Supporting Information for

Asymmetric Construction of Fluorinated Imidazolidines *via* Cu(I)-Catalyzed *exo'*-Selective 1,3-Dipolar Cycloaddition of Azomethine Ylides with Fluorinated Imines

Qing-Hua Li, Liang Wei, Xuan Chen and Chun-Jiang Wang*

Table of Contents

I.	General Remarks	S2
II.	Ligand Screening for Asymmetric 1,3-Dipolar Cycloaddition of A	zomethine
	Ylides with Fluorinated Imines	S2-S3
III.	General Procedure for the Synthesis of Racemic Cycloadducts	S3
IV.	General Procedure for Asymmetric 1,3-Dipolar Cycloaddition of A	zomethine
	Ylides with Fluorinated Imines	S4-22
V.	Synthetic Transformtions	S22-24
VI.	Linear Effect for the 1,3-DC of Trifluoromethylated Imine 1a with I	mino Ester
	2a Catalyzed by Cu(I)/(<i>S</i> , <i>R</i> _{<i>p</i>})-PPFOMe Complex	S24-25
VII.	Proposed Transition States of the exo'-Selectivity for Asymmetric	1,3-Dipolar
	Cycloaddition of Imino Esters with Fluorinated Imines	S25-26
VIII.	References	S26
IX.	¹ H NMR and ¹³ C NMR Spectra	S27-94
X.	HPLC Chromatograms	.895-8162

I. General Remarks

¹H NMR spectra were recorded on a VARIAN Mercury 300 MHz or Bruker 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = single, d = double, t = triple, q = quartet, m = multiple or unresolved, and brs = broad single). ¹³C NMR spectra were recorded on a Bruker 100 MHz or 75 MHz spectrometer in CDCl₃ or DMSO-d₆. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Commercially available reagents were used without further purification. All reactions were monitored by TLC with silica gel-coated plates. Diastereomeric ratios were determined from crude ¹H NMR or HPLC analysis. Enantiomeric ratios were determined by HPLC, using a chiralpak AD-H column, a chiralpak AS-H column or a chiralcel OD-H column with hexane and *i*-PrOH as solvents, or determined by GC using β-dex 325 column. Chiral ligand (S,R_p) -PPFOMe and Fluorinated imines was prepared according to the literature procedure.^{1,2} The racemic adducts were obtained by using AgOAc/PPh₃ as the catalyst. The absolute configuration of (2R, 4R, 5R)-3s was determined unequivocally according to the X-ray diffraction analysis, and those of other adducts were deduced on the basis of these results.

II. Ligand Screening for Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with Fluorinated Imines

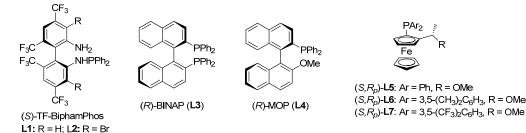
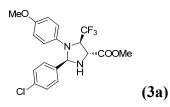


Figure 1. Screened chiral ligands.

F ₃ C	F₃C CO₂Me					CF3			
N	т	N -	[M]/ L (3 ı	mol %)	►	PMP、	v L		
PN	/IP	ų.	Et ₃ N (15	,			L ∕''''C	O ₂ Me	
1a		`p-CI-C ₆ H	4 solv	ent	p-C	I-C ₆ H₄	Ĥ		
		2a					3a		
Entry	L	[M] ^b	Solvent	Temp. (°C)	Time (min)	yield ^c (%)	dr ^d	ee ^e (%)	
1	L1	AgOAc	DCM	rt	10	85	93:7	23	
2	L1	$CuBF_4$	DCM	rt	10	88	91:9	35	
3	L2	AgOAc	DCM	rt	10	80	83:17	33	
4	L2	$CuBF_4$	DCM	rt	10	82	62:38	71	
5	L3	AgOAc	DCM	rt	60	75	86:14	16	
6	L3	$CuBF_4$	DCM	rt	60	85	39:61	80	
7	L4	AgOAc	DCM	rt	10	86	98:2	55	
8	L4	$CuBF_4$	DCM	rt	10	88	98:2	55	
9	L5	AgOAc	DCM	rt	10	90	98:2	77	
10	L5	$CuBF_4$	DCM	rt	10	95	85:15	91	
11 ^f	L5 CuBF ₄		DCM	rt	10	95	87:13	90	
12	L6 CuBF ₄		DCM	rt	10	92	83:17	93	
13	L7	$CuBF_4$	DCM	rt	10	94	65:32	72	
14	L5	$CuBF_4$	PhMe	rt	10	90	94:6	93	
15	L5	$CuBF_4$	THF	rt	10	93	95:5	92	
16	L5	$CuBF_4$	EtOAc	rt	10	93	95:5	93	
17	L5	$CuBF_4$	MeOH	rt	10	90	88:12	86	
18	L5	$CuBF_4$	ether	rt	10	94	96:4	94	
19	L5 CuBF ₄		MeOH	-20	60	92	98:2	95	
20	L5	$CuBF_4$	ether	-20	60	93	98:2	97	
21 ^g	L5	$CuBF_4$	ether	-20	120	90	98:2	97	

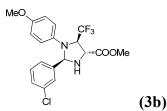
Table 1. Optimization for catalytic asymmetric 1,3-dipolar cycloaddition of imino ester **2a** with trifluoromethylated imine $1a^a$

CO_oMe


^a All reactions were carried out with 0.35 mmol of **2a** and 0.23 mmol of **1a** in 2 mL of solvent. ^b CuBF₄ = Cu(CH₃CN)₄BF₄. ^c Isolated yield. ^d dr was determined by the crude ¹H NMR and HPLC analysis. ^e ee was determined by chiral HPLC analysis. ^f CuBF₄ is 3 mol % and **L5** is 6.6 mol %. ^g 1 mol % catalyst loading.

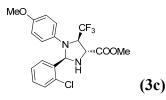
III. General Procedure for the Synthesis of Racemic Cycloadducts.

Under argon atmosphere, PPh₃ (6.6 mg, 0.025 mmol) and AgOAc (3.8 mg, 0.023 mmol) were dissolved in 2 mL of DCM, and stirred at room temperature for about 0.5 h. Then, imine substrate (0.35 mmol), Et₃N (0.03 mmol) and fluorinated imines (0.23 mmol) were added sequentially. Once starting material was consumed (monitored by TLC), the organic solvent was removed and the residue was purified by column chromatography to give the cycloaddition product, which was used as the racemic sample for the HPLC analysis.


IV. General Procedure for Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with Fluorinated Imines.

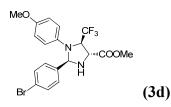
Under argon atmosphere, (S,R_p) -PPFOMe (L5) (3.3 mg, 0.0077 mmol) and Cu(CH₃CN)₄BF₄ (2.2 mg, 0.007 mmol) were dissolved in 2 mL of ether, and stirred at room temperature for about 0.5 h. After imine substrate (0.35 mmol) was added, the mixture was dropped to -20 °C. Then, fluorinated imines (0.23 mmol) and Et₃N (0.03 mmol) was added sequentially. Once starting material was consumed (monitored by TLC), the mixture was filtered through celite and the filtrate was concentrated to dryness. The residue was purified by column chromatography to give the corresponding cycloaddition product, which was then directly analyzed by HPLC analysis to determine the enantiomeric excess.

(2*R*,4*R*,5*R*)-methyl 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-(trifluoromethyl) imidazolidine-4-carboxylate

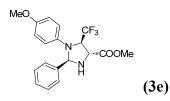

The title compound was prepared according to the general procedure as described above in 95% yield; $[\alpha]^{25}{}_{D} = -44.2$ (*c* 0.97, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.49 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 6.67(d, *J* = 8.4 Hz, 2H), 5.40 (s, 1H), 4.62 (q, *J* = 6.6 Hz, 1H), 4.32 (s, 1H), 3.79 (s, 3H), 3.72 (s, 3H), 2.66 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.4, 154.0, 139.5, 137.5, 134.7, 129.2, 128.1, 125.8 (q, *J* = 280.6 Hz), 117.2, 114.5, 81.2, 65.5 (q, *J* = 30.6 Hz), 60.5, 55.4, 53.0; IR (KBr) v 3340, 2953, 2845, 1742, 1513, 1450, 1346, 1260, 1175, 1134, 1036, 931, 815, 680, 590 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 9.49 and 11.47 min.

(2R,4R,5R)-methyl 2-(3-chlorophenyl)-1-(4-methoxyphenyl)-5-(trifluoromethyl)

imidazolidine-4-carboxylate

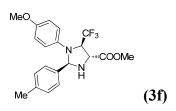

The title compound was prepared according to the general procedure as described above in 85% yield. $[\alpha]^{25}{}_{D} = -42.0 (c \ 0.29, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.54 (s, 1H), 7.44-7.42 (m, 1H), 7.32-7.31 (m, 2H), 6.77 (d, *J* = 9.2 Hz, 2H), 6.69 (d, *J* = 9.2 Hz, 2H), 5.40 (s, 1H), 4.61 (q, *J* = 6.8 Hz, 1H), 4.31 (s, 1H), 3.79 (s, 3H), 3.72 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.4, 154.1, 141.1, 139.5, 134.8, 130.3, 129.1, 126.9, 125.7 (q, *J* = 280.8 Hz), 124.8, 117.3, 114.6, 81.3, 65.6 (q, *J* = 30.6 Hz), 60.5, 55.4, 53.0; IR (KBr) v 3318, 2948, 2920, 2815, 1750, 1517, 1395, 1251, 1138, 1036, 950, 759, 590 cm⁻¹. HRMS: calcd. for C₁₉H₁₈ClF₃N₂O₃ + H⁺: 415.1031, found: 415.1037. The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 7.81 and 11.19 min.

(2*R*,4*R*,5*R*)-methyl 2-(2-chlorophenyl)-1-(4-methoxyphenyl)-5-(trifluoromethyl) imidazolidine-4-carboxylate

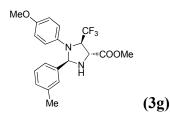

The title compound was prepared according to the general procedure as described above in 80% yield. $[\alpha]^{25}{}_{\rm D}$ = +15.1 (*c* 1.37, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.62-7.60 (m, 1H), 7.45-7.42 (m, 1H), 7.31-7.23 (m, 2H), 6.76 (d, *J* = 9.0 Hz, 2H), 6.63 (d, *J* = 9.0 Hz, 2H), 5.85 (s, 1H), 4.60 (q, *J* = 6.9 Hz, 1H), 4.32 (s, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 2.78 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.6, 153.8, 139.4, 136.3, 133.5, 130.0, 129.9, 127.7, 127.4, 125.7 (q, *J* = 280.9 Hz), 116.6, 114.6, 78.0, 65.4 (q, *J* = 30.9 Hz), 60.4, 55.4, 53.0; IR (KBr) v 3319, 2910, 2834,

1744, 1510, 1390, 1252, 1157, 1143, 1030, 955, 750, 591 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 7.58 and 8.47 min.

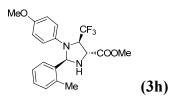
(2*R*,4*R*,5*R*)-methyl 2-(4-bromophenyl)-1-(4-methoxyphenyl)-5-(trifluoromethyl) imidazolidine-4-carboxylate


The title compound was prepared according to the general procedure as described above in 94% yield. $[\alpha]^{25}{}_{D} = -56.2$ (*c* 0.96, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 9.2 Hz, 2H), 6.67 (d, *J* = 9.2 Hz, 2H), 5.39 (s, 1H), 4.61 (q, *J* = 6.8 Hz, 1H), 4.31 (s, 1H), 3.79 (s, 3H), 3.72 (s, 3H), 2.66 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.4, 154.0, 139.5, 138.0, 132.1, 128.4, 125.7 (q, *J* = 280.7 Hz), 122.8, 117.2, 114.6, 81.2, 65.6 (q, *J* = 30.6 Hz), 60.5, 55.4, 53.0; IR (KBr) v 3340, 2950, 2840, 1714, 1522, 1460, 1251, 1134, 1050, 928, 816, 746, 588 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 10.01 and 12.77 min.

(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-phenyl-5-(trifluoromethyl)imidazolidine-4-carboxylate

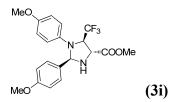

The title compound was prepared according to the general procedure as described above in 90% yield. $[\alpha]^{25}{}_{\rm D}$ = -35.6 (*c* 1.35, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.54 (d, *J* = 7.2 Hz, 2H), 7.40-7.33 (m, 3H), 6.75 (d, *J* = 9.2 Hz, 2H), 6.69 (d, *J* =

9.2 Hz, 2H), 5.43 (s, 1H), 4.63 (q, J = 7.2 Hz, 1H), 4.32 (s, 1H), 3.78 (s, 3H), 3.71 (s, 3H), 2.69 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 153.7, 139.8, 139.0, 129.0, 128.9, 126.6, 125.9 (q, J = 280.8 Hz), 116.9, 114.5, 81.8, 65.5 (q, J = 30.6 Hz), 60.6, 55.5, 53.0; IR (KBr) v 3365, 2950, 2847, 1750, 1514, 1422, 1366, 1240, 1138, 1036, 930, 823, 701, 620 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 7.85 and 11.61 min.



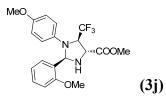
(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-(p-tolyl)-5-(trifluoromethyl)imidazolidine-4-carboxylate

The title compound was prepared according to the general procedure as described above in 91% yield. $[\alpha]^{25}{}_{D} = -49.6 (c \ 1.37, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.43 (d, J = 7.6 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 6.75 (d, J = 9.2 Hz, 2H), 6.69 (d, J = 9.2 Hz, 2H), 5.40 (s, 1H), 4.63 (q, J = 6.8 Hz, 1H), 4.31 (s, 1H), 3.78 (s, 3H), 3.71 (s, 3H), 2.69 (brs, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 153.6, 139.9, 138.7, 136.0, 129.6, 126.5, 125.9 (q, J = 280.9 Hz), 116.8, 114.5, 81.6, 65.4 (q, J = 30.5 Hz), 60.6, 55.4, 52.9, 21.1; IR (KBr) v 3318, 2930, 2847, 1742, 1513, 1450, 1379, 1138, 1039, 960, 817, 755, 590 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 8.03 and 9.95 min.



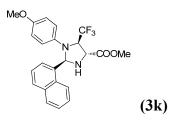
(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-(m-tolyl)-5-(trifluoromethyl)imidazoli dine-4-carboxylate The title compound was prepared according to the general procedure as described above in 85% yield. $[\alpha]^{25}{}_{D} = -38.9 (c \ 0.85, CHCl_3)$; H NMR (CDCl₃, TMS, 400 MHz) δ 7.35-7.33 (m, 2H), 7.28-7.24 (m, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 6.76 (d, *J* = 9.2 Hz, 2H), 6.69 (d, *J* = 9.2 Hz, 2H), 5.38 (s, 1H), 4.64 (q, *J* = 6.8 Hz, 1H), 4.31 (s, 1H), 3.78 (s, 3H), 3.71 (s, 3H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 153.6, 139.9, 138.9, 138.6, 129.6, 128.9, 127.3, 125.9 (q, *J* = 283.7 Hz), 123.5, 116.8, 114.5, 81.8, 65.4 (q, *J* = 30.5 Hz), 60.6, 55.4, 52.9, 21.4; IR (KBr) v 3345, 2930, 2832, 1747, 1513, 1364, 1217, 1168, 1137, 1040, 961, 812, 756, 588 cm⁻¹. HRMS: calcd. for C₂₀H₂₁F₃N₂O₃ + H⁺: 395.1577, found: 395.1579. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 7.00 and 10.68 min.

(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-(o-tolyl)-5-(trifluoromethyl)imidazoli dine-4-carboxylate

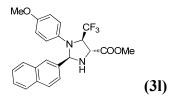

The title compound was prepared according to the general procedure as described above in 82% yield. $[\alpha]^{25}{}_{\rm D}$ = -48.1 (*c* 1.35, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.54-7.52 (m, 1H), 7.33-7.23 (m, 2H), 7.18-7.17 (m, 1H), 6.75 (d, *J* = 9.2 Hz, 2H), 6.59 (d, *J* = 9.2 Hz, 2H), 5.59 (s, 1H), 4.59 (q, *J* = 6.8 Hz, 1H), 4.32 (s, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 2.57 (s, 3H), 2.53 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 153.7, 139.9, 138.7, 136.0, 129.6, 126.5, 125.9 (q, *J* = 280.9 Hz), 116.8, 114.5, 81.6, 65.4 (q, *J* = 30.5 Hz), 60.6, 55.5, 53.0, 21.2; IR (KBr) v 3319, 2948, 2926, 1742, 1513, 1449, 1381, 1208, 1165, 1135, 1039, 931, 817, 750, 589 cm⁻¹. HRMS: calcd. for C₂₀H₂₁F₃N₂O₃ + H⁺: 395.1577, found: 395.1575. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 8.03 and 9.93 min.

(2R,4R,5R)-methyl 1,2-bis(4-methoxyphenyl)-5-(trifluoromethyl)imidazoli-

dine-4-carboxylate

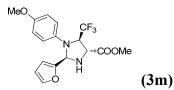

The title compound was prepared according to the general procedure as described above in 88% yield. $[\alpha]^{25}{}_{\rm D}$ = -50.6 (*c* 1.56, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.46 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J* = 9.2 Hz, 2H), 6.69 (d, *J* = 9.2 Hz, 2H), 5.37 (s, 1H), 4.62 (q, *J* = 7.6 Hz, 1H), 4.31 (s, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 3.71 (s, 3H), 2.65 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 159.9, 153.7, 139.9, 131.0, 127.9, 125.9 (q, *J* = 280.8 Hz), 117.0, 114.5, 114.2, 81.4, 65.4 (q, *J* = 30.5 Hz), 60.5, 55.4, 55.2, 52.9; IR (KBr) v 3380, 2960, 2831, 1742, 1513, 1451, 1383, 1249, 1169, 1135, 1036, 931, 840, 690, 593 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 12.73 and 16.73 min.

(2*R*,4*R*,5*R*)-methyl 2-(2-methoxyphenyl)-1-(4-methoxyphenyl)-5-(trifluorome thyl)imidazolidine-4-carboxylate

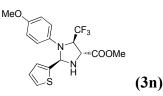

The title compound was prepared according to the general procedure as described above in 76% yield. $[\alpha]^{25}{}_{D}$ = +4.7 (*c* 0.58, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.49 (d, *J* = 7.6 Hz, 1H), 7.33-7.31 (m, 1H), 6.95-6.93 (m, 2H), 6.75 (d, *J* = 8.8 Hz, 2H), 6.65 (d, *J* = 8.8 Hz, 2H), 5.84 (s, 1H), 4.59 (q, *J* = 6.8 Hz, 1H), 4.32 (s, 1H), 3.94 (s, 3H), 3.78 (s, 3H), 3.71 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.7, 157.2, 153.5, 139.9, 129.8, 126.8, 126.6, 125.8 (q, *J* = 280.9 Hz), 121.1, 116.5, 114.4, 110.5, 75.6, 65.2 (q, *J* = 30.7 Hz), 60.5, 55.6, 55.4, 52.9; IR (KBr) v 3340, 2956, 2928, 1741,

1513, 1446, 1388, 1252, 1202, 1176, 1134, 931, 1036, 817, 699, 585 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 10.27 and 15.63 min.

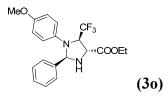
(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-(naphthalen-1-yl)-5-(trifluoromethyl) imidazolidine-4-carboxylate


The title compound was prepared according to the general procedure as described above in 85% yield. $[\alpha]^{25}{}_{\rm D}$ = -58.4 (*c* 1.42, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 8.47 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.63-7.61 (m, 1H), 7.57-7.55 (m, 1H), 7.44-7.41 (m, 1H), 6.72 (d, *J* = 9.2 Hz, 2H), 6.62 (d, *J* = 9.2 Hz, 2H), 6.20 (s, 1H), 4.68 (q, *J* = 6.8 Hz, 1H), 4.38 (s, 1H), 3.83 (s, 3H), 3.69 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.6, 153.4, 139.8, 133.9, 133.5, 130.9, 129.2, 128.5, 126.6, 125.90, 125.86 (q, *J* = 281.0 Hz), 125.8, 124.0, 123.3, 116.2, 114.5, 78.8, 65.3 (q, *J* = 30.7 Hz), 60.5, 55.4, 52.9; IR (KBr) v 3328, 2956, 1743, 1515, 1425, 1250, 1134, 1037, 929, 817, 763, 669, 588 cm⁻¹. HRMS: calcd. for C₂₃H₂₁F₃N₂O₃ + H⁺: 431.1577, found: 431.1576. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 7.29 and 8.59 min.

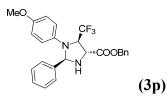
(2R,4R,5R)-methyl 1-(4-methoxyphenyl)-2-(naphthalen-2-yl)-5-(trifluoromethyl)


imidazolidine-4-carboxylate

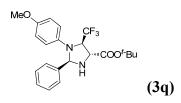
The title compound was prepared according to the general procedure as described above in 76% yield. $[\alpha]^{25}{}_{\rm D}$ = -68.1 (*c* 1.03, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 8.00 (s, 1H), 7.89-7.83 (m, 3H), 7.68-7.66 (m, 1H), 7.50-7.48 (m, 2H), 6.74 (s, 4H), 5.59 (s, 1H), 4.70 (q, *J* = 6.8 Hz, 1H), 4.36 (s, 1H), 3.81 (s, 3H), 3.69 (s, 3H), 2.78 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 153.8, 139.8, 136.4, 133.6, 133.3, 128.9, 128.2, 127.7, 126.4, 126.3, 126.2, 125.9 (q, *J* = 280.9 Hz), 124.0, 117.1, 114.5, 82.0, 65.5 (q, *J* = 30.5 Hz), 60.6, 55.4, 53.0; IR (KBr) v 3324, 2956, 1743, 1513, 1425, 1250, 1134, 1037, 953, 815, 765, 677, 588 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 10.63 and 16.58 min.


(2*R*,4*R*,5*R*)-methyl 2-(furan-2-yl)-1-(4-methoxyphenyl)-5-(trifluoromethyl)imida zolidine-4-carboxylate

The title compound was prepared according to the general procedure as described above in 85% yield. $[\alpha]^{25}_{D} = +36.3$ (*c* 1.29, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.42 (s, 1H), 6.80 (s, 4H), 6.42 (d, *J* = 2.7 Hz, 1H), 6.34 (s, 1H), 5.49 (s, 1H), 4.51 (q, *J* = 6.6 Hz, 1H), 4.33 (s, 1H), 3.78 (s, 3H), 3.74 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.6, 154.5, 152.1, 142.9, 139.6, 125.5 (q, *J* = 280.5 Hz), 118.1, 114.6, 110.6, 108.5, 75.9, 65.1 (q, *J* = 30.8 Hz), 60.5, 55.5, 53.0; IR (KBr) v 3318, 2956, 2840, 1745, 1513, 1455, 1250, 1134, 1037, 955, 815, 760, 650 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 10.17 and 21.37 min.

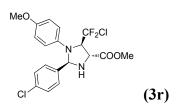

(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-(thiophen-2-yl)-5-(trifluoromethyl) imidazolidine-4-carboxylate

The title compound was prepared according to the general procedure as described above in 80% yield. $[\alpha]^{25}{}_{D} = -52.7 (c \ 0.87, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.29-7.27 (m, 1H), 7.22-7.21 (m, 1H), 6.99-6.97 (m, 1H), 6.84 (d, *J* = 9.2 Hz, 2H), 6.78 (d, *J* = 9.2 Hz, 2H), 5.69 (s, 1H), 4.52 (q, *J* = 6.8 Hz, 1H), 4.33 (s, 1H), 3.79 (s, 3H), 3.73 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 154.4, 143.5, 139.6, 127.0, 125.94, 125.90, 125.6 (q, *J* = 280.5 Hz), 118.1, 114.5, 77.9, 65.8 (q, *J* = 30.7 Hz), 60.5, 55.4, 52.9; IR (KBr) v 3318, 2950, 2844, 1743, 1513, 1460, 1250, 1134, 1038, 935, 822, 721, 529 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 9.15 and 14.01 min.

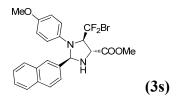

(2*R*,4*R*,5*R*)-ethyl 1-(4-methoxyphenyl)-2-phenyl-5-(trifluoromethyl)imidazoli dine-4-carboxylate

The title compound was prepared according to the general procedure as described above in 80% yield. $[\alpha]^{25}{}_{\rm D} = -21.6 \ (c \ 1.52, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} \ (\text{CDCl}_3, \text{TMS}, 400 \text{ MHz})$ $\delta \ 7.55 \ (d, J = 6.4 \text{ Hz}, 2\text{H}), \ 7.40-7.34 \ (m, 3\text{H}), \ 6.75 \ (d, J = 9.2 \text{ Hz}, 2\text{H}), \ 6.69 \ (d, J = 9.2 \text{ Hz}, 2\text{H}), \ 5.44 \ (s, 1\text{H}), \ 4.60 \ (q, J = 7.2 \text{ Hz}, 1\text{H}), \ 4.29 \ (s, 1\text{H}), \ 4.23 \ (q, J = 7.2 \text{ Hz}, 2\text{H}), \ 3.71 \ (s, 3\text{H}), \ 1.25 \ (t, J = 7.2 \text{ Hz}, 3\text{H}); \ {}^{13}\text{C} \text{ NMR} \ (\text{CDCl}_3, \text{TMS}, 100 \text{ MHz}) \ \delta \ 170.0, \ 153.8, \ 140.0, \ 139.1, \ 128.94, \ 128.86, \ 126.7, \ 125.9 \ (q, J = 280.8 \text{ Hz}), \ 117.0, \ 114.5, \ 81.9, \ 65.6 \ (q, J = 30.5 \text{ Hz}), \ 62.0, \ 60.8, \ 55.5, \ 14.0; \ \text{IR} \ (\text{KBr}) \ v \ 3362, \ 2951, \ 2855, \ 1744, \ 1510, \ 1436, \ 1355, \ 1248, \ 1135, \ 1030, \ 934, \ 820, \ 711, \ 625 \ \text{cm}^{-1}. \ \text{HRMS}: \ \text{calcd. for} \ C_{20}\text{H}_{21}\text{F}_3\text{N}_2\text{O}_3 + \text{H}^+: \ 395.1577, \ found: \ 395.1569. \ The product was analyzed by \ \text{HPLC}$ to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 6.90 and 10.26 min.

