1

Supporting Information

Signal enhancement of *J*-HMQC experiments in solid state NMR involving half-integer quadrupolar nuclei.

Qiang Wang,^{§*a*} Julien Trébosc,^{§*b*} Yixuan Li,^{a,b,c} Jun Xu,^{*a*} Bingwen Hu,^{*c*} Ningdong Feng,^{*a*} Qun Chen,^{*c*} Oliver Lafon,^{*b*} Jean-Paul Amoureux,^{*b*} and Feng Deng*^{*a*}

Experimental conditions

All experiments were performed on a Bruker Avance-II 400 MHz spectrometer using a 4-mm triple-resonance MAS probe at a spinning rate of $v_R = 12.5$ kHz. The WURST-80¹ irradiation had a sweep range of 12.5 kHz (equal to v_R), a length of ca. $3T_R = 240 \ \mu$ s, and a maximal rf-field of ca. 15 kHz. The offset was optimized with the "(WURST)_N – $(\pi/2)_{sel}$ – Acquire" experiment, by maximizing the CT signal, and its value was of ±300 kHz for our sample, and the WURST parameters were the same as those in simulations.

In case of ³¹P-{²⁷A1} PT-*J*-HMQC experiments, a contact time of 3 ms in the ¹H \rightarrow ³¹P initial CP was used. The ³¹P rf-fields were of $v_{31P,CP} \approx 40$ kHz, $v_{1H,CP} \approx 52$ kHz (ramped) and $v_{31P,\pi} \approx 52$ kHz. The ³¹P resolution was enhanced with simultaneous ¹H and ²⁷Al decouplings. A SPINAL-64 ¹H decoupling² with a rf field of 75 kHz was applied at the end of the CP transfer, whereas during t_2 acquisition, ²⁷Al rotor-asynchronized multiple-pulse (RA-MP) decoupling,³ was also applied. RA-MP decoupling consisted of ²⁷Al pulses with rf-field strength of 40 kHz, lasting 5 µs each, and separated by windows of 83 µs. The two CT selective $\pi/2$ pulse-lengths on ²⁷Al channel were of 7.5 µs. The conventional *J*-HMQC experiment is obtained by setting the WURST shape pulse amplitude to zero. The 2D ³¹P-{²⁷Al} HETCOR spectra were obtained by averaging 32 transients for each of the 200 t_1 increments with $\Delta t_1 = 1/v_R = 80$ µs, and a recycle delay of 3 s.

Fig.S1. ³¹P spectrum of Mu-4 layered aluminophosphate observed by ¹H \rightarrow ³¹P CP with B₀ = 9.4 T, v_R = 12.5 kHz, and ¹H/²⁷Al simultaneous decouplings.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Fig.S2. (a) 2D ²⁷Al sheared 3QMAS spectrum of Mu-4 observed with $B_0 = 9.4$ T, $v_R = 12.5$ kHz with 3Q z-filtering pulse sequence:⁴ p1 - t_1 - p2 - τ - p3 – Acq. (b) Fits of the slices of 3QMAS spectrum. The p1 and p2 pulse lengths were set at 7 and 2 µs, respectively, with an rf-field of 65 kHz. The soft $\pi/2$ -pulse p3 was set to 7.5 µs with a rf-field of 11.1 kHz. The 2D spectrum was obtained by averaging 12 transients for each of 280 t_1 increment with $\Delta t_1 = 40$ µs, and a recycle delay of 0.5 s.

Fig.S3. the crystal structure of Mu-4. Green: P, Purple: Al, Red: O, Blue: H.

2

Table S1. ²⁷Al quadrupolar interaction parameters obtained by fitting with the dmFIT program each slice from 2D ²⁷Al 3QMAS spectrum of Mu-4.

Site	Al1	Al2	Al3	Al4
$\delta_{cs}(ppm)$	43.4	46.3	42.1	10.3
C_Q (MHz)	~4.1	~3.6	< 0.1	~3.3
η_Q	0.37	0.89	~	0.71

Table S2. Al-O-P connectivities between aluminum and phosphorus atoms in the structure of Mu-4 according to its crystallographic data.^{5,6}

	P1	P2	P3	P4	P5
Al1	0	0	0		0
Al2	0	0		0	0
Al3	0	0	0	0	
Al4		0	0	0	

Representation of the S = 5/2 spin operator S_z , C_z , T_z and F_z in the basis set of the spin wave functions $|5/2\rangle$, $|3/2\rangle$, $|-1/2\rangle$, $|-3/2\rangle$, $|-5/2\rangle$,

Reference:

- 1. E. Kupce, R. Freeman, J. Magn. Reson., Series A, 1995, 117, 246-256.
- 2. B.M. Fung, A.K. Khitrin, K. Ermolaev, J. Magn. Reson., 2000, 142, 97-101.
- L. Delevoye, J. Trébosc, Z. Gan, L. Montagne, J.P. Amoureux, J. Magn. Reson., 2007, 186, 94-99; L. Delevoye, C. Fernandez, C.M. Morais, J.P. Amoureux, V. Montouillout, J. Rocha, Solid State Nucl. Magn. Reson., 2002, 22, 501-512.
- 4. J.P. Amoureux, C. Fernandez, S. Steuernagel, J. Magn. Reson., 1996, A123, 116-118.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

- 5. L. Vidal, V. Gramlich, J. Patarin, Z. Gabelica, Eur. J. Solid State Inorg. Chem., 1998, 35, 545-563.
- 6. C. Marichal, L. Vidal, L. Delmotte, J. Patarin, *Microporous Mesoporous Mat.*, 2000, **34**, 149-156.