formed in the frame of films.