(2*R*,4*R*,5*R*)-benzyl 1-(4-methoxyphenyl)-2-phenyl-5-(trifluoromethyl)imidazoli dine-4-carboxylate

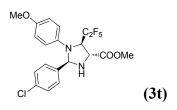

The title compound was prepared according to the general procedure as described above in 88% yield. $[\alpha]^{25}{}_{D} = -12.7 (c \ 0.93, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.54-7.52 (m, 2H), 7.37-7.22 (m, 8H), 6.73 (d, *J* = 9.0 Hz, 2H), 6.64 (d, *J* = 9.0 Hz, 2H), 5.44 (s, 1H), 5.19 (s, 2H), 4.58 (q, *J* = 6.9 Hz, 1H), 4.34 (s, 1H), 3.72 (s, 3H), 2.68 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 169.8, 153.8, 139.9, 139.0, 134.9, 128.93, 128.87, 128.6, 128.4, 128.1, 126.7, 125.8 (q, *J* = 281.0 Hz), 117.0, 114.5, 82.0, 67.5, 65.6 (q, *J* = 30.5 Hz), 60.9, 55.5; IR (KBr) v 3318, 2951, 2844, 1755, 1510, 1442, 1360, 1228, 1123, 1035, 933, 825, 690 cm⁻¹. HRMS: calcd. for C₂₅H₂₃F₃N₂O₃ + H⁺: 457.1734, found: 457.1738. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 9.33 and 16.08 min.

(2*R*,4*R*,5*R*)-tert-butyl 1-(4-methoxyphenyl)-2-phenyl-5-(trifluoromethyl)imidazolidine-4-carboxylate


The title compound was prepared according to the general procedure as described above in 84% yield. $[\alpha]^{25}_{D} = -22.3$ (*c* 0.61, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.54 (d, *J* = 6.8 Hz, 2H), 7.39-7.33 (m, 3H), 6.75 (d, *J* = 8.8 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 5.46 (s, 1H), 4.50 (q, *J* = 6.8 Hz, 1H), 4.18 (s, 1H), 3.71 (s, 3H), 2.63

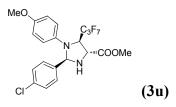
(brs, 3H), 1.40 (s, 9H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 169.2, 153.6, 140.3, 139.3, 128.9, 128.8, 126.7, 125.9 (q, *J* = 281.0 Hz), 116.7, 114.5, 82.7, 82.1, 65.8 (q, *J* = 30.4 Hz), 61.6, 55.5, 27.8; IR (KBr) v 3320, 2955, 2844, 1755, 1510, 1442, 1360, 1228, 1123, 1035, 933, 825, 690 cm⁻¹. HRMS: calcd. for C₂₂H₂₅F₃N₂O₃ + H⁺: 423.1890, found: 423.1905. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.56 and 6.30 min.

(2*R*,4*R*,5*R*)-methyl 5-(chlorodifluoromethyl)-2-(4-chlorophenyl)-1-(4-methoxyphenyl)imidazolidine-4-carboxylate

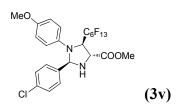

The title compound was prepared according to the general procedure as described above in 76% yield; $[\alpha]^{25}_{D} = -46.4$ (*c* 0.80, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.50 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 9.2 Hz, 2H), 6.72 (d, *J* = 9.2 Hz, 2H), 5.40 (s, 1H), 4.72 (dd, *J*₁ = 5.2 Hz, *J*₂ = 13.6 Hz, 1H), 4.37 (s, 1H), 3.80 (s, 3H), 3.72 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.6, 154.4, 139.6, 137.4, 134.6, 129.9 (t, *J* = 295.7 Hz), 129.1, 128.3, 118.3, 114.5, 82.3, 71.2 (t, *J* = 24.2 Hz), 61.6, 55.4, 53.0; IR (KBr) v 3340, 2951, 2927, 2844, 1744, 1710, 1595, 1513, 1445, 1360, 1160, 1131, 1040, 929, 815, 752, 669 cm⁻¹. HRMS: calcd. for C₁₉H₁₈Cl₂F₂N₂O₃ + H⁺: 431.0735, found: 431.0743. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, = 220 nm); t_r = 9.47 and 12.17 min.

(2R,4R,5R)-methyl 5-(bromodifluoromethyl)-1-(4-methoxyphenyl)-2-(naphtha-

alen-2-yl)imidazolidine-4-carboxylate

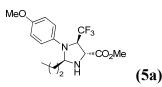

The title compound was prepared according to the general procedure as described above in 93% yield. $[\alpha]^{25}{}_{D} = -31.9 \ (c \ 1.81, \text{CHCl}_3)$; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 8.02 (s, 1H), 7.88-7.81 (m, 3H), 7.71 (dd, $J_1 = 1.2 \text{ Hz}$, $J_2 = 8.4 \text{ Hz}$, 1H), 7.51-7.46 (m, 2H), 6.78 (d, J = 9.2 Hz, 2H), 6.73 (d, J = 9.2 Hz, 2H), 5.58 (s, 1H), 4.84 (dd, $J_1 = 4.4 \text{ Hz}$, $J_2 = 15.6 \text{ Hz}$, 1H), 4.44 (s, 1H), 3.83 (s, 3H), 3.69 (s, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.6, 154.2, 139.8, 136.3, 133.6, 133.2, 128.8, 128.2, 127.7, 126.39, 126.36, 126.3, 124.5 (t, J = 309.8 Hz), 124.2, 118.2, 114.4, 83.3, 72.7 (t, J = 21.3 Hz), 62.0, 55.4, 53.0; IR (KBr) v 3347, 2957, 2927, 2855, 1742, 1513, 1450, 1220, 1178, 1131, 1038, 929, 756, 669, 590 cm⁻¹. HRMS: calcd. for C₂₃H₂₁BrF₂N₂O₃ + H⁺: 491.0776, found: 491.0769. The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220 \text{ nm}$); t_r = 13.75 and 17.03 min.

(2*R*,4*R*,5*R*)-methyl 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-(perfluoroethyl)imidazolidine-4-carboxylate

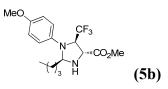

The title compound was prepared according to the general procedure as described above in 80% yield; $[\alpha]^{25}{}_{D} = -63.2 (c \ 1.10, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.49 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 9.2 Hz, 2H), 6.66 (d, J = 9.2 Hz, 2H), 5.32 (s, 1H), 4.76 (dd, $J_1 = 7.6$ Hz, $J_2 = 19.2$ Hz, 1H), 4.41 (s, 1H), 3.80 (s, 3H), 3.71 (s, 3H), 2.65 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 154.4, 139.7, 137.7, 134.7, 129.2, 128.2, 118.4, 114.6, 82.0, 63.9 (m), 60.6, 55.4, 53.1; IR (KBr) v 3347, 2953, 2940, 1744, 1711, 1595, 1513, 1424, 1361, 1176, 1132, 1040, 929, 815, 752, 669, 626 cm⁻¹. HRMS: calcd. for C₂₀H₁₈ClF₅N₂O₃ + H⁺: 465.0999, found: 465.1008. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, =

220 nm); $t_r = 6.54$ and 8.30 min.

(2*R*,4*R*,5*R*)-methyl 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-(perfluoropropyl) imidazolidine-4-carboxylate

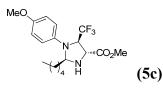

The title compound was prepared according to the general procedure as described above in 80% yield; $[\alpha]^{25}_{D} = -66.6 (c \ 1.30, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 5.34 (s, 1H), 4.86 (dd, *J*₁ = 4.4 Hz, *J*₂ = 21.6 Hz, 1H), 4.41 (s, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 2.65 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5, 154.4, 139.8, 137.7, 134.7, 129.2, 128.2, 118.3, 117.6 (q, *J* = 283.7 Hz), 114.6, 81.5, 64.1 (m), 60.7, 55.4, 53.1; IR (KBr) v 3341, 2940, 1740, 1513, 1476, 1425, 1377, 1262, 1175, 1015, 929, 783, 669 cm⁻¹. HRMS: calcd. for C₂₁H₁₈ClF₇N₂O₃ + H⁺: 515.0967, found: 515.0968. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, = 220 nm); t_r = 5.72 and 6.75 min.

(2*R*,4*R*,5*R*)-methyl 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-(perfluorohexyl) imidazolidine-4-carboxylate

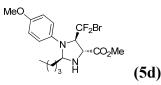

The title compound was prepared according to the general procedure as described above in 88% yield; $[\alpha]^{25}{}_{\rm D} = -30.9 (c \ 1.02, \text{CHCl}_3)$; ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 5.35 (s, 1H), 4.88 (dd, *J*₁ = 4.0 Hz, *J*₂ = 22.4 Hz, 1H), 4.42 (s, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 2.65 (brs, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 170.5,

154.3, 139.8, 137.7, 134.7, 129.2, 128.2, 118.2, 114.6, 81.5, 64.3 (m), 60.8, 55.4, 53.0; IR (KBr) v 3340, 2950, 2834, 1744, 1515, 1446, 1425, 1144, 1016, 929, 771, 669, cm⁻¹. HRMS: calcd. for $C_{24}H_{18}ClF_{13}N_2O_3 + H^+$: 665.0871, found: 665.0861. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralcel OD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, = 220 nm); t_r = 4.21 and 4.77 min.

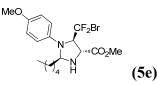
(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-propyl-5-(trifluoromethyl)imidazolidine-4-carboxylate


The title compound was prepared according to the general procedure as described above in 80% yield. d.r. = 10:1; $[\alpha]^{25}_{D}$ = -26.1 (*c* 0.42, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 6.94 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.47-4.46 (m, 1H), 4.26 (q, *J* = 7.2 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 1.85-1.82 (m, 1H), 1.44-1.40 (m, 3H), 0.94 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.2, 155.1, 140.5, 125.6 (q, *J* = 280.0 Hz), 120.9, 114.6, 79.8, 67.2 (q, *J* = 30.0 Hz), 60.5, 55.5, 52.9, 36.8, 18.1, 14.1; IR (KBr) v 3336, 2957, 2927, 2855, 1742, 1513, 1450, 1220, 1038, 929, 756, 669 cm⁻¹. HRMS: calcd. for C₁₆H₂₁F₃N₂O₃ + H⁺: 347.1577, found: 347.1584. The product was analyzed by HPLC to determine the enantiomeric excess: 89% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.14 and 6.13 min.

(2*R*,4*R*,5*R*)-methyl 2-butyl-1-(4-methoxyphenyl)-5-(trifluoromethyl)imidazoli dine-4-carboxylate


The title compound was prepared according to the general procedure as described

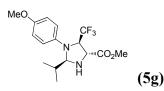
above in 76% yield. d.r. > 20:1; $[\alpha]^{25}_{D} = -14.3$ (*c* 0.83, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 6.93 (d, *J* = 9.2 Hz, 2H), 6.85 (d, *J* = 9.2 Hz, 2H), 4.46-4.45 (m, 1H), 4.26 (q, *J* = 7.2 Hz, 1H), 4.21 (s, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 1.90-1.85 (m, 1H), 1.51-1.29 (m, 5H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.2, 155.1, 140.4, 125.9 (q, *J* = 279.8 Hz), 120.8, 114.7, 80.0, 67.1 (q, *J* = 29.9 Hz), 60.5, 55.5, 52.9, 34.3, 26.9, 22.7, 14.0; IR (KBr) v 3368, 1736, 1516, 1448, 1425, 1210, 1044, 929, 705, 656 cm⁻¹. HRMS: calcd. for C₁₇H₂₃F₃N₂O₃ + H⁺: 361.1734, found: 361.1742. The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.34 and 7.30 min.


(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-pentyl-5-(trifluoromethyl)imidazo lidine-4-carboxylate

The title compound was prepared according to the general procedure as described above in 85% yield. d.r. = 17:1; $[\alpha]^{25}_{D}$ = -19.0 (*c* 0.55, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 6.93 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.46-4.45 (m, 1H), 4.26 (q, *J* = 7.2 Hz, 1H), 4.21 (s, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 1.87-1.85 (m, 1H), 1.51-1.29 (m, 7H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.2, 155.1, 140.4, 125.6 (q, *J* = 281.6 Hz), 120.8, 114.7, 80.0, 67.1 (q, *J* = 30.1 Hz), 60.5, 55.5, 52.9, 34.6, 31.8, 24.5, 22.6, 14.0; IR (KBr) v 3335, 1756, 1512, 1469, 1255, 1032, 917, 740, 669 cm⁻¹. HRMS: calcd. for C₁₈H₂₅F₃N₂O₃ + H⁺: 375.1890, found: 375.1883. The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.34 and 5.88 min.

(2*R*,4*R*,5*R*)-methyl 5-(bromodifluoromethyl)-1-(4-methoxyphenyl)-2-propylimi dazolidine-4-carboxylate

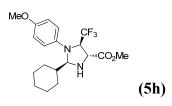
The title compound was prepared according to the general procedure as described above in 80% yield. d.r. = 15:1; $[\alpha]^{25}_{D} = -12.6$ (*c* 0.27, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.03 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.38-4.33 (m, 2H), 4.26 (s, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 1.86-1.80 (m, 1H), 1.48-1.45 (m, 2H), 1.32-1.30 (m, 3H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.3, 156.0, 140.3, 125.3 (t, *J* = 309.0 Hz), 123.5, 114.6, 81.8, 74.5 (t, *J* = 20.3 Hz), 62.1, 55.5, 52.9, 34.1, 26.9, 22.8, 14.0; IR (KBr) v 3317, 2957, 1740, 1515, 1477, 1425, 1250, 1023, 930, 755, 670 cm⁻¹. HRMS: calcd. for C₁₇H₂₃BrF₂N₂O₃ + H⁺: 421.0933, found: 421.0935. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.23 and 6.90 min.


(2*R*,4*R*,5*R*)-methyl 5-(bromodifluoromethyl)-2-ethyl-1-(4-methoxyphenyl)imida zolidine-4-carboxylate

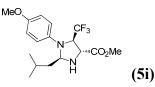
The title compound was prepared according to the general procedure as described above in 76% yield. d.r. = 10:1; $[\alpha]^{25}{}_{D}$ = -20.7 (*c* 0.15, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.03 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.37-4.33 (m, 1H), 4.26 (s, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 1.86-1.79 (m, 1H), 1.47-1.26 (m, 7H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.4, 156.0, 140.3, 123.5, 114.6, 81.9, 74.5 (t, *J* = 20.6 Hz), 62.1, 55.5, 52.9, 34.4, 31.9, 24.5, 22.5, 14.0; IR (KBr) v 2958, 2924, 1743, 1512, 1477, 1435, 1215, 1133, 1021, 935, 783, 670 cm⁻¹. HRMS: calcd. for C₁₈H₂₅BrF₂N₂O₃ + H⁺: 435.1089, found: 435.1076. The

product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.08 and 6.84 min.

(2*R*,4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-phenethyl-5-(trifluoromethyl)imidazo lidine-4-carboxylate


The title compound was prepared according to the general procedure as described above in 80% yield. d.r. > 20:1; $[\alpha]^{25}_{D} = -34.5$ (*c* 0.95, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.29-7.25 (m, 2H), 7.20-7.17 (m, 3H), 6.91 (d, *J* = 9.2 Hz, 2H), 6.83 (d, *J* = 9.2 Hz, 2H), 4.51-4.49 (m, 1H), 4.26 (q, *J* = 7.2 Hz, 1H), 4.23 (s, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 2.84-2.71 (m, 1H), 2.72-2.69 (m, 1H), 2.18-2.15 (m, 1H), 1.80-1.74 (m, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.2, 155.4, 141.3, 140.3, 128.4, 128.3, 126.0, 125.6 (q, *J* = 279.9 Hz), 121.4, 114.7, 79.6, 67.3 (q, *J* = 30.1 Hz), 60.6, 55.5, 52.9, 36.1, 31.0; IR (KBr) v 2956, 2840, 1743, 1603, 1512, 1480, 1439, 1214, 1133, 1036, 929, 783, 771, 669 cm⁻¹. HRMS: calcd. for C₂₁H₂₃F₃N₂O₃ + Na⁺: 431.1553, found: 431.1568. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 7.77 and 8.76 min.

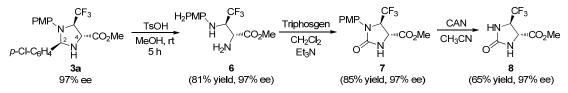
(2*R*,4*R*,5*R*)-methyl 2-isopropyl-1-(4-methoxyphenyl)-5-(trifluoromethyl)imidazo lidine-4-carboxylate


The title compound was prepared according to the general procedure as described above in 76% yield. d.r. > 20:1; $[\alpha]_{D}^{25} = -17.5$ (*c* 0.61, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.06 (d, *J* = 9.2 Hz, 2H), 6.85 (d, *J* = 9.2 Hz, 2H), 4.35 (d, *J* = 3.6

Hz, 1H), 4.18-4.13 (m, 2H), 3.80 (s, 3H), 3.78 (s, 3H), 1.94-1.89 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.6, 156.1, 141.1, 125.7 (q, J = 280.1 Hz), 123.9, 114.6, 85.1, 68.6 (q, J = 29.7 Hz), 60.5, 55.5, 52.9, 29.7, 19.2, 14.6; IR (KBr) v 3317, 2957, 2436, 1742, 1603, 1479, 1425, 1214, 1133, 1036, 929, 669 cm⁻¹. HRMS: calcd. for C₁₆H₂₁F₃N₂O₃ + H⁺: 347.1577, found: 347.1585. The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 4.79 and 5.33 min.

(2*R*,4*R*,5*R*)-methyl 2-cyclohexyl-1-(4-methoxyphenyl)-5-(trifluoromethyl)imida zolidine-4-carboxylate

The title compound was prepared according to the general procedure as described above in 76% yield. d.r. > 20:1; $[\alpha]^{25}{}_{D} = -32.3$ (*c* 0.56, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 7.03 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.35 (d, *J* = 4.0 Hz, 1H), 4.17-4.13 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 2.60 (brs, 1H), 1.92-1.89 (m, 1H), 1.79-1.65 (m, 5H), 1.19-1.12 (m, 4H), 0.95-0.92 (m, 1H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.5, 155.8, 141.3, 125.6 (q, *J* = 279.8 Hz), 123.2, 114.5, 84.5, 68.3 (q, *J* = 29.8 Hz), 60.5, 55.4, 52.8, 40.2, 30.0, 26.6, 26.5, 26.1, 25.7; IR (KBr) v 3317, 2957, 2434, 1740, 1601, 1469, 1423, 1210, 1131, 1034, 929, 669 cm⁻¹. HRMS: calcd. for C₁₉H₂₅F₃N₂O₃ + H⁺: 387.1890, found: 387.1894. The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.43 and 6.32 min.



(2*R*,4*R*,5*R*)-methyl 2-isobutyl-1-(4-methoxyphenyl)-5-(trifluoromethyl)imida zolidine-4-carboxylate

The title compound was prepared according to the general procedure as described above in 85% yield. d.r. = 15:1; $[\alpha]^{25}_{D}$ = -37.3 (*c* 1.12, CHCl₃); ¹H NMR (CDCl₃, TMS, 400 MHz) δ 6.92 (d, *J* = 9.2 Hz, 2H), 6.85 (d, *J* = 9.2 Hz, 2H), 4.56-4.54 (m, 1H), 4.24 (q, *J* = 7.2 Hz, 1H), 4.21 (s, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 1.84-1.71 (m, 2H), 1.35-1.33 (m, 1H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.1, 154.9, 140.5, 125.6 (q, *J* = 279.9 Hz), 120.4, 114.6, 78.5, 67.0 (q, *J* = 30.0 Hz), 60.6, 55.5, 52.8, 44.3, 25.3, 23.7, 22.0; IR (KBr) v 2955, 2434, 1741, 1608, 1468, 1421, 1210, 1135, 1037, 929, 668 cm⁻¹. HRMS: calcd. for C₁₇H₂₃F₃N₂O₃ + H⁺: 361.1734, found: 361.1737. The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 4.81 and 5.16 min.

V. Synthetic Transformtions.

Due to high volatility of (2R,3R)-2,3-diamino-4,4,4-trifluoro-butanoate, oxidative cleavage of the PMP group could be performed as below: Firstly, diamine **6** was obtained by acidic hydrolysis of the corresponding cycloadduct **3a** in good yield. The diamine **6** was further transformed into cyclic urea **7** with triphosphgen, then treatment with Ce(NH₄)₂(NO₃)₆ gave the derived amide **8** without loss of the diastereo-/enantiomeric excess.

3a (207 mg, 0.5 mmol) was dissolved in 3 mL of methanol at room temperature followed by the addition of TsOH H_2O (380 mg, 2 mmol). The reaction mixture was

stirred until starting material was consumed (monitored by TLC) and neutralized the mixture by Na_2CO_3 . Then the mixture was partitioned between ethyl acetate and water, then the organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo then the organic solvent was removed and the residue was purified by column chromatography to give compound **6** in 81% yield.

$$CF_3 \\ H_2N \\ H_2N \\ (6)$$

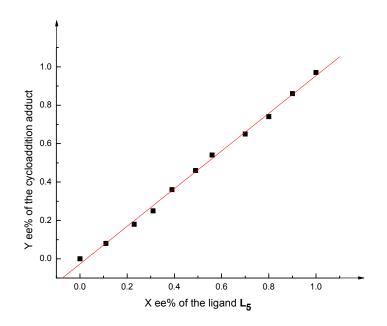
Me

(2*R*,3*R*)-methyl 2-amino-4,4,4-trifluoro-3-((4-methoxyphenyl)amino)butanoate [α]²⁵_D = -41.2 (*c* 0.73, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 6.76 (d, *J* = 8.7 Hz, 2H), 6.66 (d, *J* = 8.7 Hz, 2H), 4.54-4.51 (m, 1H), 4.43-4.36 (m, 1H), 4.12 (s, 1H), 3.73 (s, 3H), 3.59 (s, 3H), 1.78 (brs, 2H); ¹³C NMR (CDCl₃, TMS, 100 MHz) δ 171.7, 153.1, 139.9, 125.6 (q, *J* = 283.1 Hz), 116.0, 114.7, 58.4 (q, *J* = 27.9 Hz), 55.6, 52.7, 52.6; IR (KBr) v 3368, 2951, 1746, 1516, 1453, 1218, 1035, 929, 669 cm⁻¹. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 11.07 and 20.46 min.

To a solution of **6** (100 mg, 0.34 mmol) and triethylamine (141 μ L, 1.02 mmol) in dry CH₂Cl₂(15.0 mL) under nitrogen at 0 °C was added a solution of triphosgene (100 mg, 0.34 mmol) in dry CH₂Cl₂ dropwise. The reaction mixture was warmed to room temperature and stirred until the starting material was consumed completely as indicated by TLC.Then the reaction was quenched and purified by column chromatography to give the cyclic urea **7**.

(4*R*,5*R*)-methyl 1-(4-methoxyphenyl)-2-oxo-5-(trifluoromethyl)imidazolidine-4carboxylate

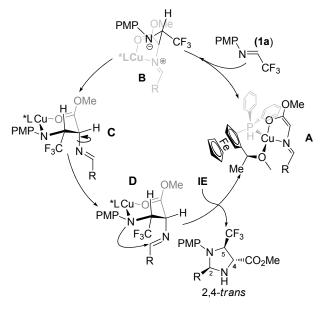
 $[\alpha]_{D}^{25} = +18.8 (c \ 0.16, \text{CHCl}_3); ^{1}\text{H NMR} (\text{CDCl}_3, \text{TMS}, 300 \text{ MHz}) \delta 7.24 (d, J = 9.0 \text{Hz}, 2\text{H}), 6.92 (d, J = 9.0 \text{Hz}, 2\text{H}), 5.85 (s, 1\text{H}), 4.91-4.88 (m, 1\text{H}), 4.33 (d, J = 2.4 \text{Hz}, 2\text{Hz}), 5.85 (s, 100 \text{ Hz}) \delta 7.24 (d, J = 9.0 \text{Hz})$


1H), 3.89 (s, 3H), 3.81 (s, 3H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 169.7, 158.9, 158.2, 129.3, 126.9, 123.8 (q, *J* = 281.5 Hz), 114.3, 61.1 (q, *J* = 32.4 Hz), 55.3, 53.3, 51.9; IR (KBr) v 2917, 2846, 2335, 1722, 1515, 1423, 1241, 1166cm⁻¹. HRMS: calcd. for C₁₃H₁₃F₃N₂O₄ + H⁺: 319.0897, found: 319.0900. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AD-H, *i*-propanol/hexane = 40/60, flow rate 1.0 mL/min, λ = 220 nm); t_r = 14.87 and 16.88 min.

To a solution of 7 (92 mg, 0.29 mmol) in dry acetonitrile (2.0 mL) was added dropwise a solution of CAN (477 mg, 0.87 mmol) in H₂O (1.0 mL) at 0 °C. The reaction was completed immediately and quenched by the addition of saturated NH₄Cl aqueous solution. The phases were separated and the aqueous phase was extracted with ethyl acetate. The combined organic phases were dried over sodium sulfate and concentrated under vacuum. The residue was purified by chromatography to give **8** as a white soild.

(4R,5R)-methyl 2-oxo-5-(trifluoromethyl)imidazolidine-4-carboxylate

 $[α]^{25}{}_{D}$ = -35.0 (*c* 0.20, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 6.92 (s, 1H), 6.41 (s, 1H), 4.46 (m, 1H), 4.33 (d, *J* = 3.2 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (DMSO-d₆, TMS, 100 MHz) δ 170.7, 161.1, 124.7 (q, *J* = 279.4 Hz), 55.2 (q, *J* = 32.2 Hz), 53.4, 52.9; IR (KBr) v 3243, 2922, 2360, 2341, 1724, 1443, 1240, 1176, 1145cm⁻¹. HRMS: calcd. for C₆H₇F₃N₂O₃ + Na⁺: 235.0296, found: 235.0301. The product was analyzed by GC to determine the enantiomeric excess: 97% ee (β-dex 325 column, 30 m x 0.25 mm x 0.25 µm, column temperature: 170 °C, carrier gas: N₂, 1 mL/min); t_r = 9.84 and 14.29 min.

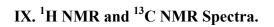

VI. Linear Effect for the 1,3-Dipolar Cycloaddition of Trifluoromethylated Imine 1a with Imino Ester 2a Catalyzed by $Cu(CH_3CN)_4BF_4/(S,R_p)$ -PPFOMe Complex.

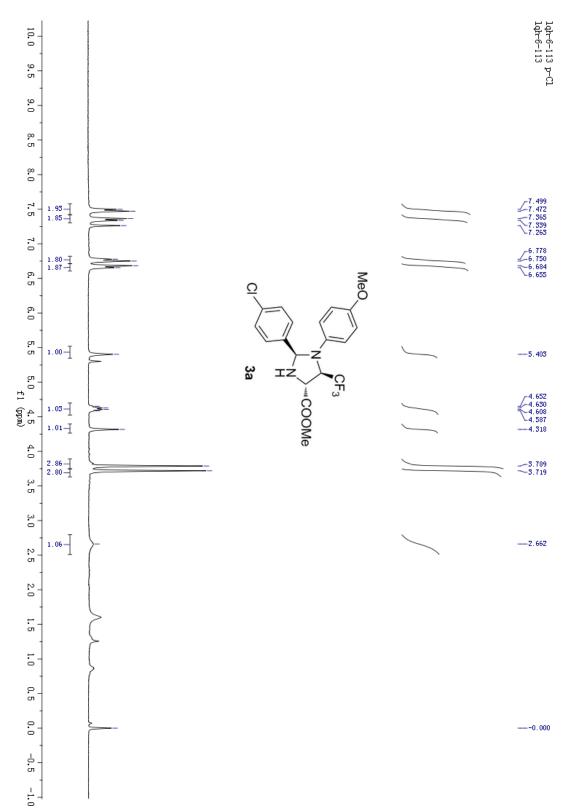
Ee of (S,R_p) -L5 were determined by HPLC: Chiralpak AD-H, *i*-propanol/hexane = 1/99, flow rate 0.5 mL/min, $\lambda = 254$ nm; t_r = 16.01 and 21.18 min.

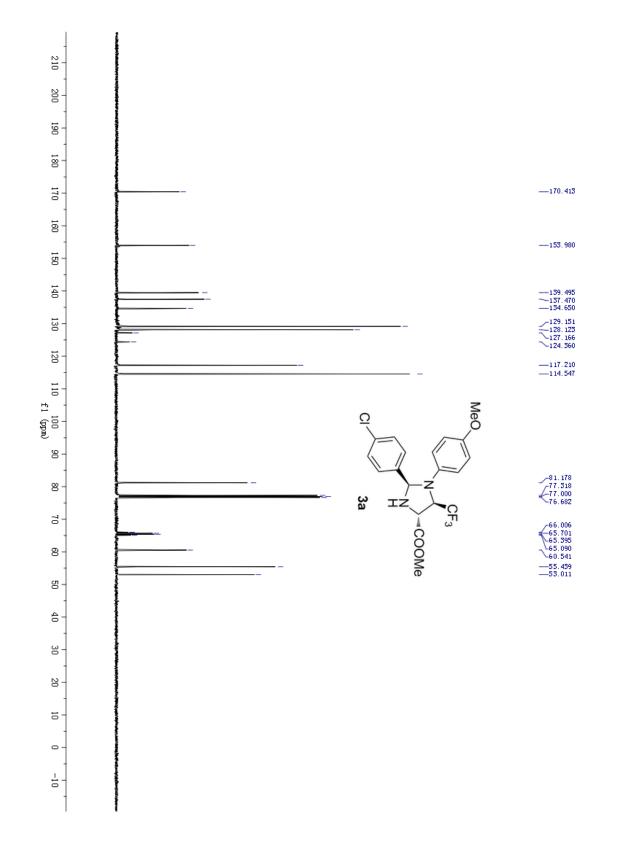
L5 _{ee} (%)	11	23	31	39	49	56	70	80	90	100
$\operatorname{Prod}_{\operatorname{ee}}(\%)$	8	18	25	36	46	54	65	74	86	97

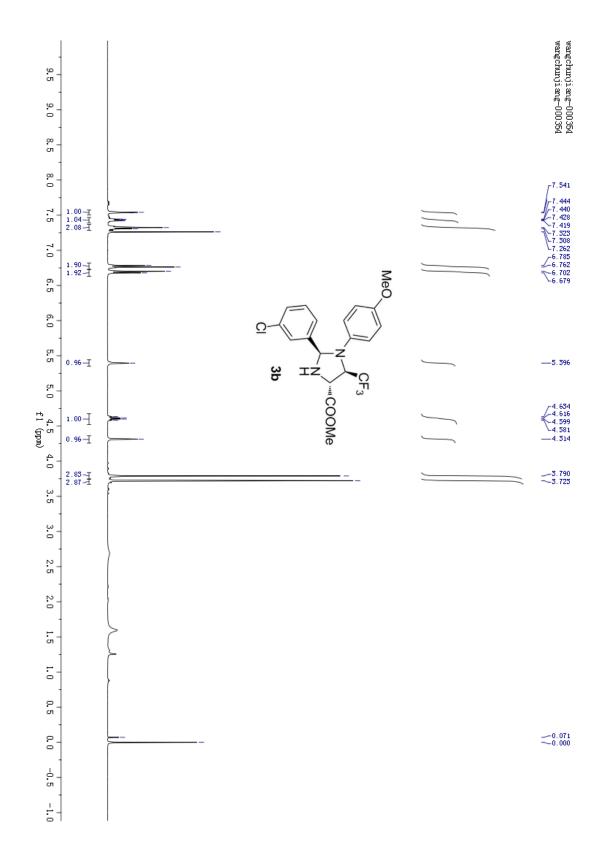
VII. Proposed Transition States of the *exo*'-Selectivity for Asymmetric 1,3-Dipolar Cycloaddition of Imino Esters with Fluorinated Imines.

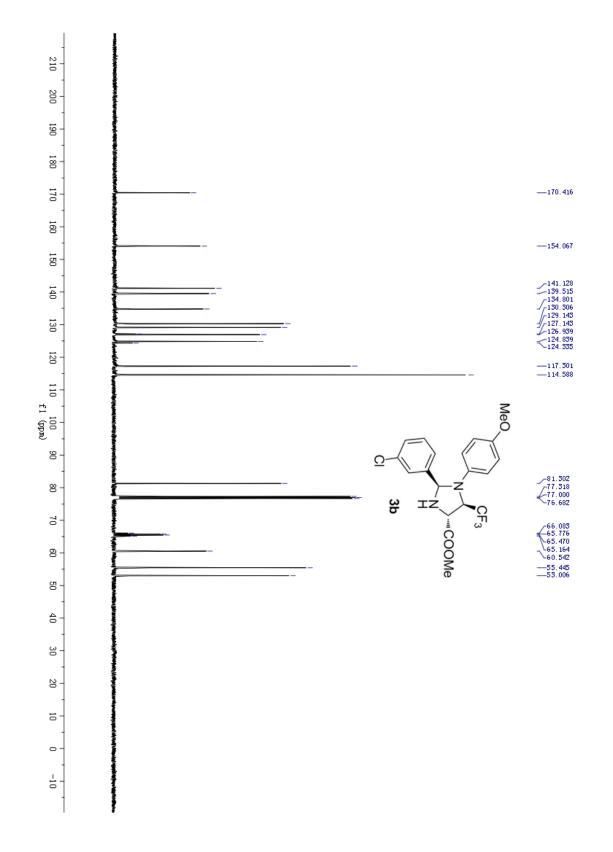
Scheme S1. Postulated catalytic cycle for Cu(I)-catalyzed asymmetric 1,3-DC of azomethine ylide with fluorinated imines.

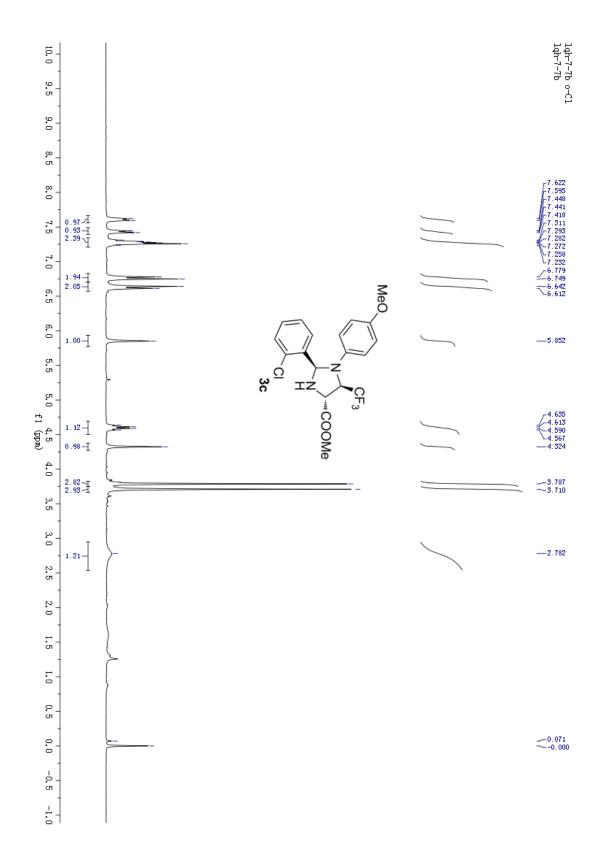

Based on the relative and absolute configuration of (2R,4R,5R)-**3s** and previous studies,³ a plausible stepwise mechanism was proposed to rationalize the observed *exo'*-selectivity for this 1,3-DC. The *in situ*-formed azomethine ylide is coordinated to the Cu complex leading to the catalytically active species (**A**) based on the linear correlation results. Initial Mannich addition of the metalloazomethine ylide (**A**) to the *Re* face (C=N) of the fluorinated imine **1a** through the gauche conformation generates the zwitterionic intermediate (**B**), which could be facilitated by the possible coordination interaction between the imino group of **1a** and the Cu(I) center. After the Mannich reaction, the copper atom spontaneously switches from imino ester to NPMP for forming the six-membered chair-like species (**C**).³ Before the subsequent intramolecular cyclization, the C-N single bond must rotate into the species (**D**) hence the amino unit approaches the *Re* face of the imine moiety to give the *exo'*-diastereomer, in which the substituents at 2 and 4 position of imidazolidine ring are arranged at *trans* configuration. Nevertheless, the real catalytic mechanism still needs further investigation.

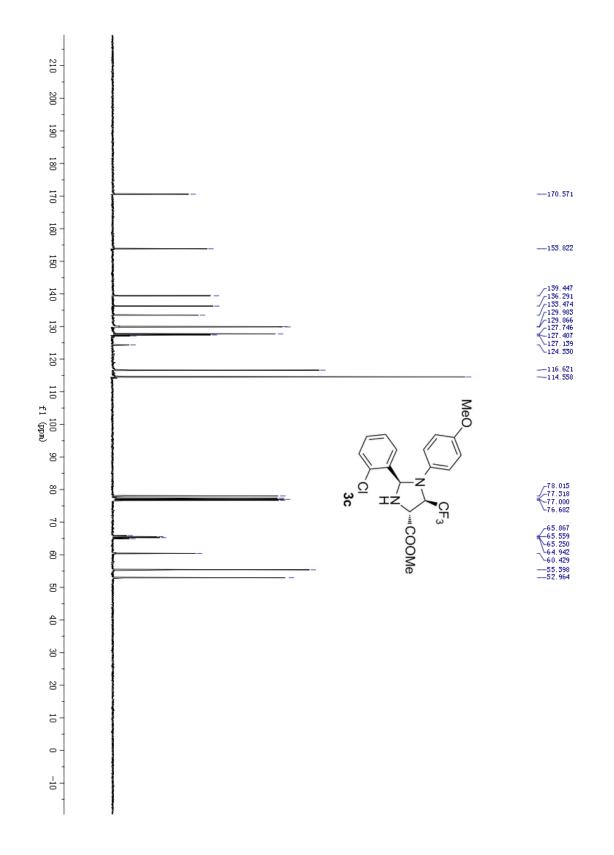

VIII. References.

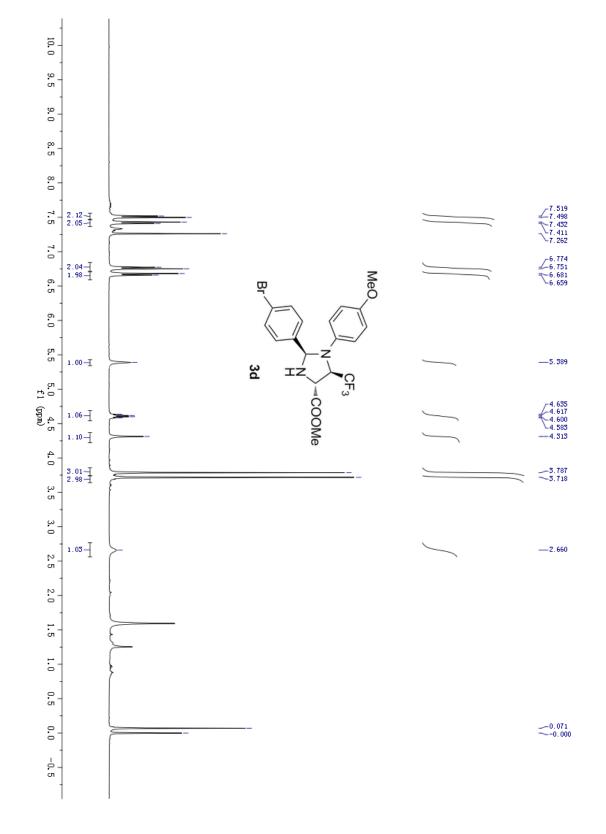

1. T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N. Nagashima, Y. Hamada, A. Matsumoto, S. Kawakami, M. Konishi, K. Yamamoto, M. Kumada, *Bull. Chem. Soc. Jpn.* **1980**, *53*, 1138.

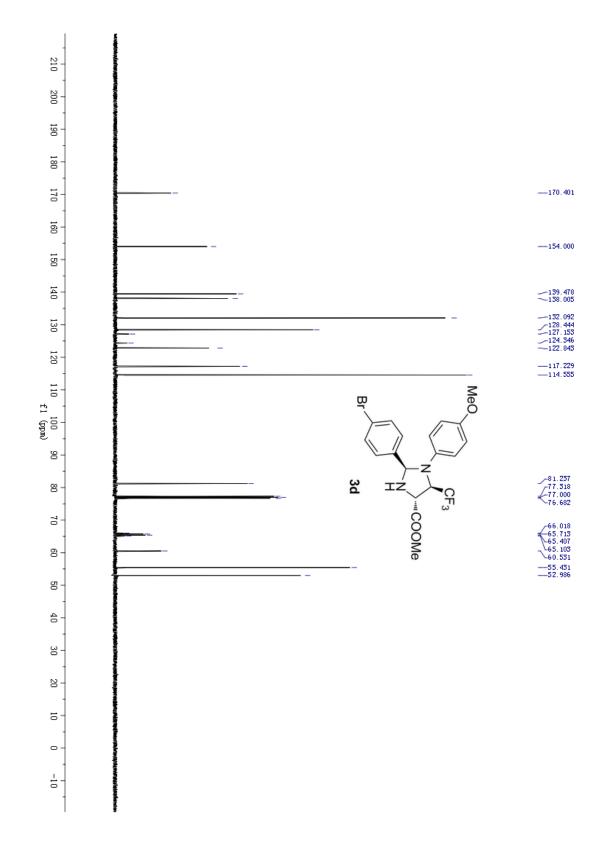

2. (a) J.-H. Lin, J.-C. Xiao, *Eur. J. Org. Chem.* 2011, 4536; (b) A. Abouabdellah, J.-P.
Bégué, D. Bonnet-Delpon, T. T. T. Nga, *J. Org. Chem.* 1997, 62, 8826; c) J. Takagi, R.
Takihana, A. Kuwano, K. Uneyama, *Synthesis* 2007, *11*, 1624.

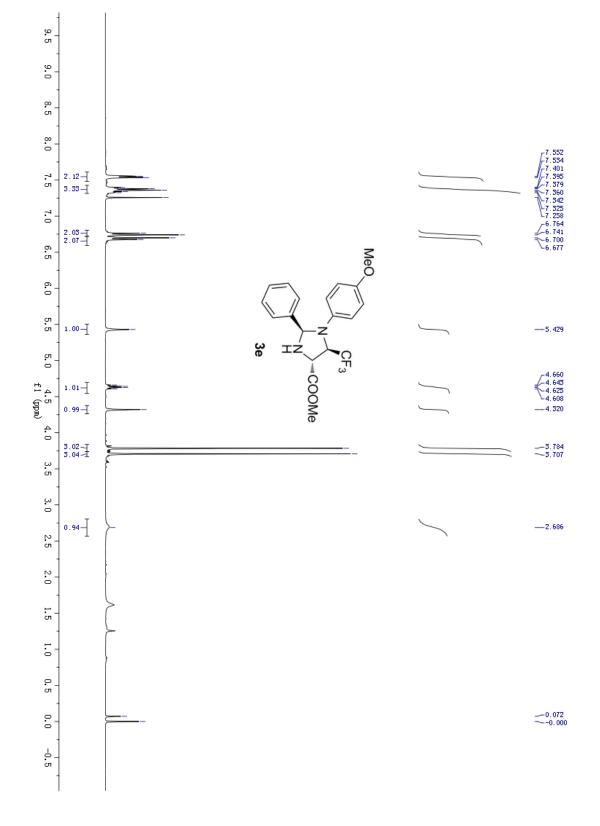

3. (*a*) T. Arai, N. Yokoyama, A. Mishiro and H. Sato, *Angew. Chem., Int. Ed.*, **2010**, 49, 7895; (*b*) A. Awata and T. Arai, *Chem. Eur. J.* **2012**, *18*, 8278.

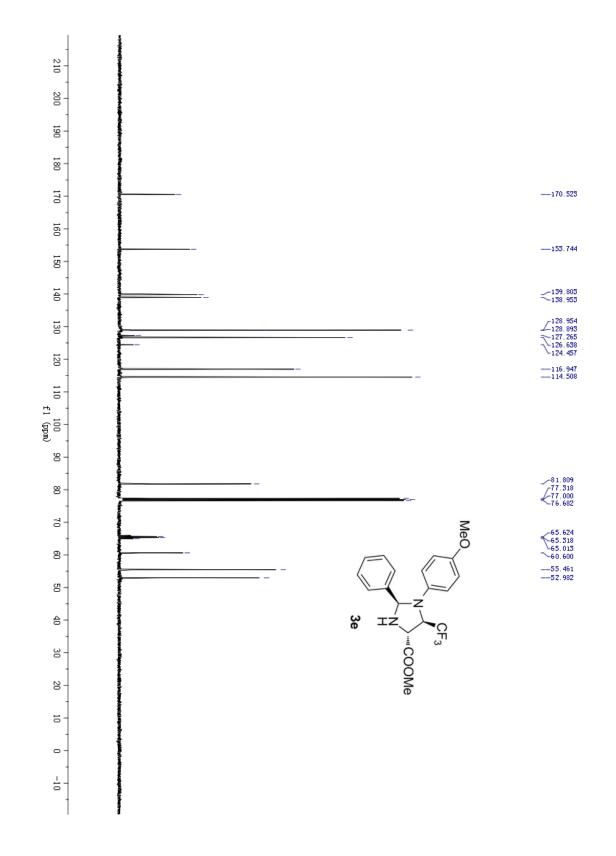


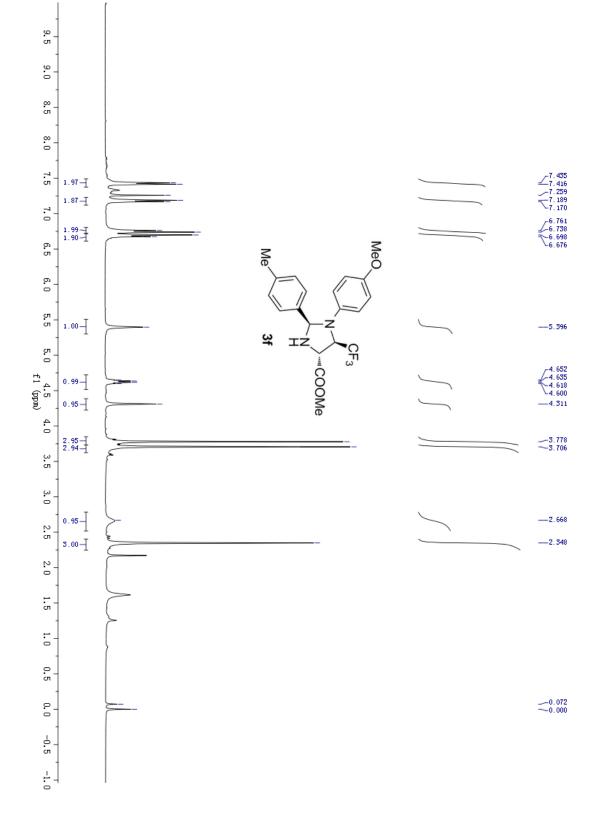


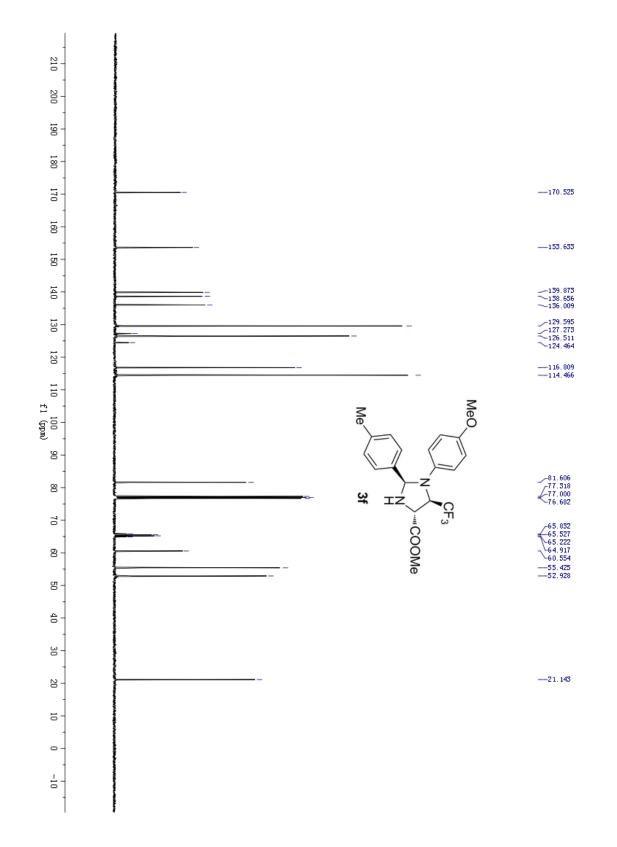


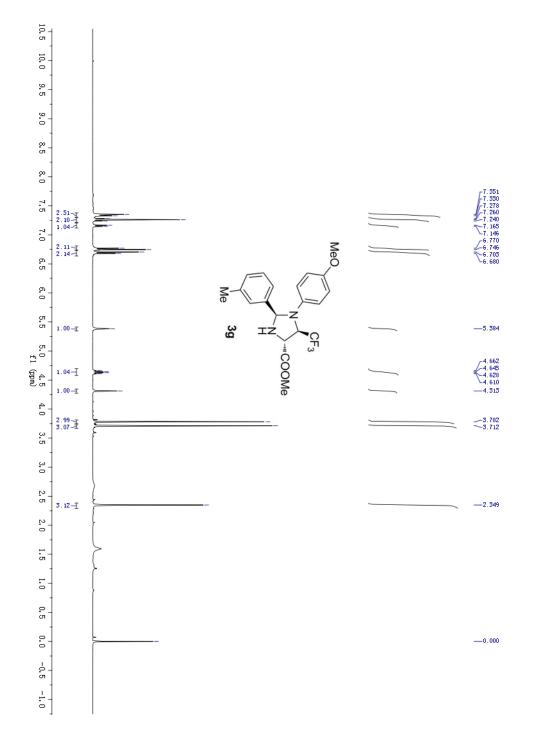


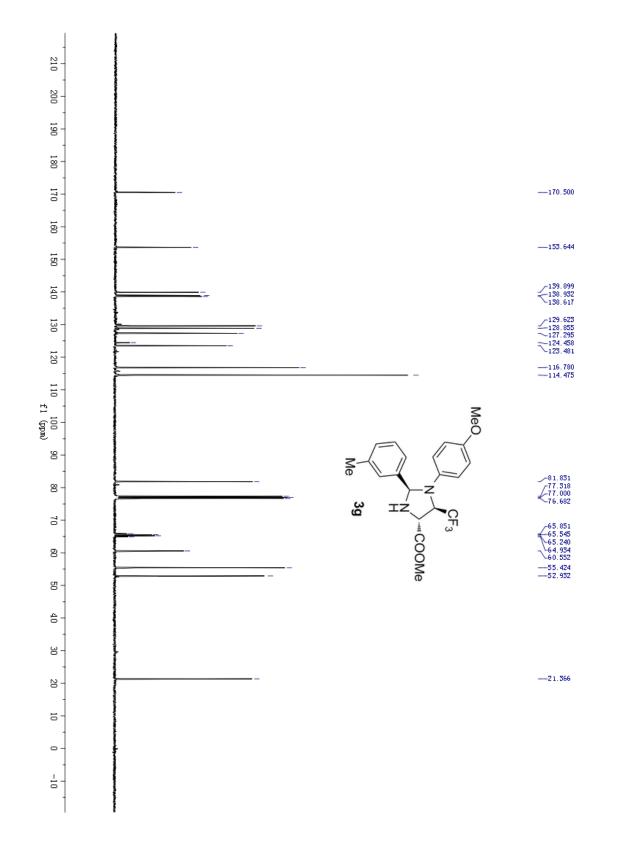


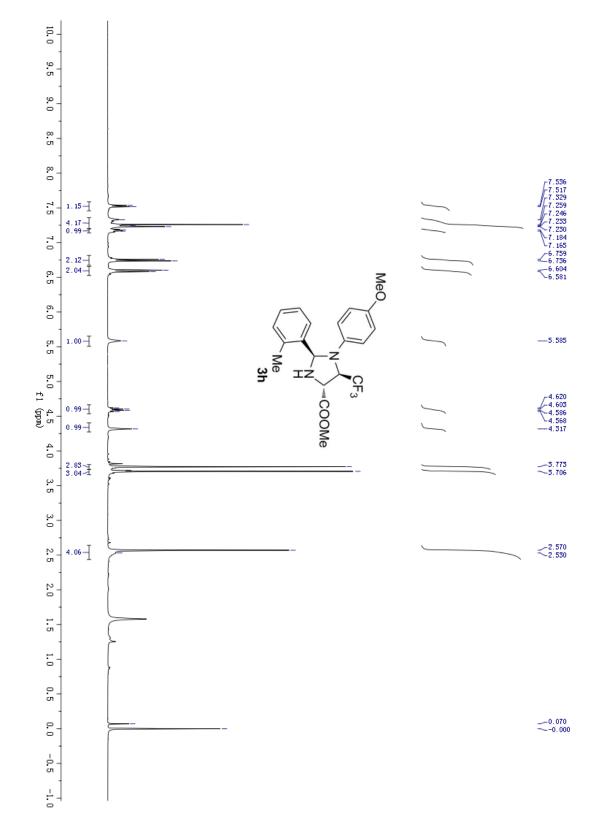


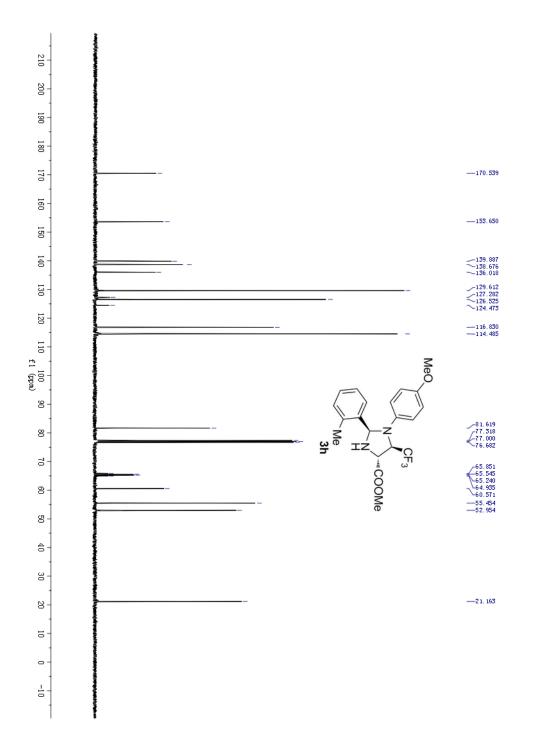


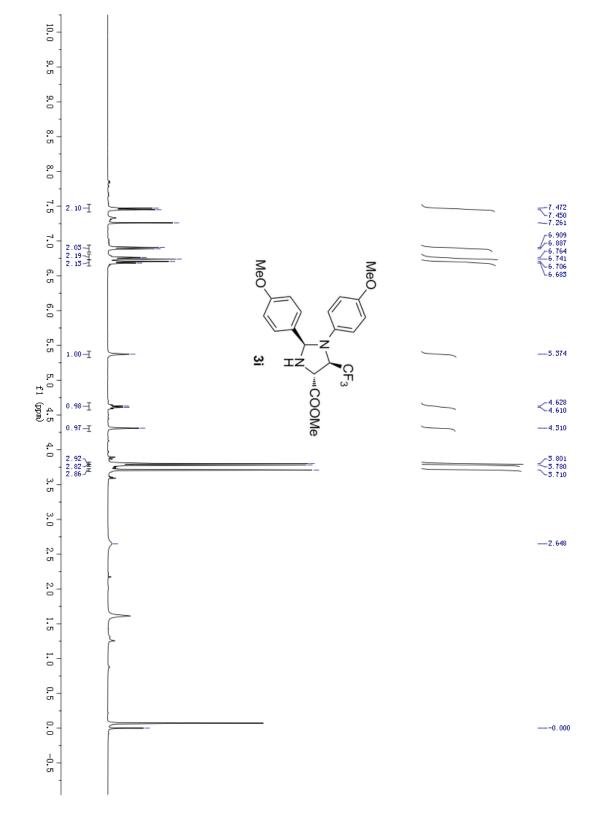


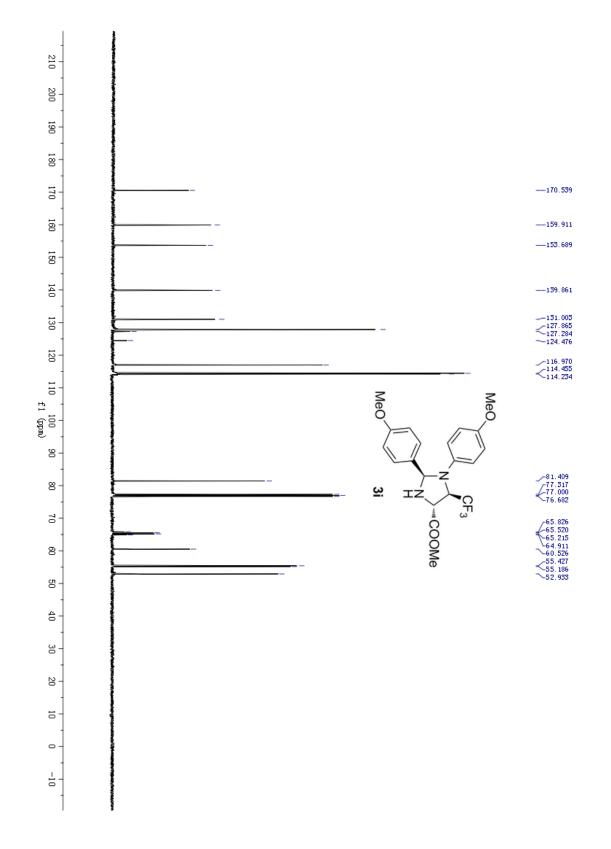


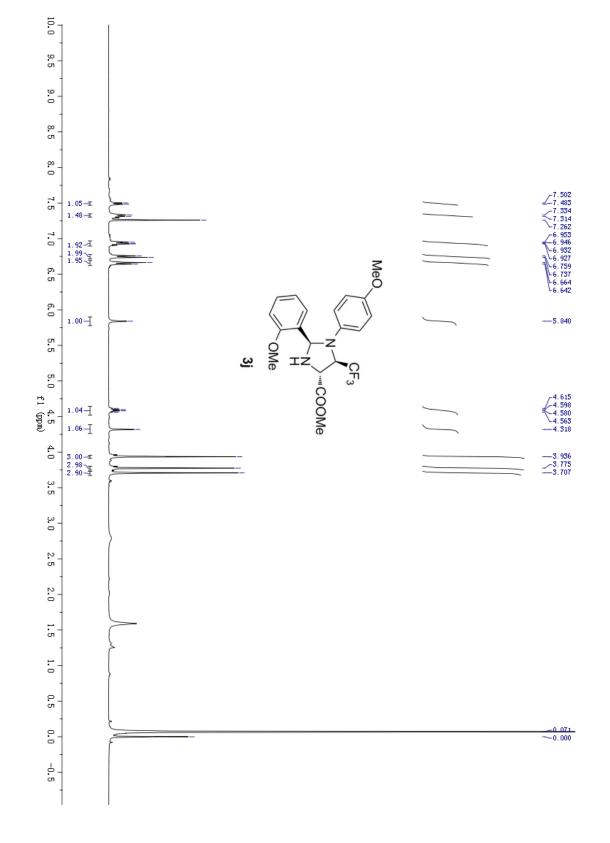


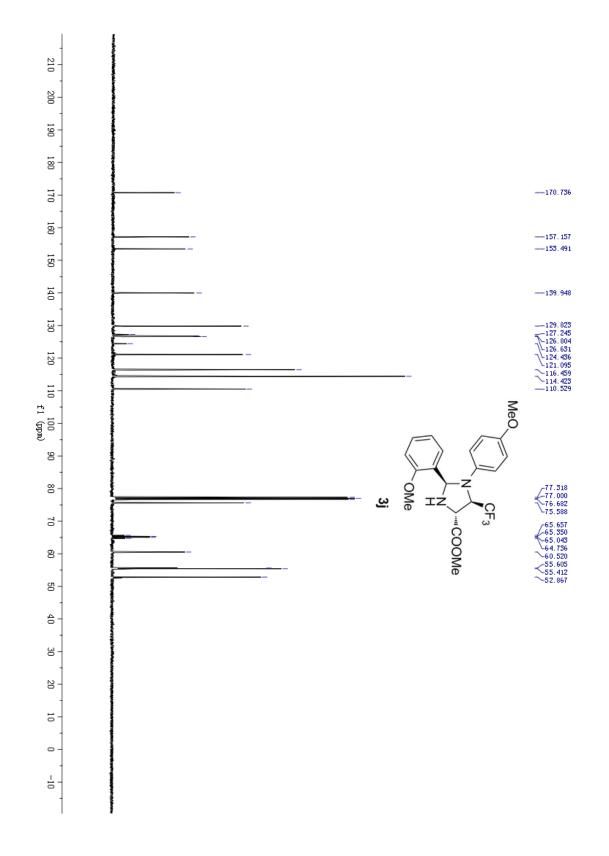


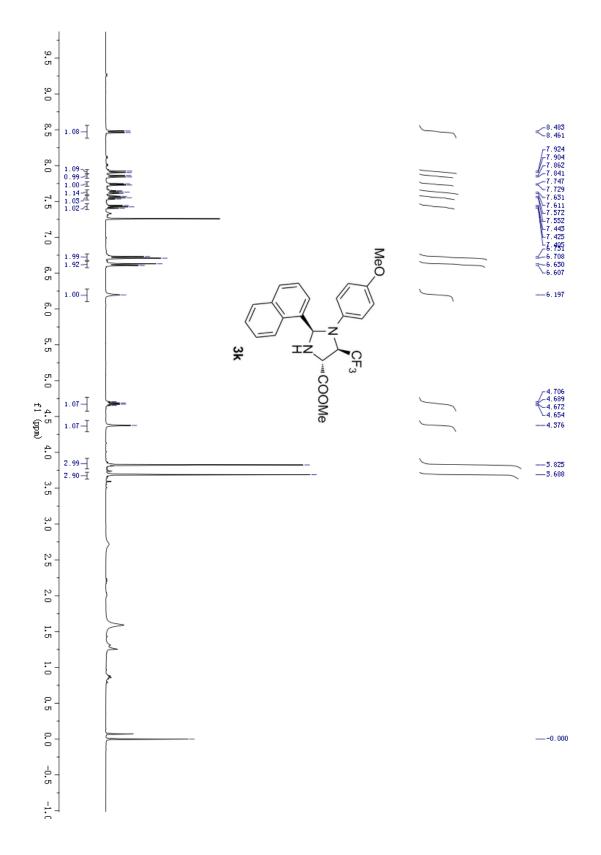


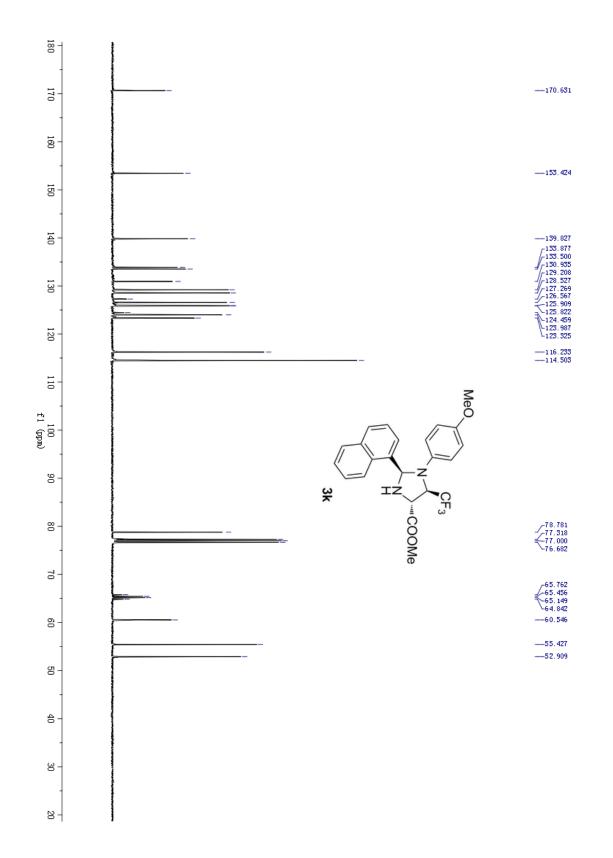


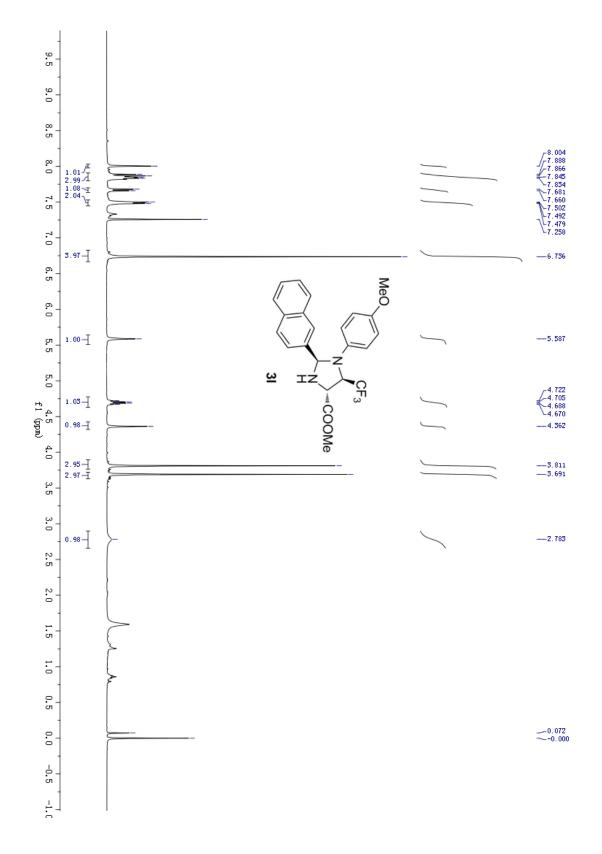


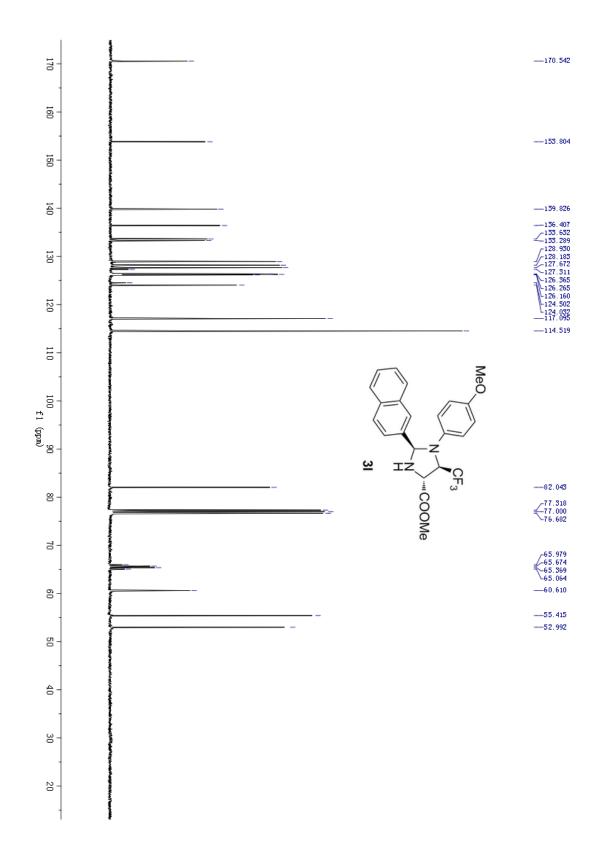


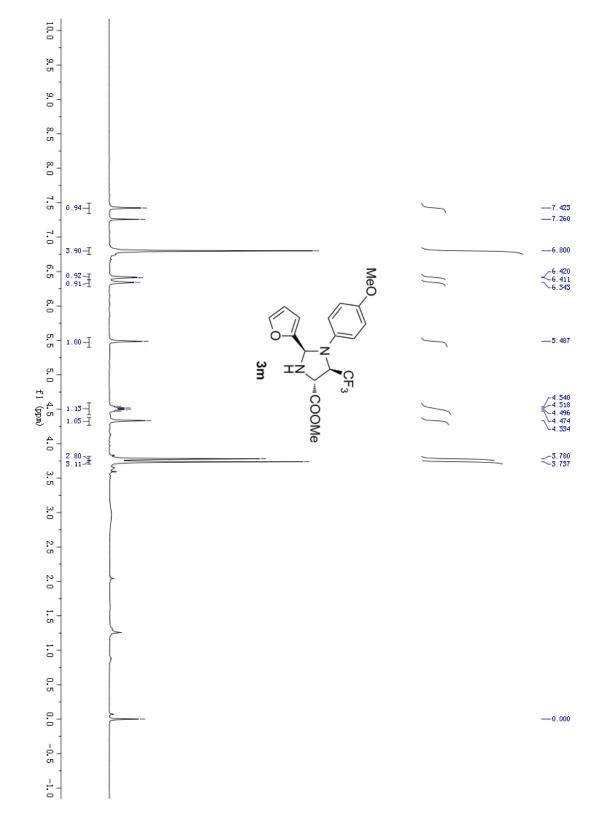


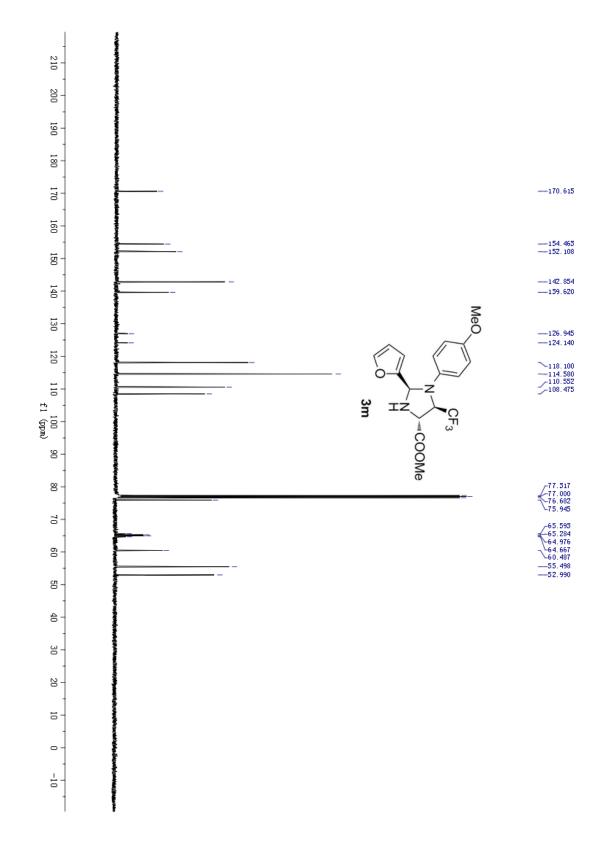


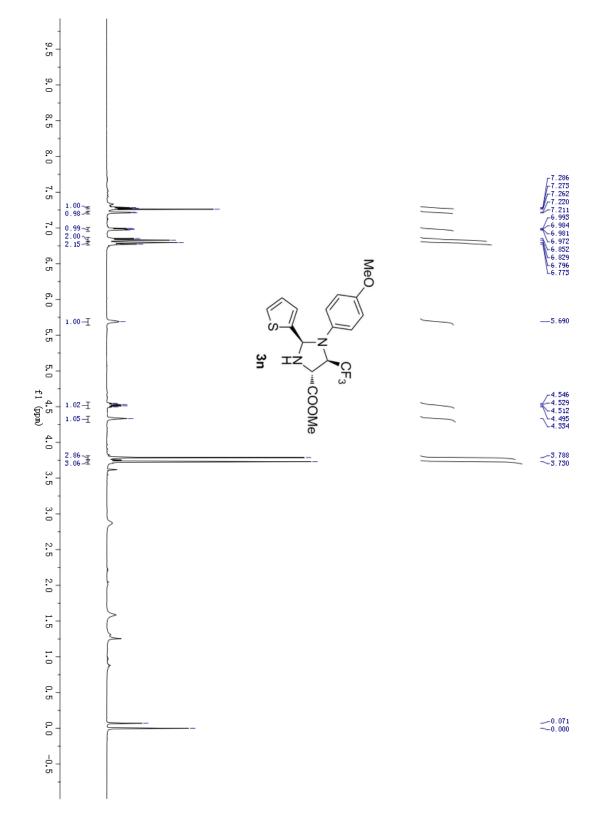


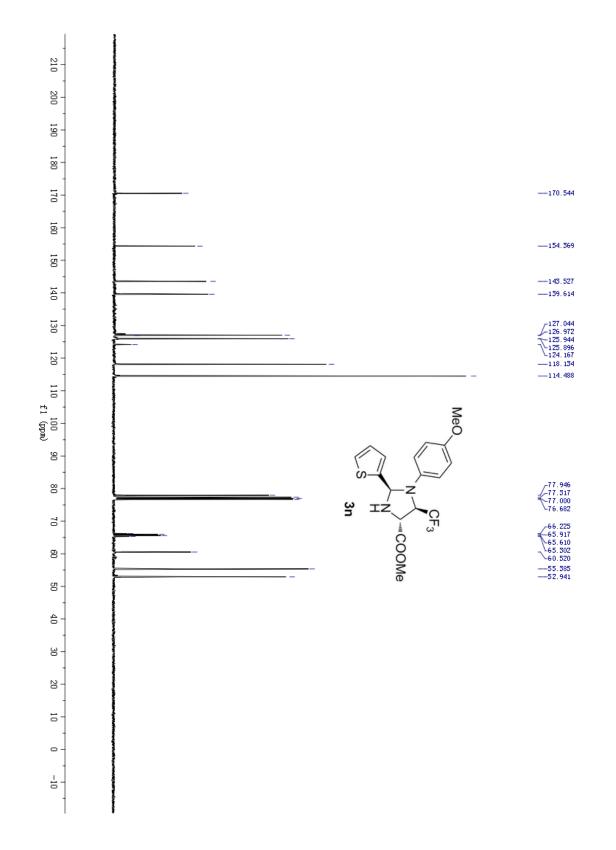


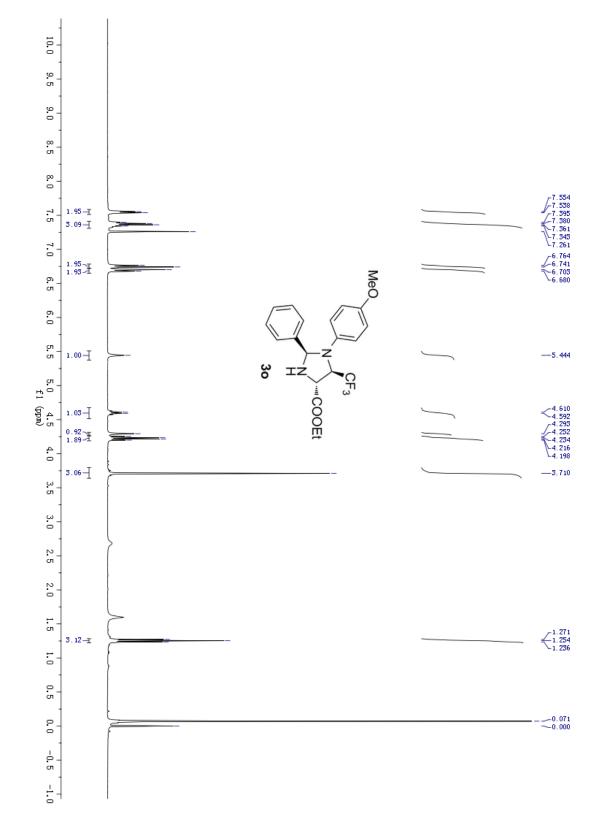


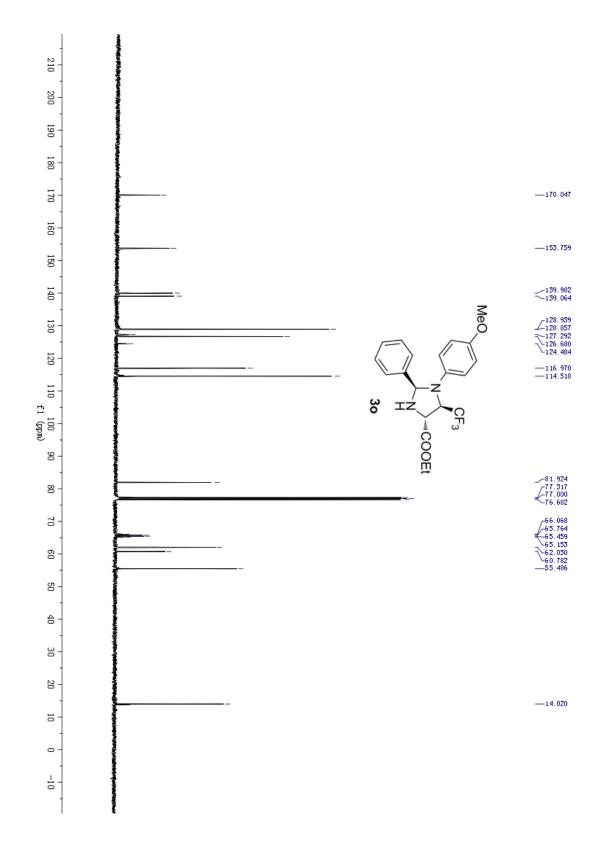


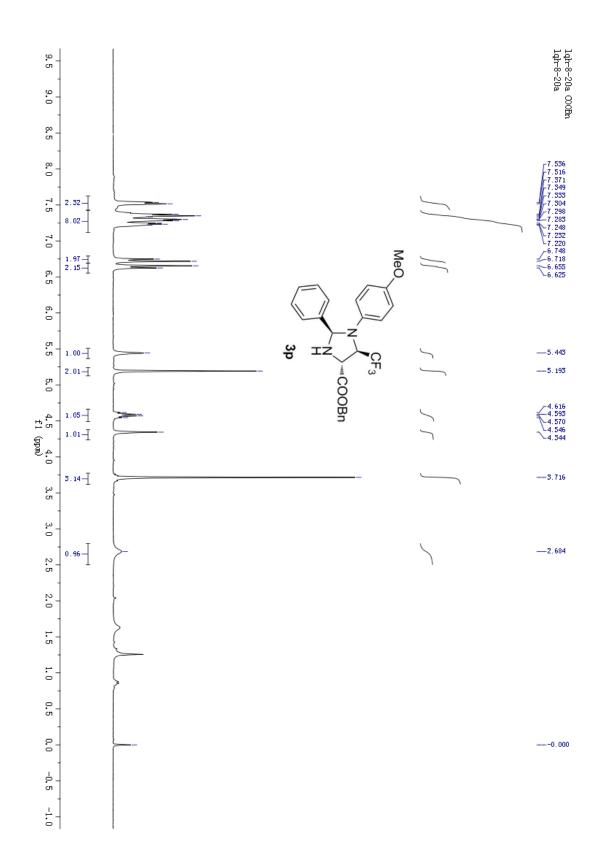


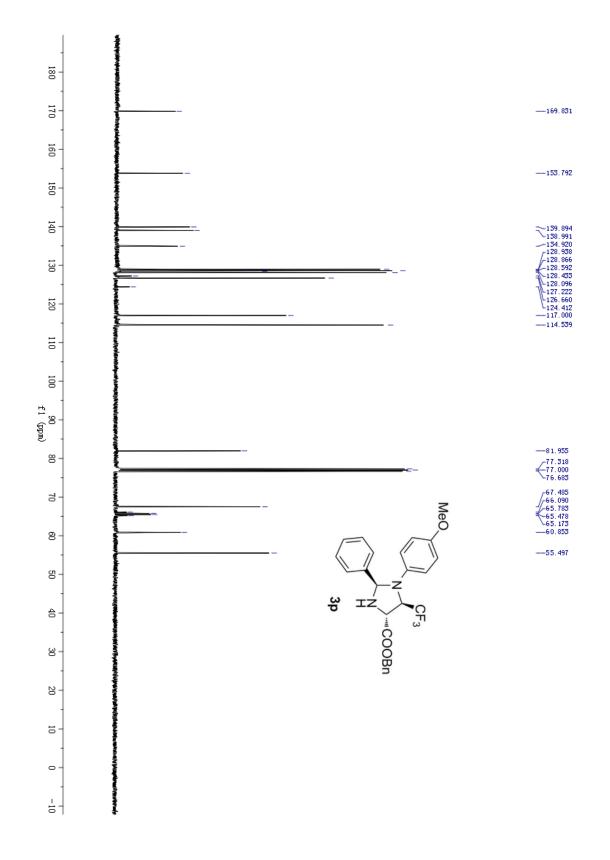


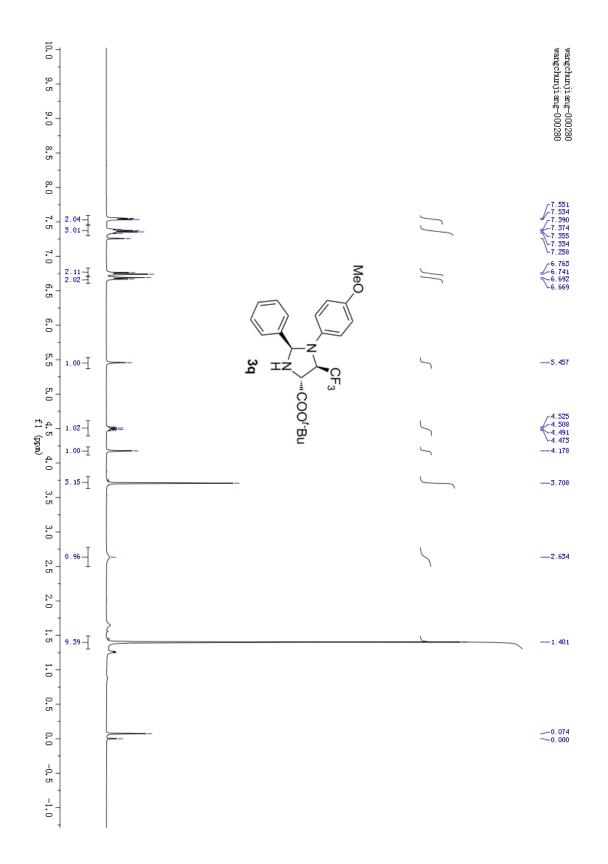


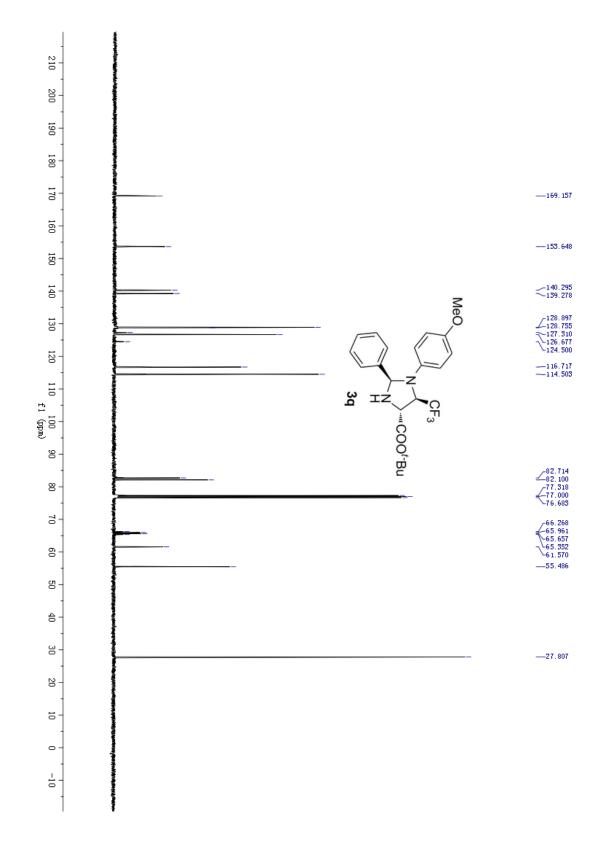


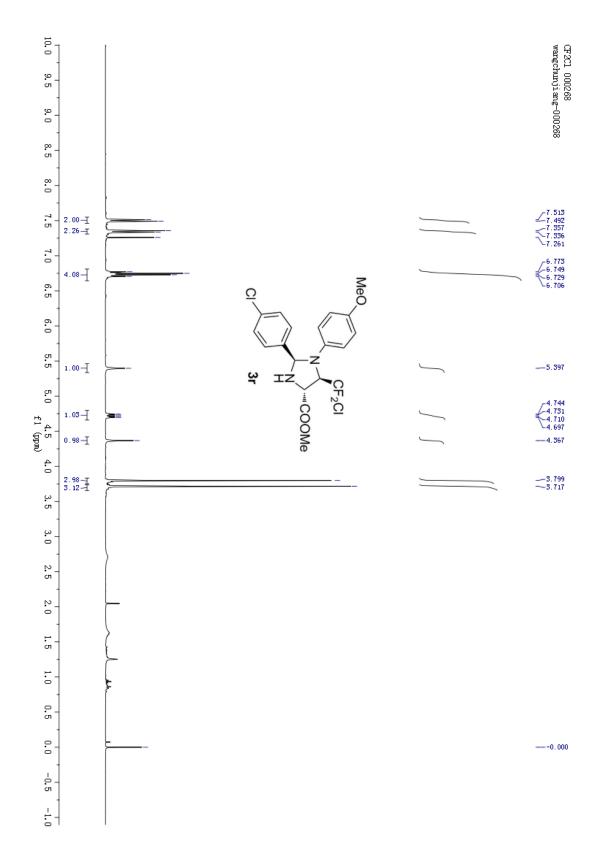


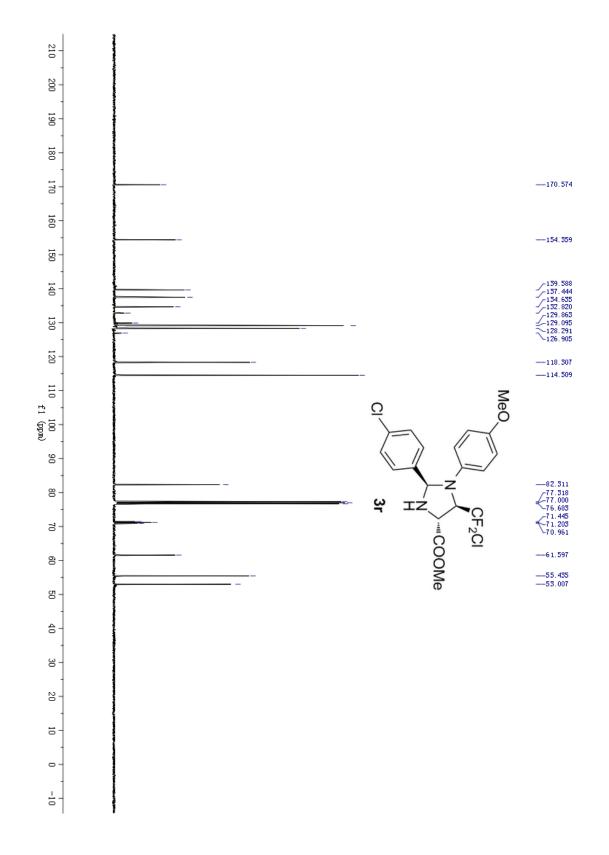


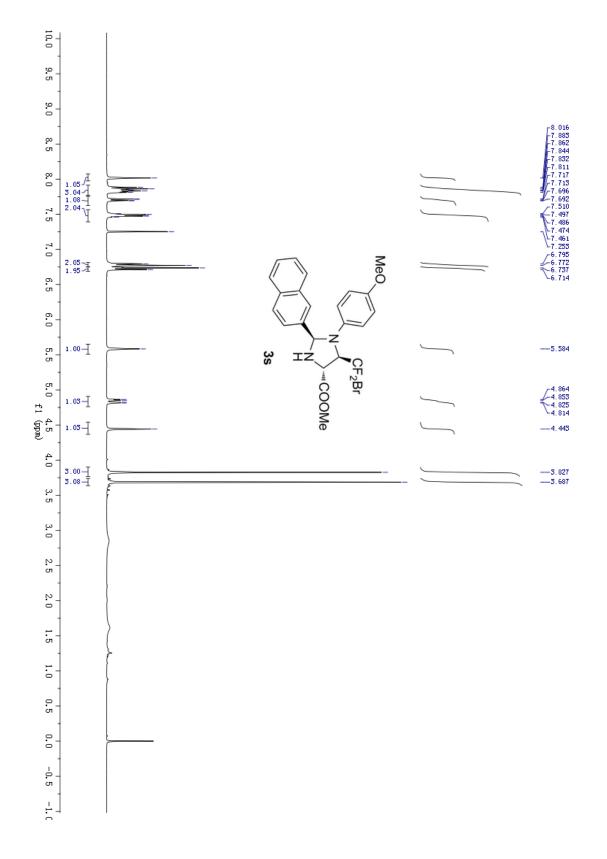


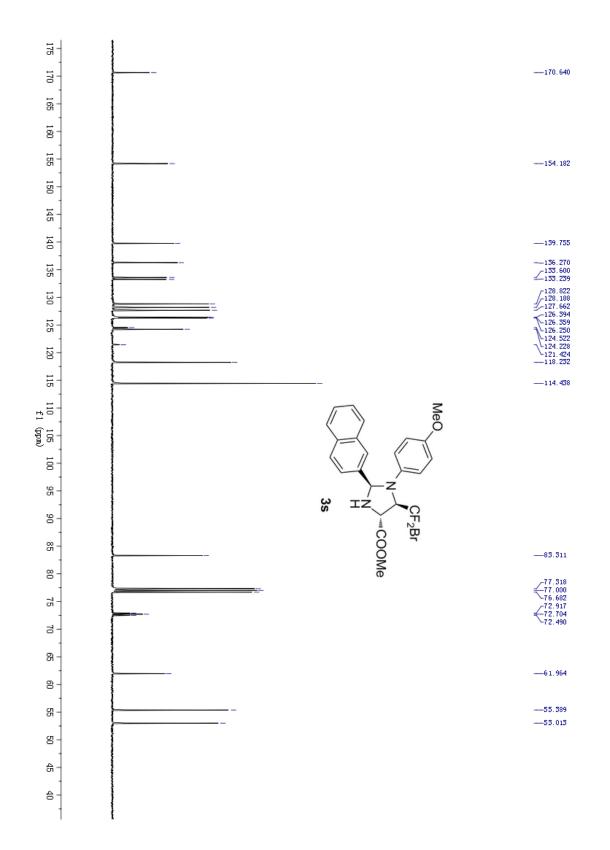


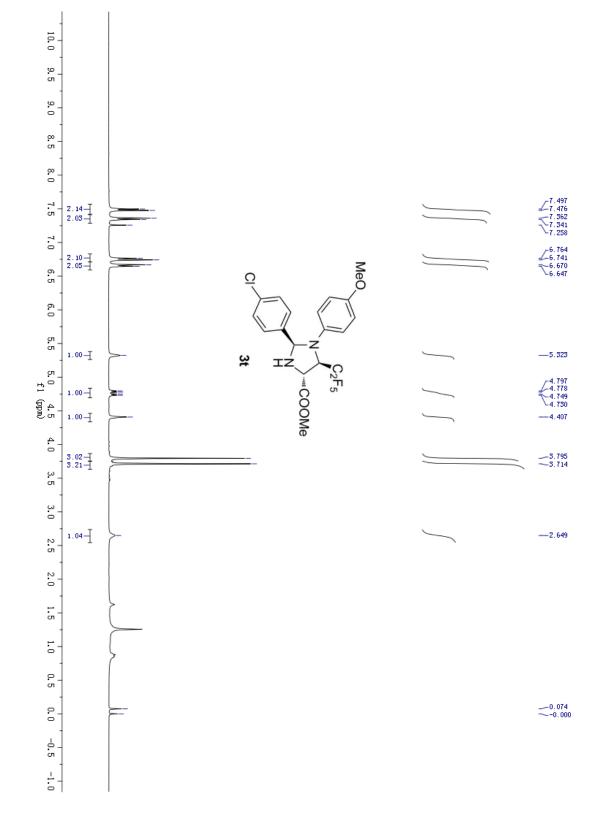


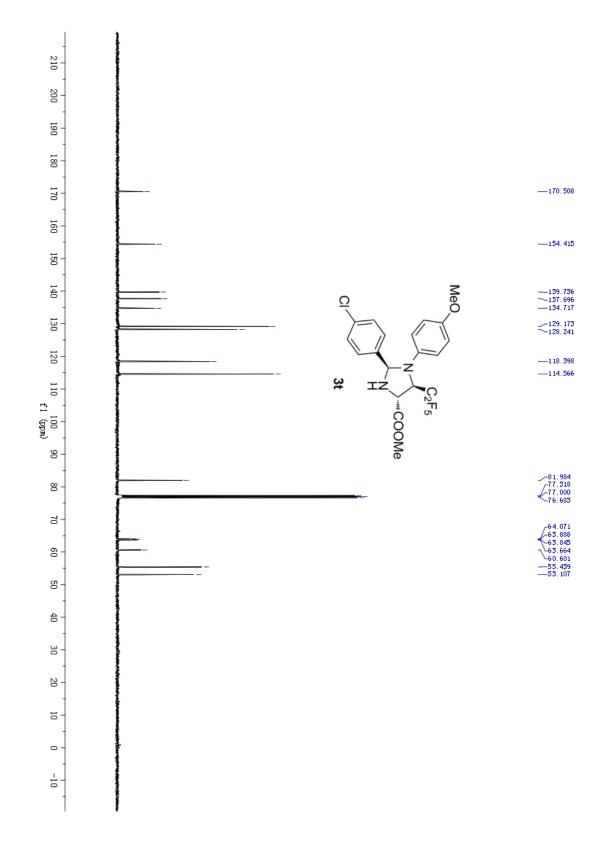


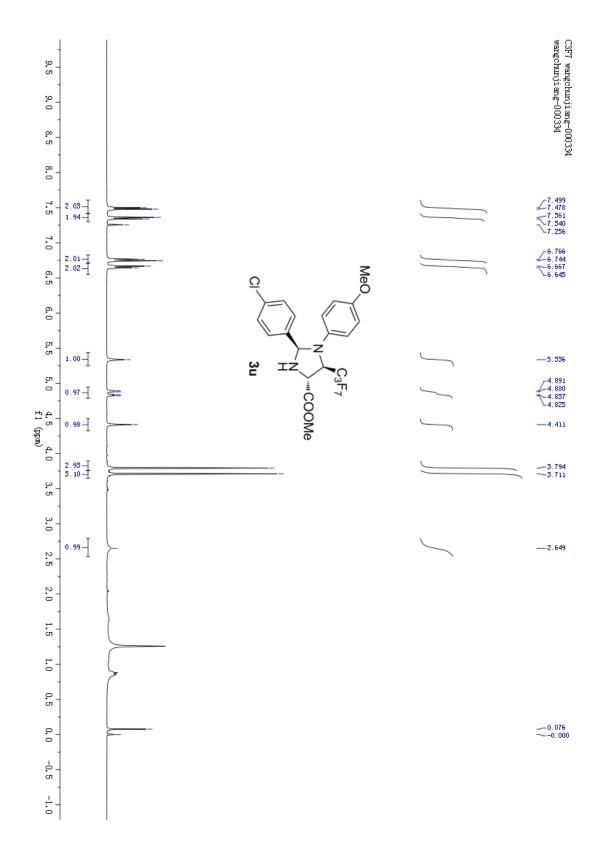


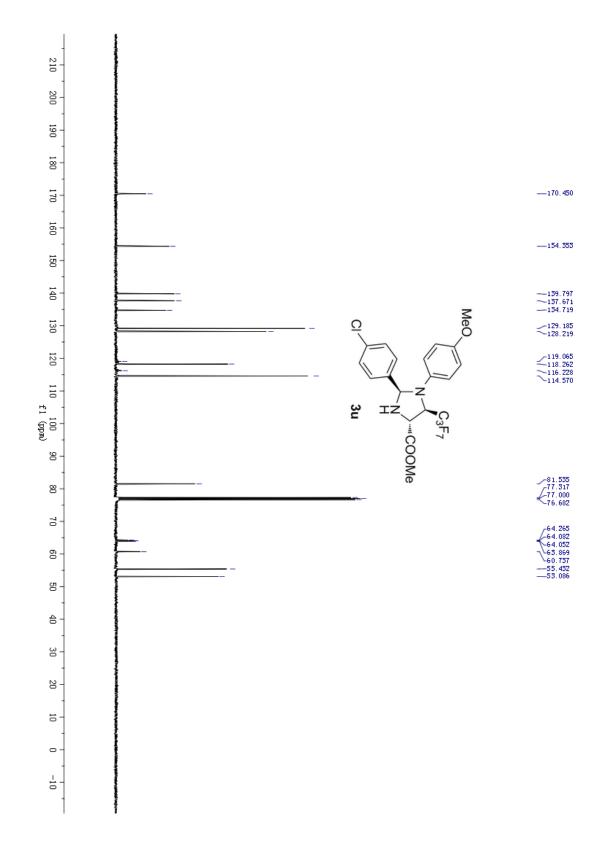


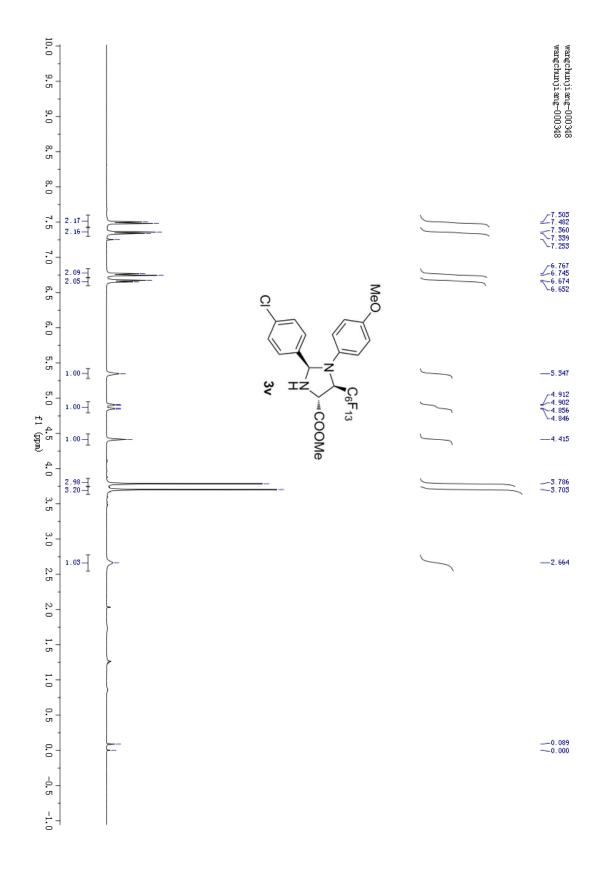


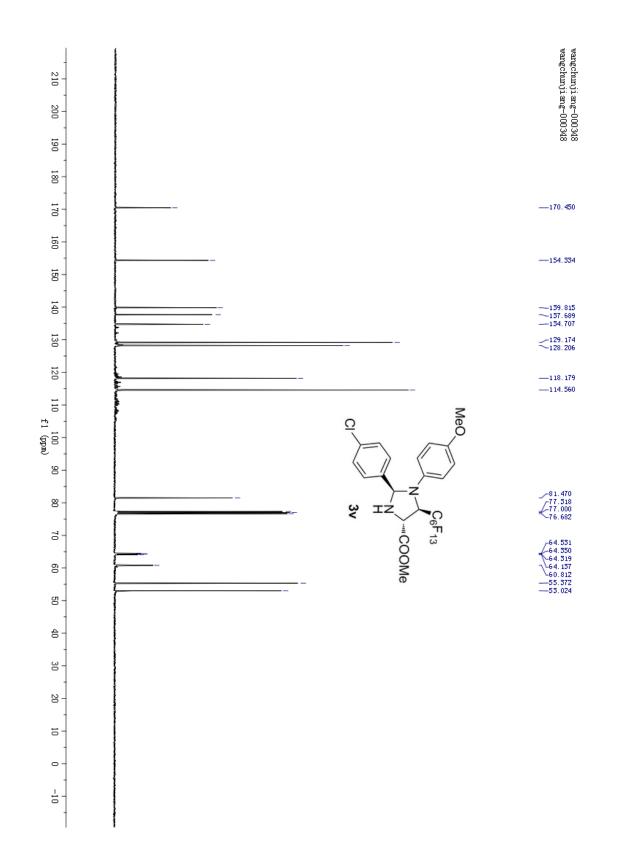


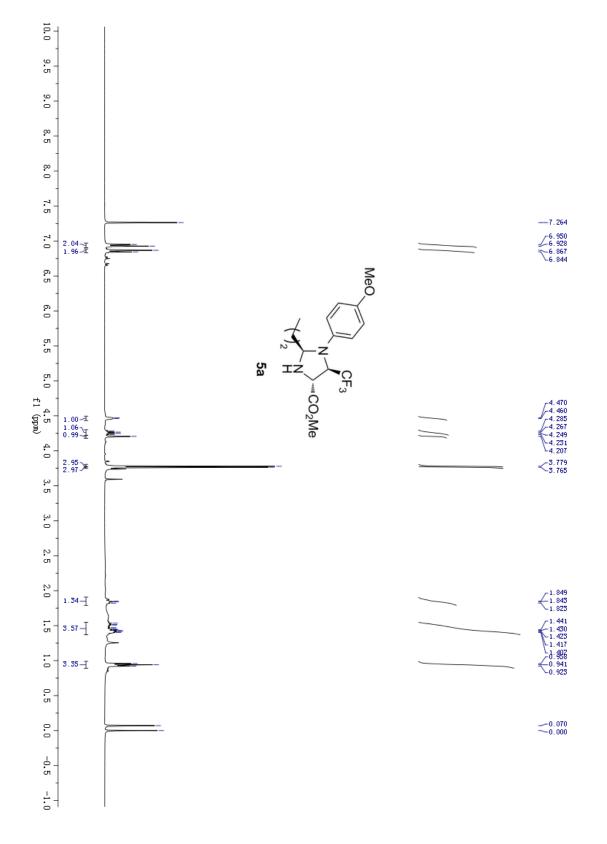


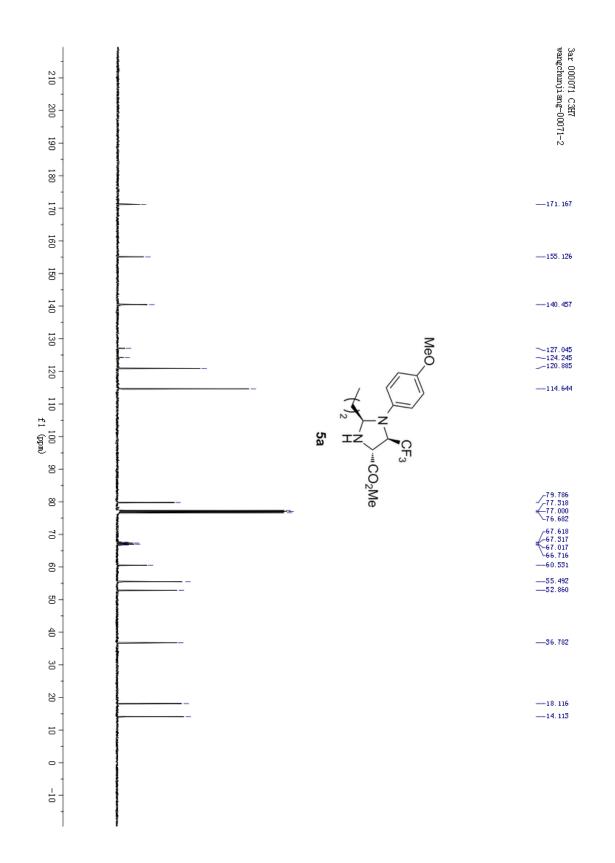


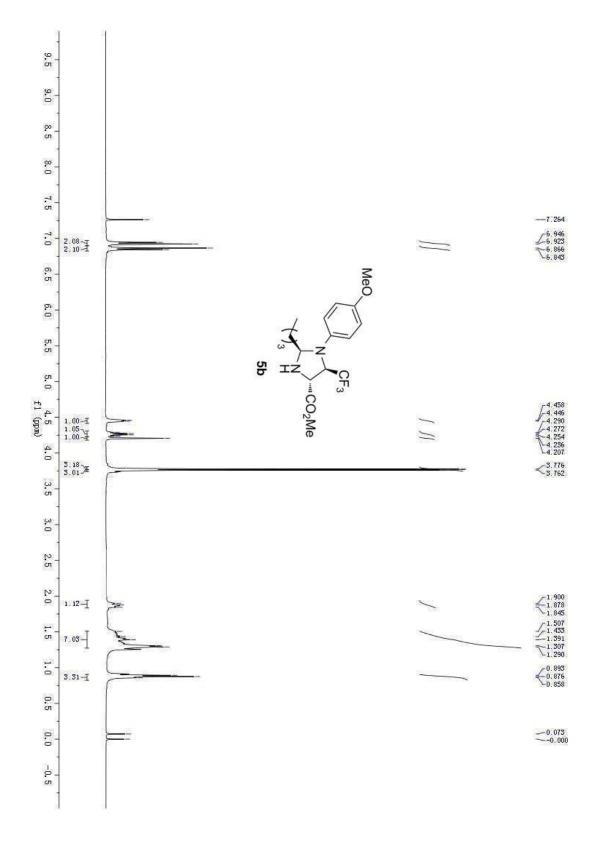


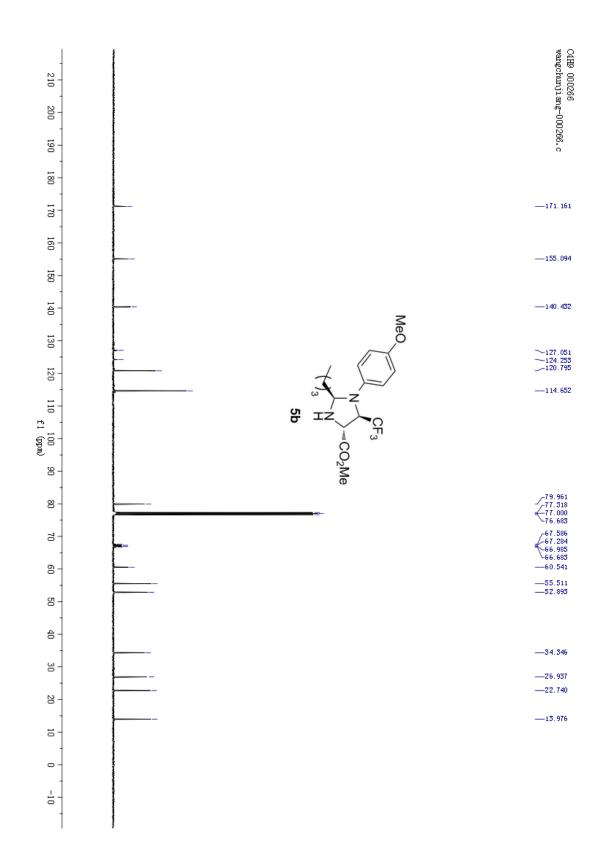


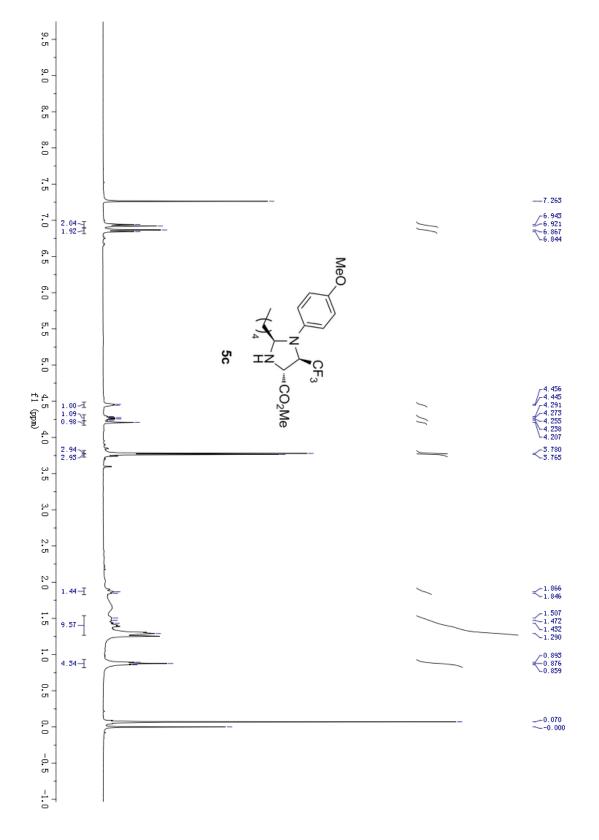


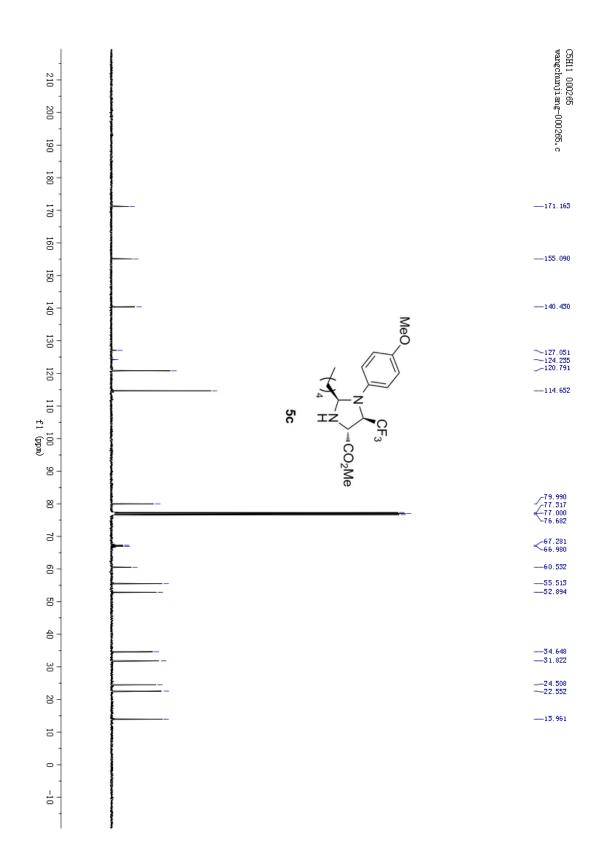


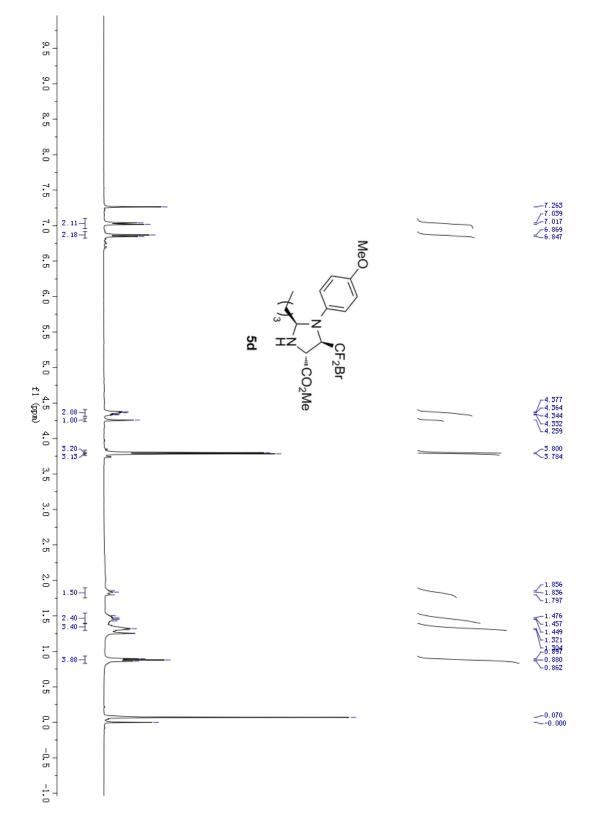


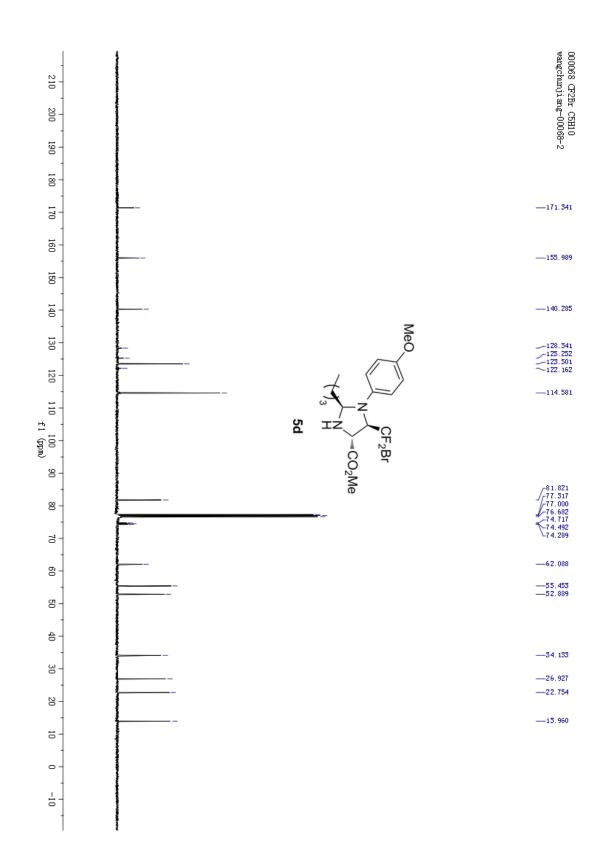


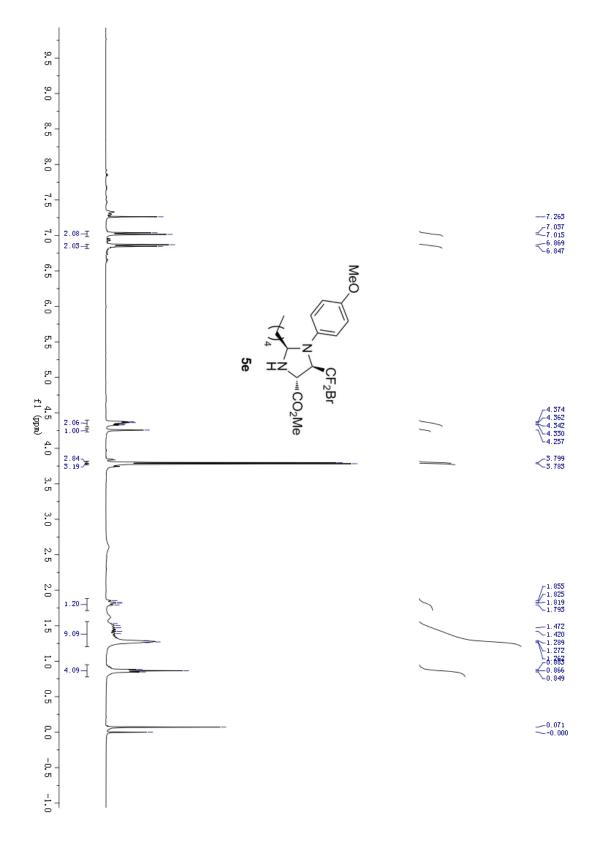


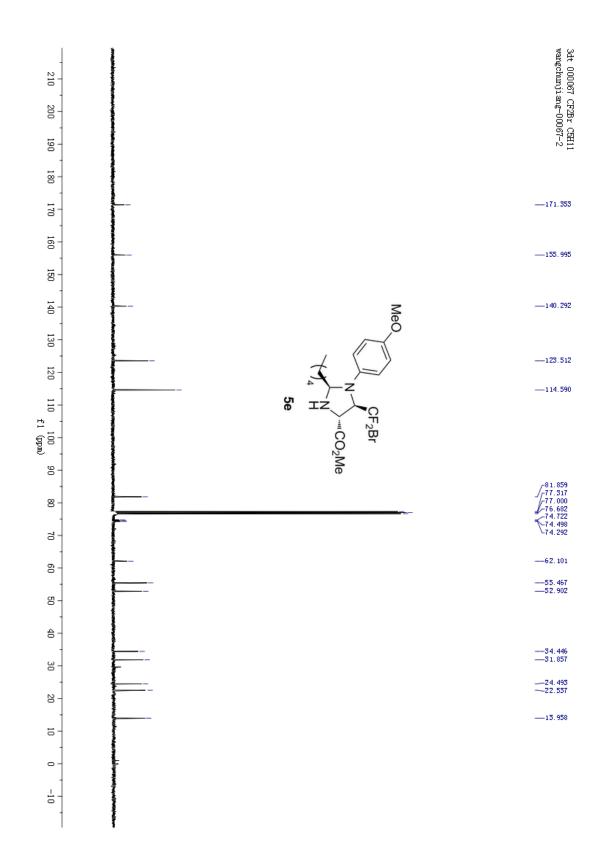


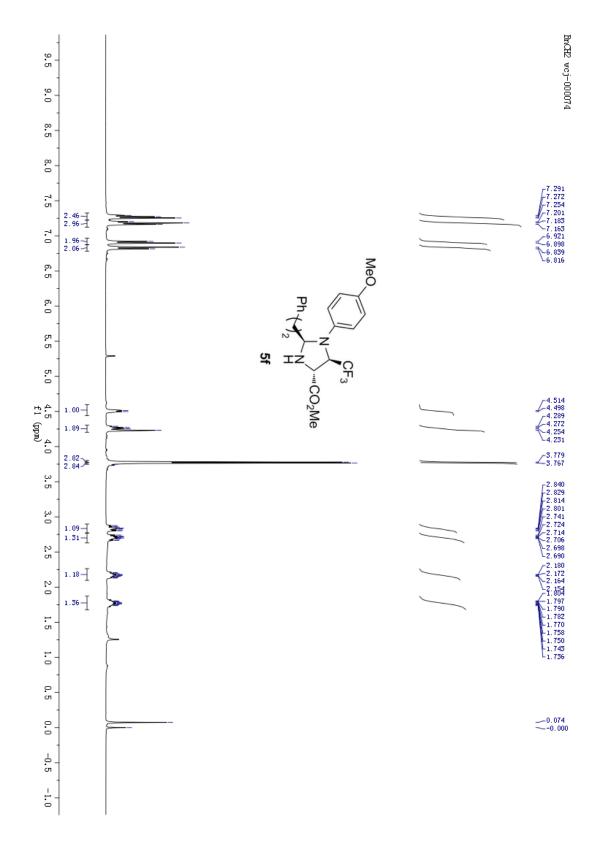


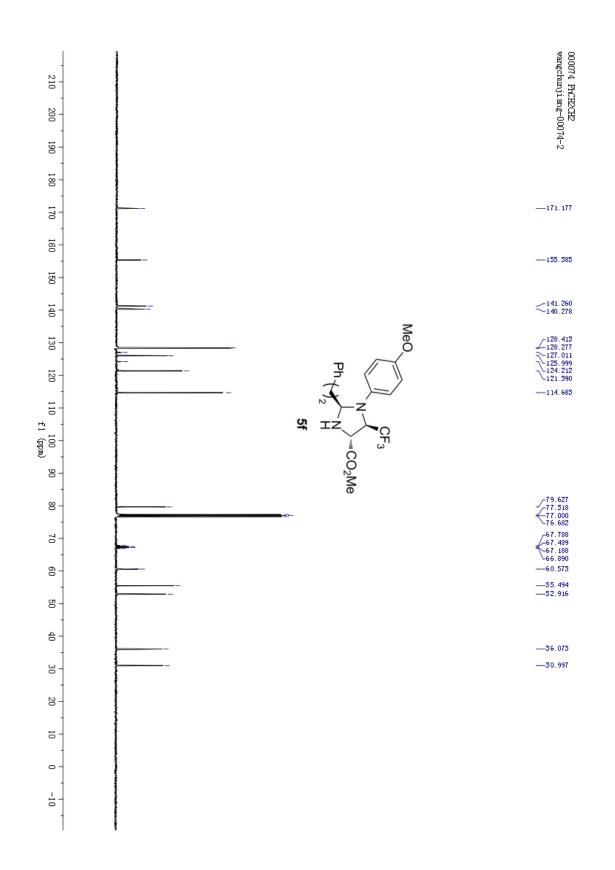


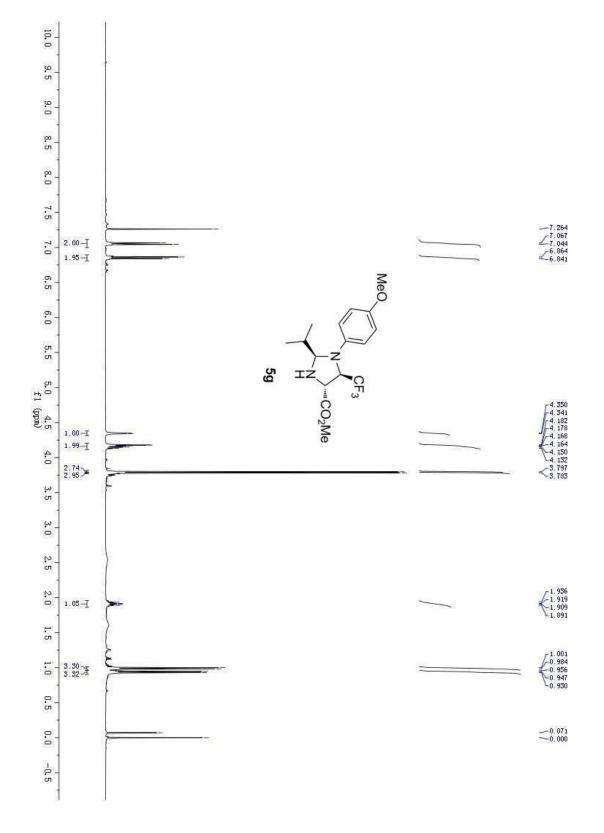


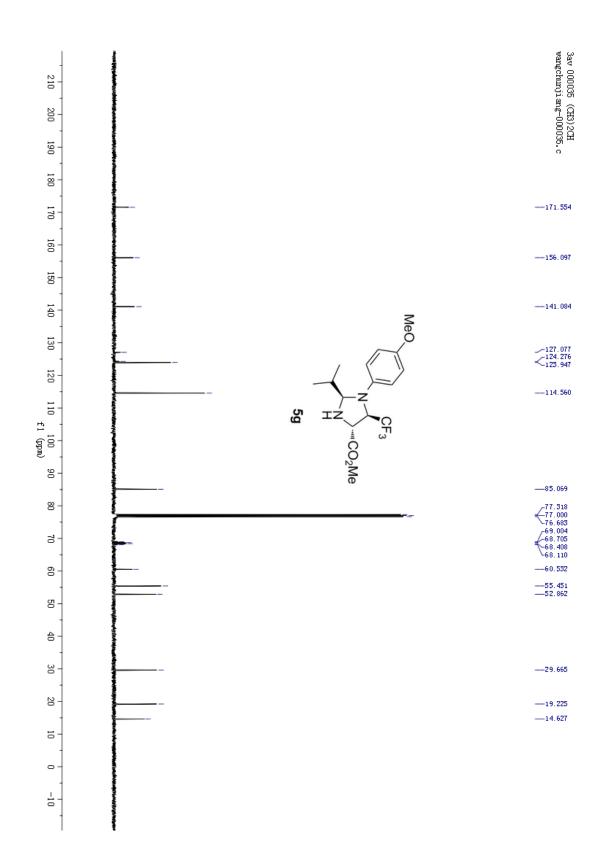


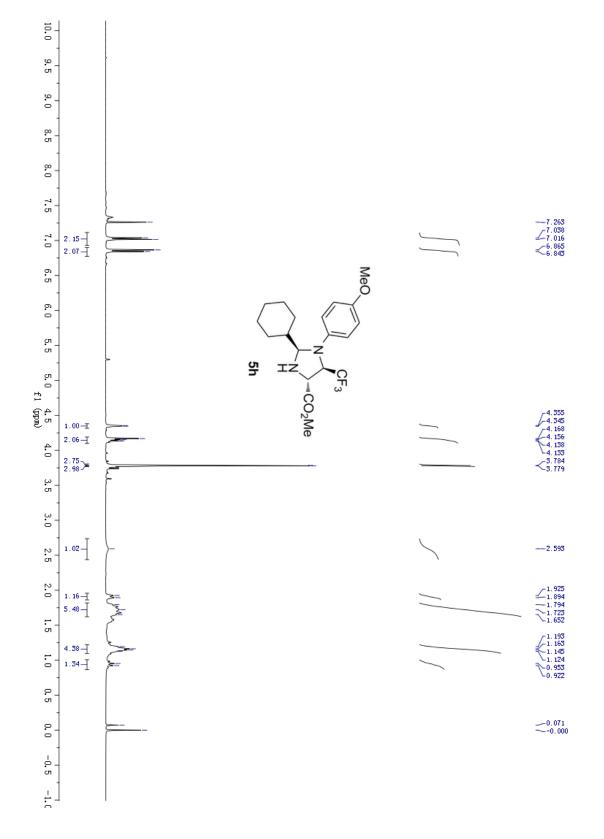


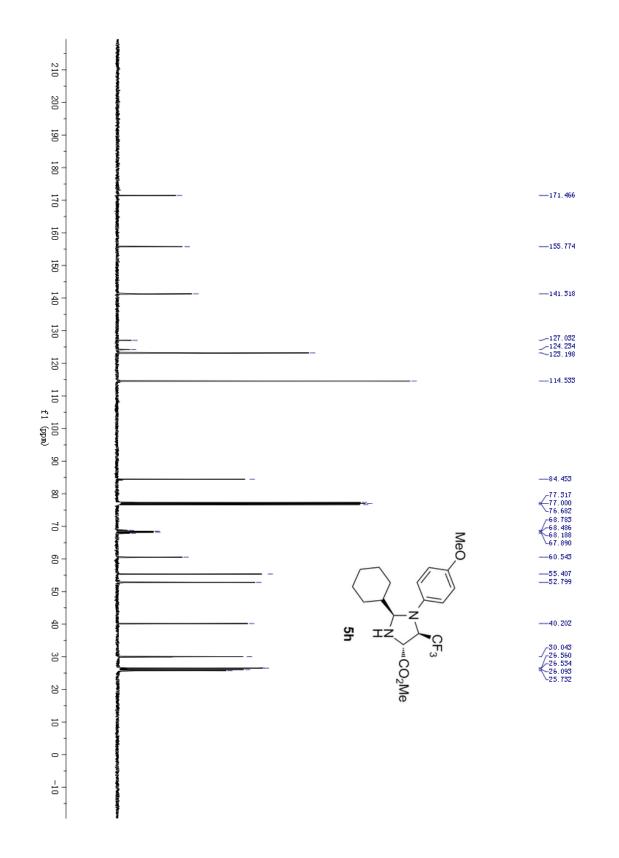


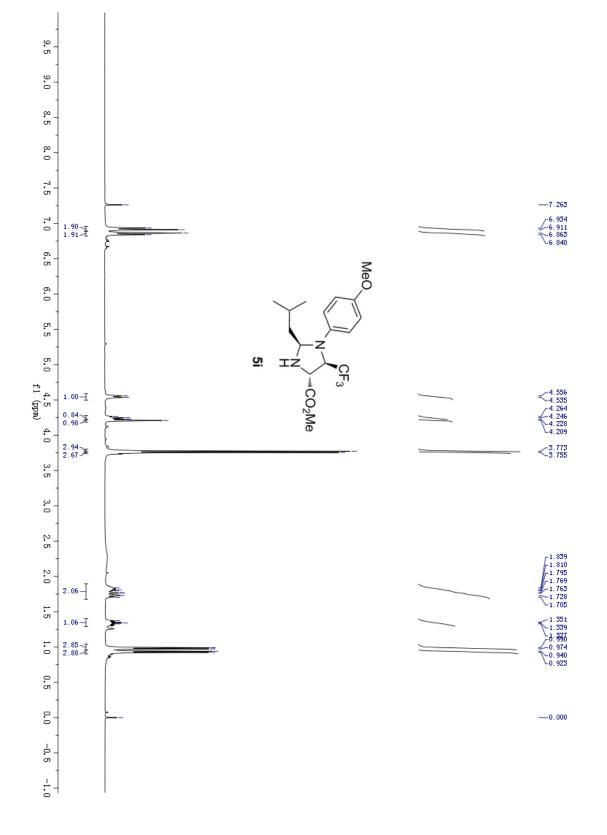


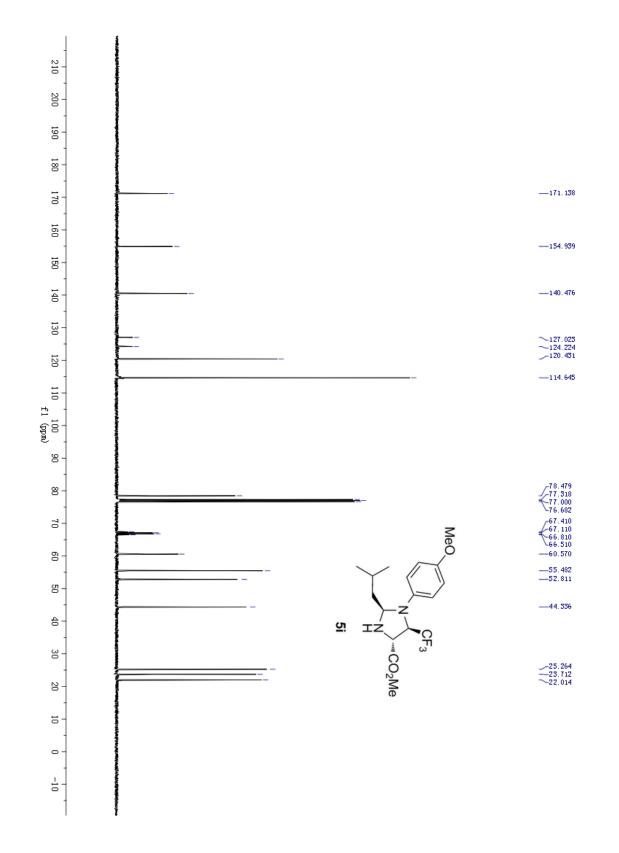


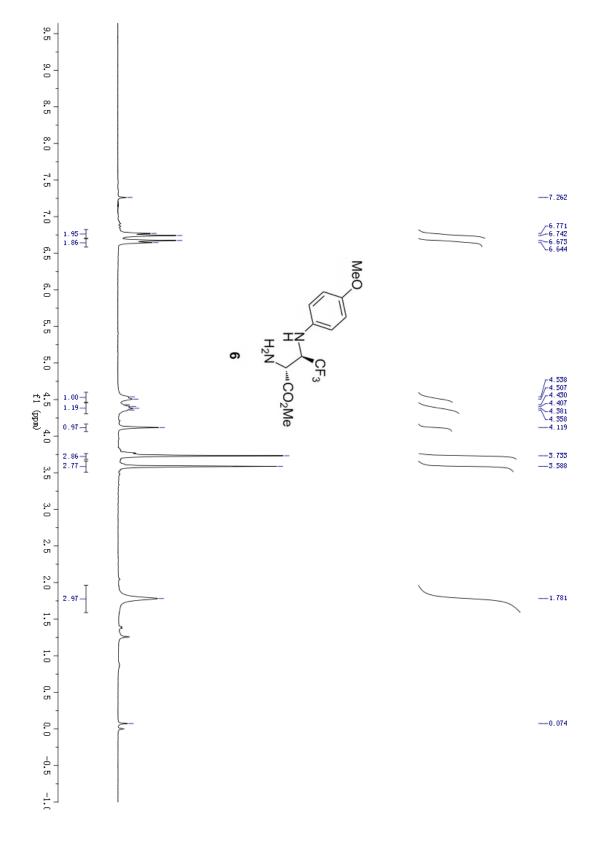


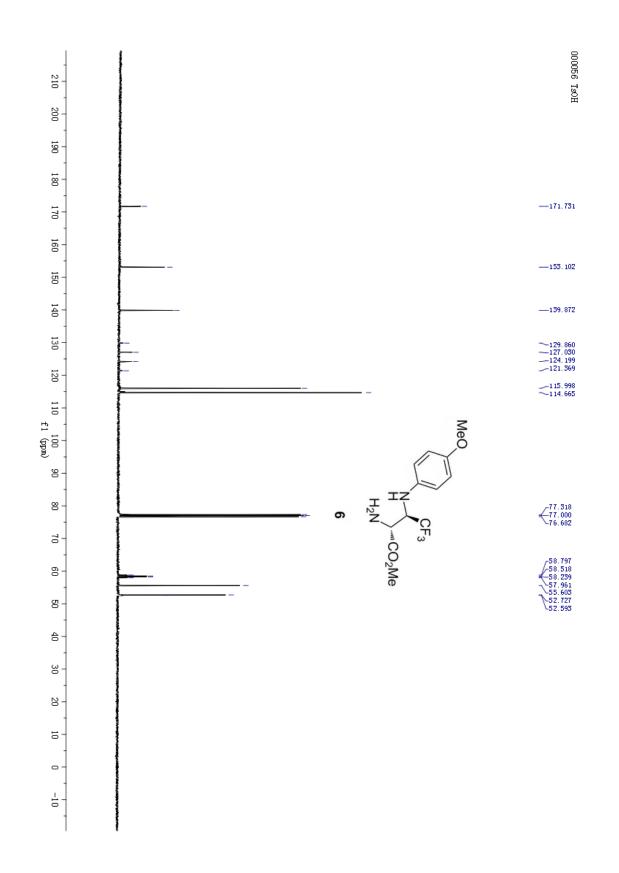


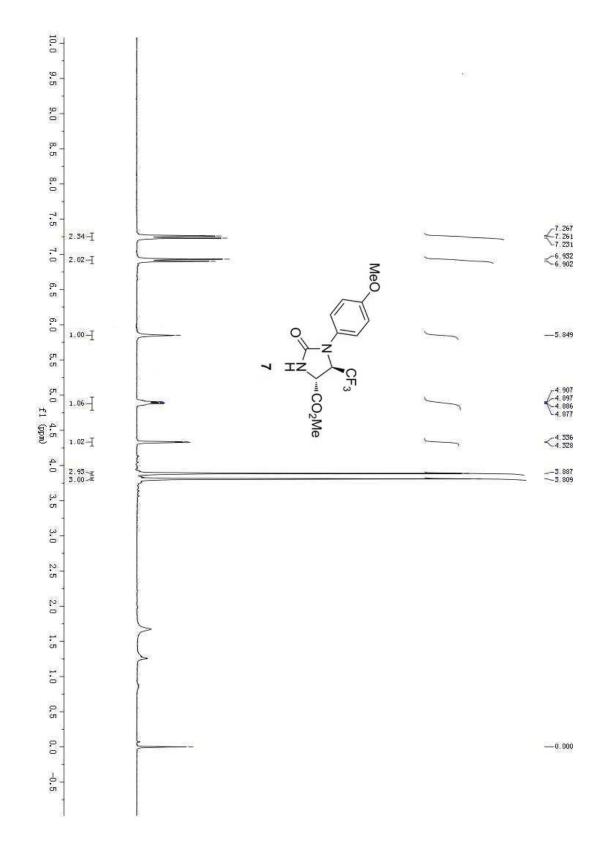


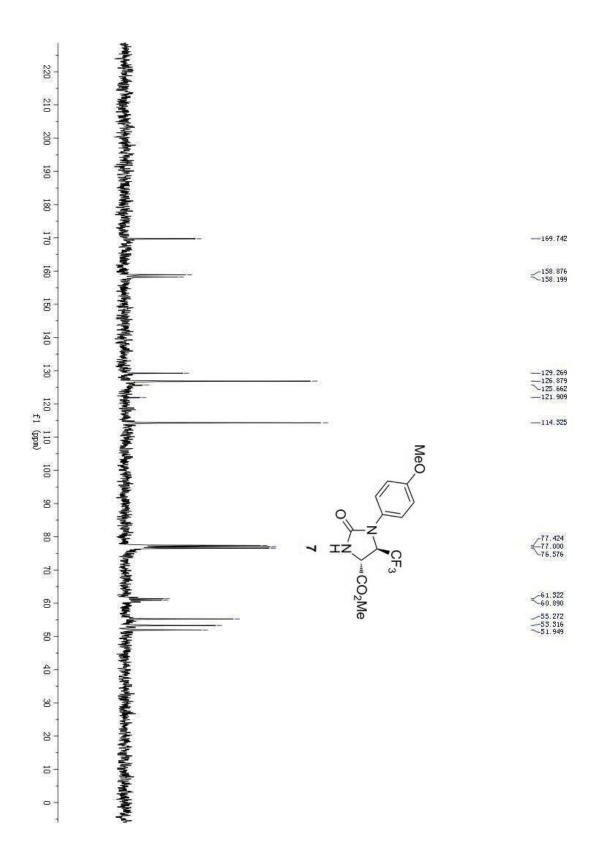


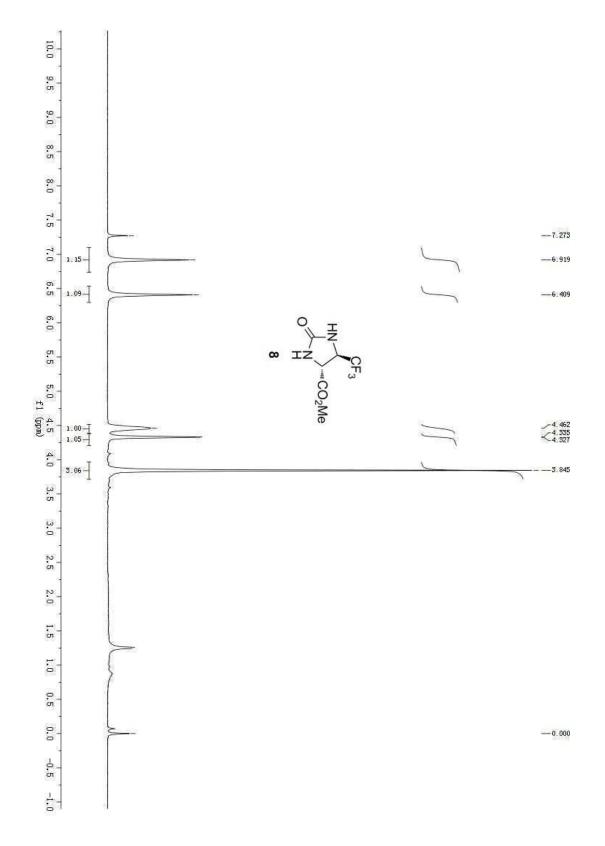


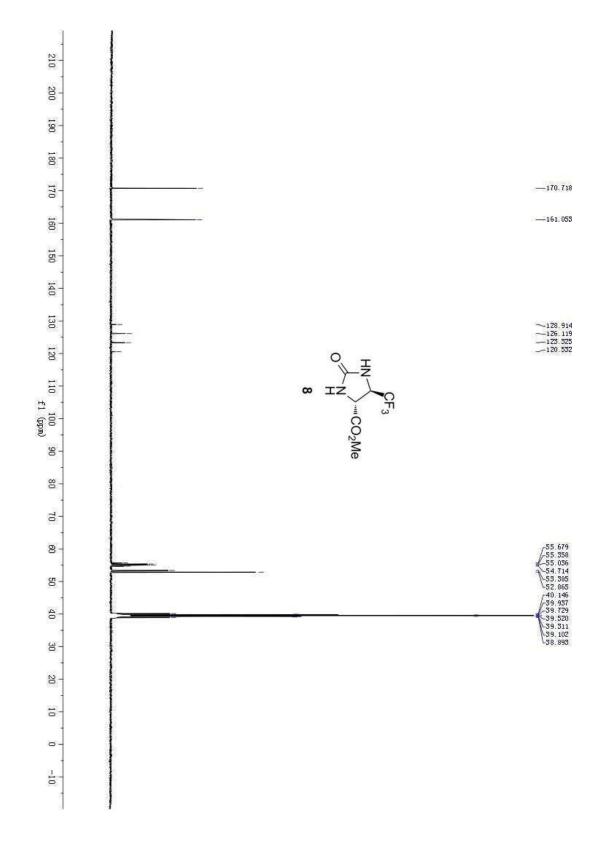




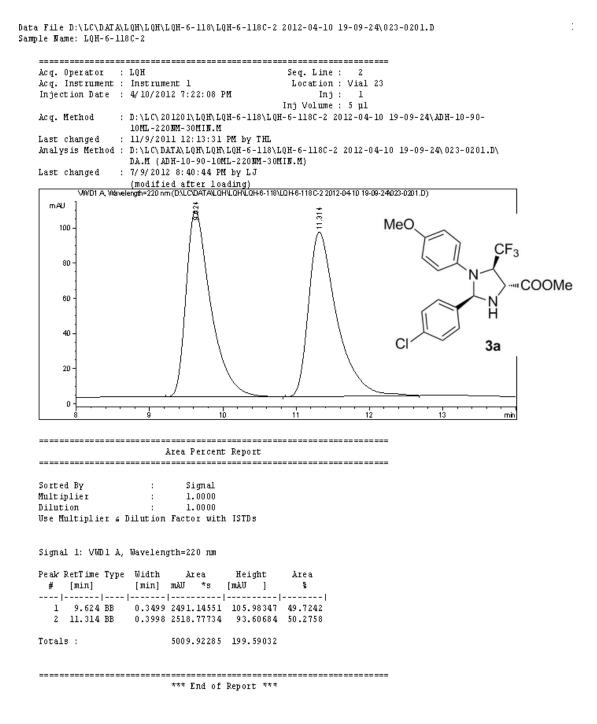








S91



S92

XII. HPLC Chromatograms

Instrument 1 7/9/2012 8:40:50 PM LJ

Sample Name: LQH-6-134B

Acq. Operator : LQH Seg. Line : 3 Acq. Instrument : Instrument 1 Location : Vial 72 Injection Date : 3/22/2012 10:28:41 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\LQH\LQH-6-134\LQH-6-134 2012-03-22 21-44-52\ADH-10-90-10ML-Acg. Method 220NM-30MIN.M : 11/9/2011 12:13:31 PM by THL Last changed Analysis Method : D:\LC\DATA\LQH\LQH\LQH-6-134\LQH-6-134 2012-03-22 21-44-52\072-0301.D\DA.M (ADH-10-90-10ML-220MM-30MIN.M) Last changed : 4/19/2012 2:17:40 PM by THL (modified after loading) W/D1 A. Wavelergth=220 nm (D\LC\DATA\LQH\LQH6-134\LQH6-134\LQH6-1342012-03-2221-44-52\072-0301.D) mAU ŝ 1600 MeO 1400 CF_3 1200 COOMe 1000 800 600 C 3a 400 Sec. Sec. 200 624 es. D ģ. 9.5 10 11 11.5 12 12.5 min 8.5 10.5 _____ Area Percent Report _____ Sorted By : Simul 1.0000 Multiplier : Dilution 1.0000 : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU *5 [mAU] % 1 9.490 MM 0.4015 3.98363e4 1653.52295 98.5441 2 11.473 MM 0.4463 588.54236 21.97648 1.4559 4.04248e4 1675.49943 Totals : _____

Data File D:\LC\DATA\LQH\LQH\LQH-6-134\LQH-6-134 2012-03-22 21-44-52\072-0301.D

Instrument 1 4/19/2012 2:17:44 PM THL

Data File D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7D 2012-03-28 08-33-34\082-0201.D

Sample Name: LQH-7-7D _____ Acq. Operator : LQH Seg. Line : 2 Acq. Instrument : Instrument 1 Location : Vial 82 Injection Date : 3/28/2012 8:45:31 AM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\LQH\LQH-7-7\LQH-7-7D 2012-03-28 08-33-34\ASH-10-90-10ML-Acg. Method 220**NM.M** : 3/28/2012 9:08:29 AM by LQH Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7D 2012-03-28 08-33-34\082-0201.D\DA.M (ASH-10-90-10ML-220NM.M) : 4/19/2012 2:31:57 PM by THL Last changed (modified after loading) \W/D1A_Wavelergth=220nm(D\LC\DATA\LQH\LQH7-7\LQH-7-7D2012-03-2808-33-34/082-0201.D) ka: TASAA mAU MeO. 80 - CF_3 70 hos Tol is .225 60 -COOMe 5D · 40 -3b 30 -20 -10 å 10 11 12 13 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area 1 7.852 MM 0.4543 2209.44287 81.05141 50.3179 2 11.225 MM 0.7695 2181.52905 47.24813 49.6821 4390.97192 128.29954 Totals : *** End of Report ***

Instrument 1 4/19/2012 2:32:02 PM THL

Sample Name: LQH-7-11D _____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 1 Location : Vial 95 Injection Date : 4/19/2012 7:34:56 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\ASH-10-Acg. Method 90-1ML-220NM-25MIN.M Last changed : 9/10/2011 12:27:52 PM by LTL Analysis Method : D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\095-0101. D\DA.M (ASH-10-90-1ML-220NM-25MIN.M) Last changed : 5/5/2012 4:11:35 PM by 1qh (modified after loading) W/DIA, Wavelergth=220 nm (D/LCDATA/LQH/LQH-7-11-13-15/2012-04-19/19-33-38/095-0101.D) mAU MeO 300 CF_3 250 "COOMe 200 150 3b 100 0 50 ٥ 10 11 12 $\frac{1}{13}$ ģ 14 min _____ Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 7.813 MMY 0.4294 513.10126 19.91641 3.1250 2 11.193 VB 0.6671 1.59063e4 354.82291 96.8750 Totals : 1.64194e4 374.73932 *** End of Report ***

Data File D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\095-0101.D

Instrument 1 5/5/2012 4:11:44 PM lqh

Sample Name: LQH-7-7B

Data File D:\LC\DATA\LQH\LQH-7-11E\LQH-7-11E 2012-04-20 11-35-04\064-0301.D

_____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 3 Location : Vial 64 Injection Date : 4/20/2012 12:19:18 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-11E\LQH-7-11E 2012-04-20 11-35-04\ASH-10-90-10ML-Acg. Method 220NM-20MIN.M Last changed : 8/29/2011 8:17:27 PM by LTL Analysis Method : D:\LC\DATA\LQH\LQH-7-11F\LQH-7-11E 2012-04-20 11-35-04\064-0301.D\DA.M (ASH-10-90-10ML-220MM-20MIN.M) Last changed : 5/5/2012 4:01:52 PM by lqh (modified after loading) Method Info : ASH-50-50-1ML-254NM-50MIN W/D1 A, Wavelength=220 nm (D/LC/DATA/LQH/LQH-7-11E/LQH-7-11E2012-04-2011-35-04/064-0301.D) mAU 62 MeO 200 CF₃ 175 COOMe 150 125 100 -C 75 3c 50 25 D 75 8.5 9.5 ά min _____ Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU *s [mAU] % 1 7.541 ₩ 0.3940 5673.96338 223.26845 49.4396 2 8.473 MF 0.4672 5802.59619 206.98094 50.5604 1.14766e4 430.24939 Totals : *** End of Report ***

Instrument 1 5/5/2012 4:01:57 PM lqh

Data File D:\LC\DATA\LQH\LQH-7-11E\LQH-7-11E 2012-04-20 11-35-04\065-0401.D Sample Wame: LQH-7-11B

	: LQH Seq. Line : 4
Acq. Instrument Injection Date	: Instrument 1
infection have	: 4/20/2012 12:40:59 PM INJ : 1 Inj Volume : 5 µl
Acq. Method	: D:\LC\DATA\LQH\LQH-7-11E\LQH-7-11E 2012-04-20 11-35-04\ASH-10-90-10ML-
•	220NM-20MIN.M
	: 8/29/2011 8:17:27 PM by LTL
Analysis Method	: D:\LC\DATA\LQH\LQH-7-11E\LQH-7-11E 2012-04-20 11-35-04\065-0401.D\DA.M (
lest show we d	ASH-10-90-10ML-220MM-20MIN.M)
Last changed	: 9/6/2012 10:14:27 AM by thl (modified after loading)
lethod Info	(MOLITIC C CIPCT FOCULTy) : ASH-50-50-1ML-254MM-50MIN
WWD1 A, Way	elength=220 nm(D\LC\DATA\LQH\LQH-7-11ELQH-7-11E2012-04-20 11-35-04'065-0401.D)
mAU j	MeO
700 -	MeO
600-	
1	
500-	
400 -	
300 -	
	30
200 -	
100 -	
1	······································
7.5	8 8.5 9 9.5 10 min
	Area Percent Report
Sorted By	: Signal
fultiplier	: 1.0000
Dilution	: 1.0000 Réleties Retes with LCTD-
use Multiplier &	Dilution Factor with ISTDs
Sigmal 1: VWD1 A	, Wavelength=220 лл
	· -
Peak RetTime Typ	
# [min]	[min] mAU *s [mAU] %
	- 0.3914 810.80017 34.52506 3.4761
2 8.474 FM	
5 0.717 III	
Totals :	2.33250e4 779.07285
	*** End of Report ***

Instrument 1 9/6/2012 10:14:42 AM thl

Data File D:\LC\DATA\LQH\LQH\LQH-7-14\LQH-7-14& 2012-03-30 18-49-25\065-0201.D Sample Wame: LQH-7-14&

Acq. Operator : LQH		Seg. Line : 2	
Acq. Instrument : Instru	ument l	Location : Vial 65	
Injection Date : 3/30/3		Ini: 1	
		Inj Volume : 5 µl	
Acq. Method : D:\LC	201201\1.08\1.08-7-14\1.08	H-7-14A 2012-03-30 18-49-25\ASH-10-90-10ML-	
220 0 M			
	2012 7:23:42 PM by LQH		
	fied after loading)		
		LQH-7-14A 2012-03-30 18-49-25\065-0201.D\DA.M	
-	10-90-10ML-220MM.M)		
	012 10:53:24 AM by thl		
- (modi	fied after loading)		
WD1 A, Wavelength=22i) nm (DALCADATA/LQH/LQH/LQH7-14)	4LQH-7-14A2012-03-30 18-49-25'065-0201.D)	
mAU 1	, , ,		
120-	A A A A A A A A A A A A A A A A A A A	MeO	
1 1 /	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	w.l		
100-		/ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
			CMC
			JIVIC
80-			
	\		
60-1 /	\		
		Br	
	\	/ \ 3d	
40- /	\	\sim	
	\ \		
20- /			
10	11 12	13 14 15 min	
10			
	lass Descent Descent		
	Area Percent Report		
Control Dec	S ÷ −− − 1		
Sorted By :			
Multiplier : Dilution :			
Use Multiplier & Diluti	1.0000 Fostor with ISTRE		
ose multipiler & biluti	on factor with 151DS		
Sigmal 1: VMD1 A, Wavel	angth=220 nm		
		1	
Peak RetTime Type Widt		Area	
] mAU *s [mAU]		
	19 6962.59375 119.40109		
Z 13.144 MF 0.95	82 6852.38574 117.95641	£1 49.0011	
m			
Totals :	1.38150e4 237.35750	U .	

*** End of Report ***

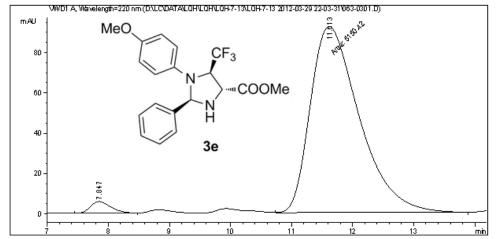
Instrument 1 9/6/2012 10:53:41 AM thl

Sample Name: LQH-7-15A

_____ Acq. Operator : LQH Seg. Line : 4 Acq. Instrument : Instrument 1 Location : Vial 98 Injection Date : 4/19/2012 8:54:52 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\ASH-10-Acg. Method 90-1ML-220NM-25MIN.M : 9/10/2011 12:27:52 PM by LTL Last changed Analysis Method : D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\098-0401. D\DA.M (ASH-10-90-1ML-220NM-25MIN.M) Last changed : 9/6/2012 10:25:07 AM by thl (modified after loading) W/D1 A. Wavelergth=220 nm (D\LCDATALQH\LOH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38098-0401.D) mAU 3 500 MeO CF₃ 400 COOMe 300 200 Br 3d 100 a, ٥ 11 12 1'n 13 14 15 min _____ Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 10.008 FM 0.6702 458.94275 11.41303 1.4392 2 12.765 MF 0.9743 3.14290e4 537.61847 98.5608 Totals : 3.18879e4 549.03150 _____ *** End of Report ***

Data File D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\098-0401.D

Instrument 1 9/6/2012 10:25:26 AM thl


Data File D:\LC\DATA\LQH\LQH-7-4A-220 2012-03-26 15-01-09\092-0201.D

Sample Name: LQH-7-4A _____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seq. Line : 2 Location : Vial 92 Injection Date : 3/26/2012 3:12:59 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\FX\FX-5-95\LQH-7-4A-220 2012-03-26 15-01-09\ASH-10-90-10ML-Acg. Method 220**NM.M** : 3/26/2012 3:30:57 PM by LQH Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-7-4A-220 2012-03-26 15-01-09\092-0201.D\DA.M (ASH-10-90-10ML-220MM.M) MeO. : 4/19/2012 2:24:32 PM by THL Last changed (modified after loading) WWD1 A Wavelength=220 nm(D%LC%DATALOH%DH7-4A220 2012-03-26 15-01-09/092-0201.D) CF_3 mAU N «COOMe 60 F 50 3e ૾ૣૡૺ 40 -635 30 20 10 13 ś ģ 10 11 12 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1,0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU *s [mAU] % 1 7.851 MM 0.3958 1499.48169 63.14190 49.6195 2 11.635 MM 0.9593 1522.47656 26.44999 50.3805 3021.95825 89.59189 Totals : *** End of Report ***

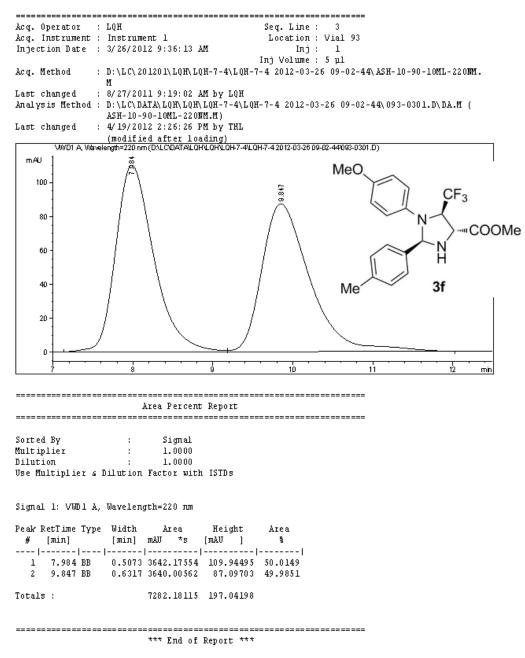
Instrument 1 4/19/2012 2:24:36 PM THL

Data File D:\LC\D&T&\LQH\LQH\LQH-7-13\LQH-7-13 2012-03-29 22-03-31\063-0301.D Sample Name: LQH-7-13B

	==			
Acq. Operator	:	LQH	Seq. Line :	3
Acq. Instrument	:	Instrument 1	Location :	Vial 63
Injection Date	:	3/29/2012 10:37:33 PM	Ιпј :	1
			Inj Volume :	5 µl
Acq. Method	:	D:\LC\201201\LQH\LQH-7-13\L 220NM-20MIN.M	QH-7-13 2012-03	-29 22-03-31\ASH-10-90-10ML-
Last changed	:	8/29/2011 8:17:27 PM by LTL		
Analysis Method	:	D: \LC\DATA\LQH\LQH\LQH-7-13' ASH-10-90-10ML-220NM-20MIN.		03-29 22-03-31\063-0301.D\DA.M (
Last changed	;	4/19/2012 2:39:10 PM by THL (modified after loading)		
Method Info	:	ASH-50-50-1ML-254MM-50MIN		

Area Percent Report

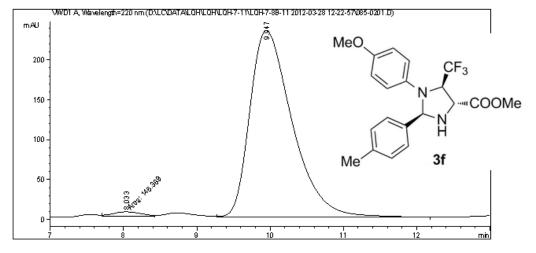
Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier a	6 Dilution	Factor with	ISTDs


Signal 1: VWD1 Å, Wavelength=220 nm

Peak	RetTime	Туре	Width	Ar	ea	Heig	ht	Area
#	[min]		[min]	mAU	*5	[mAU]	8
1	7.847	BV	0.3574	136.	32626	5.7	9601	2.5786
2	11.613	MM	0.9294	5150.	42383	92.3	6421	97.4214
Total	5 :			5286.	75009	98.1	.6022	

**** End of Report ***

Instrument 1 4/19/2012 2:39:14 PM THL


Data File D:\LC\DATA\LQH\LQH\LQH-7-4\LQH-7-4 2012-03-26 09-02-44\093-0301.D Sample Name: LQH-7-4B

Instrument 1 4/19/2012 2:26:30 PM THL

Data File D:\LC\DATA\LQH\LQH\LQH-7-11\LQH-7-8B-11 2012-03-28 12-22-57\085-0201.D Sample Name: LQH-7-8B

Acq. Operator	: LQH	Seq. Line : 2	
Acq. Instrument	: Instrument 1	Location : Vial 85	
Injection Date	: 3/28/2012 12:35:31 PM	Inj: 1	
		Inj Volume : 5 µl	
Acq. Method	: D:\LC\201201\LQH\LQH-7-11\LQH	-7-8B-11 2012-03-28 12-22-57\ASH-10-90-10ML-	
	220NM-20MIN.M		
Last changed	: 8/29/2011 8:17:27 PM by LTL		
Analysis Method	: D:\LC\DATA\LQH\LQH\LQH-7-11\L	QH-7-8B-11 2012-03-28 12-22-57\085-0201.D\DA.	
	M (ASH-10-90-10ML-220NM-20MIN.	.M)	
Last changed	: 4/19/2012 2:55:35 PM by THL		
	(modified after loading)		
Method Info	: ASH-50-50-1ML-254NM-50MIN		

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 Å, Wavelength=220 nm

			Width			-		
			[min]			•		
-								
1	8.033	MM	0.4445	146.	38934	5.4	8893	1.5330
2	9.947	VB	0.6130	9402.	50781	233.9	5616	98.4670
Totals	:			9548.	89716	239.4	4509	

*** End of Report ***

Instrument 1 4/19/2012 2:55:40 PM THL

Sample Name: LQH-7-12A _____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 1 Location : Vial 76 Injection Date : 3/29/2012 4:15:46 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\LQH\LQH-7-12\LQH-7-12A 2012-03-29 16-14-57\ASH-10-90-10ML-Acg. Method 220NM.M Last changed : 8/27/2011 9:19:02 AM by LQH Analysis Method : D:\LC\DATA\LQH\LQH\LQH-7-12\LQH-7-12A 2012-03-29 16-14-57\076-0101.D\DA.M (ASH-10-90-10ML-220MM.M) Last changed : 9/6/2012 10:40:00 AM by thl (modified after loading) W/D1A, Wavelength=220 nm (DALCADATALOH LOH LOH 7-12 LOH 7-12 A 2012-03-29 16-14-57 1076-0101.D) mAU 8 60 -MeO. CF_3 50 -, 40³⁰ N 40 10.672 «COOMe à 30 -20 -3g 10 Me Û 11 12 ģ ŵ min Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 6.958 PM 0.4141 1655.68408 66.64554 50.1412 2 10.672 MF 0.7748 1646.35986 35.41476 49.8588 Totals : 3302.04395 102.06030 _____ *** End of Report ***

Data File D:\LC\DATA\LQH\LQH\LQH-7-12\LQH-7-12A 2012-03-29 16-14-57\076-0101.D

Instrument 1 9/6/2012 10:40:18 AM thl

Data File D:\LC\DATA\LQH\LQH\LQH-7-13\LQH-7-13 2012-03-29 22-03-31\062-0201.D Sample Name: LQH-7-13A

Acq. Operator :	LQH			Seq. Line	2 2		
Acq. Instrument :	Instrume	ent l		Location	ι: Vial 62		
Injection Date :	3/29/203	12 10:16:11	PM	In): 1		
				Inj Volume	e : 5 µl		
Acq. Method :	: D:\LC\20) 120 1\ LQH\ L(QH-7-13\LQH-	7-13 2012	03-29 22-03-	31\ASH-10-90-10	ML-
	220 NM- 20	MIN.M					
Last changed :	: 8/29/203	11 8:17:27 H	M by LTL				
Analysis Method :				H-7-13 200	L2-03-29 22-0	3-31\062-0201.D) M.Ad/
		90-10ML-220M					
Last changed :		2 4:19:16 PM					
		ed after loa					
Method Info :	ASH-50-5	50-1ML-254M	1-50MIN				
W0D1 A, Wav	elength=220 nm		NEQHVEQH-7-13\E	2H-7-13 2012-03	-29 22-03-31'062-020	I1.D)	
mAU -]	MeC				5	·	
		\searrow			A		
80-		ו ו	CF ₃		/~\		
		6 1	Ĩ, s		1 \		
70 -		~	N				
1				COOMe			
60 -			AN	000110	- \		
1					- { \		
50 -		11 1	п		1		
		2/				}	
40 -		Ý			1	1	
		Ma	3g		1	1	
30 -		". Me					
20 -	86890 90	** *			1	\	
20	° è				1		
10 -	, en la constanción de la constancincincinción de la constanción de la constanción de la constanción d				/		
				~	/		
0 1							
0 	ź	8	9	10	11	12	п
6							
6							
6							
6	, 	Area Percent	: Report				
		lrea Percent	Report				
<u></u>		Area Percent Signal	; Report				
é Sorted By			; Report				
6 Sorted By Multiplier	:	Signal	; Report				
6 Sorted By fultiplier Dilution	 : :	Sigmal 1.0000 1.0000					
6 Sorted By Multiplier Dilution	 : :	Sigmal 1.0000 1.0000					
é Sorted By Multiplier Dilution Jse Multiplier &	i Dilution	Signal 1.0000 1.0000 Factor with					
é Sorted By Multiplier Dilution Use Multiplier &	i Dilution	Signal 1.0000 1.0000 Factor with					
é Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 Å,	 : Dilution , Waveleng	Signal 1.0000 1.0000 Factor with gth=220 nm	ı ISTDs				
6 Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A, Peak RetTime Type	: ; Dilution , Waveleng 2 Width	Signal 1.0000 1.0000 Factor with gth=220 nm Area	ı ISTDs Height	Area			
6 Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A, Peak RetTime Type # [min]	: ; Dilution , Waveleng = Width [min]	Signal 1.0000 1.0000 Factor with yth=220 nm Area mAU *s	u ISTDs Height [m&U]	5			
6 Sorted By Multiplier Dilution Use Multiplier & Signal 1: VWD1 A, Peak RetTime Type # [min]	: Dilution , Waveleng = Width [min] -	Signal 1.0000 1.0000 Factor with gth=220 nm Area mAU *s	u ISTDs Height [mAU]	ह 			
6 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 Å, Peak RetTime Type # [min] 	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Signal 1.0000 1.0000 Factor with gth=220 nm Area mAU *s 164.24181	1 ISTDs Height [m&U] 6.63117	₽ 4.0823			
6 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 A, Peak RetTime Type # [min]	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Signal 1.0000 1.0000 Factor with gth=220 nm Area mAU *s 164.24181	1 ISTDs Height [m&U] 6.63117	₽ 4.0823			
6 Sorted By Multiplier Dilution Jse Multiplier & Bignal 1: VWD1 Å, Peak RetTime Type # [min] 	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Signal 1.0000 1.0000 Factor with gth=220 nm Area mAU *s 1	1 ISTDs Height [m&U] 6.63117	₽ 4.0823			
6 Sorted By Multiplier Dilution Jse Multiplier & Gignal 1: VMD1 Å, Peak RetTime Type # [min] 	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Signal 1.0000 1.0000 Factor with gth=220 nm Area mAU *s 1	Height [mAU] 6.63117 83.42413	₽ 4.0823			

*** End of Report ***

Instrument 1 5/5/2012 4:19:22 PM lqh

Sample Name: LQH-7-7C

Data File D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7C 2012-03-27 21-24-21\081-0201.D

_____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 2 Location : Vial 81 Injection Date : 3/27/2012 9:36:23 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\LQH\LQH-7-7\LQH-7-7C 2012-03-27 21-24-21\ASH-10-90-10ML-Acg. Method 220NM.M Last changed : 8/27/2011 9:19:02 AM by LQH Analysis Method : D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7C 2012-03-27 21-24-21\081-0201.D\DA.M (ASH-10-90-10ML-220NM.M) Last changed : 4/19/2012 2:30:22 PM by THL (modified after loading) WWD1A Wavelergth=220 nm (D:\LCDATALQH\LQH\LQH7-7\LQH-7-7C 2012-03-27 21-2421'081-0201.D) mAU ю. 10.076 MeO 100 CF_3 80 COOMe 60 40 Me 3h 20 -٥ å 10 11 12 min Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] # [min] 5 1 8.115 **PM** 0.5368 3663.73267 113.75489 50.7353 2 10.076 BB 0.5973 3557.53125 90.72436 49.2647 Totals : 7221.26392 204.47925 _____

*** End of Report ***

Instrument 1 4/19/2012 2:30:27 PM THL

Data File D:\LC\DATA\LQH\LQH\LQH-7-11\LQH-7-8B-11 2012-03-28 12-22-57\087-0401.D Sample Wame: LQH-7-11C

Acg. Operator	: LOH Seg. Line : 4
Acq. Instrument	•
	: 3/28/2012 1:28:38 PM Inj: 1
	Ini Volume : 5 ul
Acq. Method	: D:\LC\201201\LQH\LQH-7-11\LQH-7-8B-11 2012-03-28 12-22-57\ASH-10-90-10ML- 220MM-20MIN.M
Last changed	: 8/29/2011 8:17:27 PM by LTL
Analysis Method	: D:\LC\DATA\LQH\LQH\LQH-7-11\LQH-7-8B-11 2012-03-28 12-22-57\087-0401.D\DA.
	M (ASH-10-90-10ML-220NM-20MIN.M)
Last changed	: 4/19/2012 3:02:51 PM by THL
	(modified after loading)
Method Info	: ASH-50-50-1ML-254RM-50M1R
	velength=220 nm (DALCODATALQHVLQH7-11\LQH7-11\LQH7-88-11 2012-03-28 12-22-57087-0401.D)
mAU -	
	A MeO
200 -	
175	
150 -	N N
125-	
100-	
	Me
75-	
50-	3h
1 30 1	
1 1	
25-	g / j

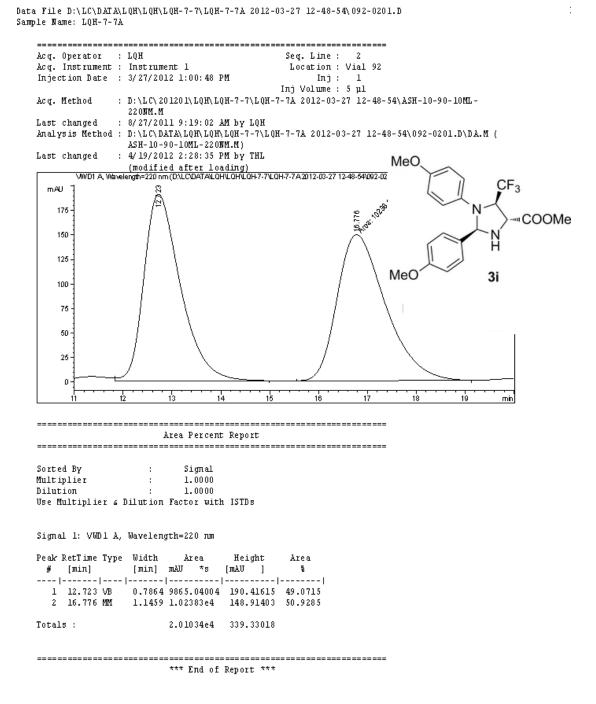
10

Area Percent Report

Alea Fercene Report

Sorted By		:	Sigr	ıal	
Multiplier		:	1.00	00	
Dilution		:	1.00	00	
Use Multiplier	6	Dilution	Factor	with	ISTDs

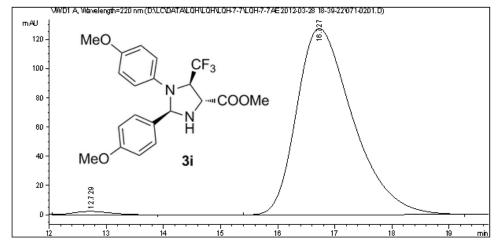
Signal 1: VWD1 A, Wavelength=220 nm


Peak F	letTime Type	Width	Ar	ea	Heig	ht	Area
	[min]				•		8
-							
1	8.032 W	0.4447	176.	51337	5.9	3240	1.9989
2	9.926 VB	0.6039	8654.	22363	218.9	0584	98.0011
Totals	: :		8830.	73700	224.8	3824	

**** End of Report ***

Instrument 1 4/19/2012 3:02:57 PM THL

Page 1 of 1


12

Instrument 1 4/19/2012 2:28:40 PM THL

Data File D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7AE 2012-03-28 18-39-22\071-0201.D Sample Wame: LQH-7-7A

	==		
Acq. Operator	:	: LQH Seq. Line : 2	
Acq. Instrument	:	: Instrument l Location : Vial 71	
Injection Date	:	: 3/28/2012 6:51:59 PM Inj: 1	
		Inj Volume : 5 µl	
Acq. Method	:	: D:\LC\201201\LQH\LQH-7-7\LQH-7-7AE 2012-03-28 18-39-22\ASH-10-90-10ML-	
		220 0M-20MIN.M	
Last changed	:	: 8/29/2011 8:17:27 PM by LTL	
Analysis Method	:	: D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7AE 2012-03-28 18-39-22\071-0201.D\DA	.М (
		ASH-10-90-10ML-220MM-20MIN.M)	
Last changed	:	: 4/27/2012 11:39:14 AM by LQH	
		(modified after loading)	
Method Info	:	: ASH-50-50-1ML-254NM-50MIN	

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier a	Dilut ion	Factor with	ISTDs

Signal 1: VWD1 Å, Wavelength=220 nm

Peak RetTime Type	Width	Area	Height	Area
# [min]	• •		• •	뒴
	·			
1 12.729 VB	0.6835	118.02040	2.44702	1.3372
2 16.727 BB	1.0437	8708.21582	127.37482	98.6628
Totals :		8826.23622	129.82184	

*** End of Report ***

Instrument 1 4/27/2012 11:39:20 AM LQH

Data File D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7D 2012-03-28 08-33-34\083-0301.D Sample Wame: LQH-7-7E

Acq. Operator : LQN Seq. Line : 3
Acq. Instrument : Instrument 1 Location : Vial 83
Injection Date : 3/28/2012 9:09:35 AM Inj : 1
Inj Volume : 5 µl
Acg. Method : D:\LC\201201\LQH\LQH-7-7\LQH-7-7D 2012-03-28 08-33-34\ASH-10-90-10ML-
220 0M. M
Last changed : 3/28/2012 9:33:47 AM by LQH
(modified after loading)
Analysis Method : D:\LC\DATA\LQH\LQH\LQH-7-7\LQH-7-7D 2012-03-28 08-33-34\083-0301.D\DA.M (
ASH-10-90-10ML-220MM.M)
Last changed : 9/6/2012 10:33:19 AM by thl
(modified after loading) WWD1A, Wavelength=220 nm (DALCHDATALOHYLOHYLOH7-71LOH7-7D2012-03-28 08-33-344083-0301.D)
A MeO
$ CF_3 = \sqrt{2^n}$
\wedge
OMe
5 / \ 3
°] / \ 3j / \
9 10 11 12 13 14 15 16 17 min
Area Percent Report
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width Area Height Area
[min] [min] mAU *s [mAU] %
1 9.574 BB 0.6893 1011.26245 22.54501 50.9990
2 15.463 FM 1.0328 971.64526 15.67936 49.0010
Totals : 1982.90771 38.22437

*** End of Report ***

Instrument 1 9/6/2012 10:33:25 AM thl

Data File D:\LC\D&T&\LQH\LQH-7-11-13E\LQH-7-11-13E 2012-04-19 17-47-46\092-0201.D Sample Wame: LQH-7-11E

Acq. Operator	: LQH	Seq. Line : 2
Acq. Instrument	: Instrument 1	Location : Vial 92
	: 4/19/2012 6:00:18 PM	Inj: 1
-		Inj Volume : 5 µl
Acq. Method	: D: \L C\ DATA\ LQH\ LQH-7-11-13E\ 1ML-220MM-25M IN.M	LQH-7-11-13E 2012-04-19 17-47-46\ASH-10-90-
Last changed	: 9/10/2011 12:27:52 PM by LTI	r
		- \LQH-7-11-13Ε 2012-04-19 17-47-46\092-0201.D\
Anarysis nechou	DA.M (ASH-10-90-1ML-220NM-2)	
Last changed	: 7/26/2012 12:17:05 PM by LK	•
basi chaiyea	(modified after loading)	
V/0/D1 A. \0a\	elenath=220 nm (DALCADATALOH)LOH-7-11-13	ELQH-7-11-13E 2012-04-19 17-47-46/092-0201.D)
mAU]		8
250 -	MaQ	Å
200	MeO	/º\
	Y= \	- ()
		F ₃ / \
200 -		- / \
	N N	
	i >	
150 -		
		}
	η η H	
100 -	1 Ann	
	·∕∕ `OMe	
	3j	
50 -	5)	
0.265		
	~	
	¥ \	
10	11 12 13	14 15 16 17
	Area Percent Report	
Sorted By	: Signal	
Multiplier	: 1.0000	
Dilution	: 1.0000	
Use Multiplier s	Dilution Factor with ISTDs	
-		
Signal 1: VWD1 A	, Wavelength=220 лm	
Peak RetTime Typ	e Width Area Height	Area
# [min]	[min] mAU *s [mAU]	8
	-	
1 10.265 W	0.5284 335.26221 9.3963	
2 15.633 BB		47 98.0925
Totals :	1.75761e4 263.3678	36
	*** End of Report **	* *
	and of hepoth	

Instrument 1 7/26/2012 12:17:12 PM LK

Sample Name: LQH-7-12E

_____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 3 Location : Vial 93 Injection Date : 4/19/2012 6:26:39 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-11-13E\LQH-7-11-13E 2012-04-19 17-47-46\ASH-10-90-Acg. Method 1ML-220NM-25MIN.M Last changed : 9/10/2011 12:27:52 PM by LTL Analysis Method : D:\LC\DATA\LQH\LQH-7-11-13E\LQH-7-11-13E 2012-04-19 17-47-46\093-0301.D\ DA.M (ASH-10-90-1ML-220NM-25MIN.M) Last changed : 4/19/2012 7:37:07 PM by THL (modified after loading) WWD1A Wavelergth=220 nm (D:\LC\DATALQH\QH.7-11-13E\QH-7-11-13E2012-04-19-17-47-460093-0301.D) mAU 50 34. Dallon 683 MeO 600 CF₃ 500 "COOMe 400 -300 -200 3k 100 ٥ ģ 1n Ŕ Ś 11 min _____ Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 7.275 MT 0.5290 2.03369e4 640.75745 49.2237 2 8.683 MM 0.6026 2.09784e4 580.25183 50.7763 Totals : 4.13153e4 1221.00928

*** End of Report ***

Data File D:\LC\DATA\LQH\LQH-7-11-13E\LQH-7-11-13E 2012-04-19 17-47-46\093-0301.D

Instrument 1 4/19/2012 7:37:12 PM THL

Sample Name: LQH-7-25A

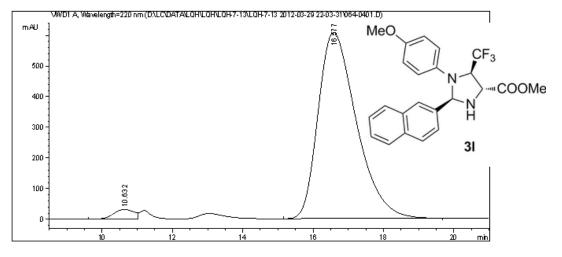
_____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 5 Location : Vial 83 Injection Date : 4/19/2012 9:21:06 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\ASH-10-Acg. Method 90-10ML-220MM-35MIN.M Last changed : 4/19/2012 8:03:47 PM by THL Analysis Method : D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\083-0501. D\DA.M (ASH-10-90-10ML-220MM-35MIN.M) Last changed : 4/27/2012 12:49:29 PM by LOH (modified after loading) W/D1 A. Wavelergth=220 nm (D\LCDATALQH\LOH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-381083-0501.D) mAU MeO 2500 CF_3 2000 COOMe 1500 1000 -500 3k 283 ٥ ģ 11 10 min Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 7.293 W 0.4803 4319.06836 134.71240 3.8611 2 8.591 W 0.6313 1.07543e5 2654.80542 96.1389 Totals : 1.11862e5 2789.51782

Data File D:\LC\DATA\LQH\LQH-7-11-13-15\LQH-7-11-13-15 2012-04-19 19-33-38\083-0501.D

**** End of Report ***

Instrument 1 4/27/2012 12:49:32 PM LQH

Sample Name: LQH-7-12D


Data File D:\LC\DATA\LQH\LQH\LQH-7-12\LQH-7-12C 2012-03-29 14-46-58\075-0301.D

_____ Acq. Operator : LQH Seg. Line : 3 Location : Vial 75 Acq. Instrument : Instrument 1 Injection Date : 3/29/2012 3:32:04 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\LQH\LQH-7-12\LQH-7-12C 2012-03-29 14-46-58\ASH-10-90-10ML-Acg. Method 220**NM.M** : 3/29/2012 3:31:14 PM by LQH Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH\LQH-7-12\LQH-7-12C 2012-03-29 14-46-58\075-0301.D\DA.M (ASH-10-90-10ML-220MM.M) : 4/19/2012 3:08:06 PM by THL Last changed (modified after loading) WWD1 A Wavelength=220 nm(DALCDATANLOHLOHLOH-7-12/LOH-7-12C 2012-03-29 1446-58075- MeO mAU CF_3 500 N 16.688 COOMe 400 н 300 31 200 100 D 10 12 14 16 18 20 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] 和初 *5 [màひ] % 1 10.626 BB 0.7859 2.87838e4 2 16.688 BB 1.1513 2.89607e4 561.51678 49.8468 385.63513 50.1532 5.77445e4 947.15192 Totals : *** End of Report ***

Instrument 1 4/19/2012 3:08:13 PM THL

Data File D:\LC\D&TA\LQH\LQH\LQH-7-13\LQH-7-13 2012-03-29 22-03-31\064-0401.D Sample Name: LQH-7-13D

	==	
Acq. Operator	:	LQH Seq. Line : 4
Acq. Instrument	:	Instrument 1 Location : Vial 64
Injection Date	:	3/29/2012 10:59:21 PM Inj: 1
		Inj Volume : 5 µl
Acq. Method	:	D:\LC\201201\LQH\LQH-7-13\LQH-7-13 2012-03-29 22-03-31\ASH-10-90-10ML-
		22 ORM-30 MIN.M
Last changed	:	3/28/2012 12:22:29 PM by FX
Analysis Method	:	D:\LC\DATA\LQH\LQH\LQH-7-13\LQH-7-13 2012-03-29 22-03-31\064-0401.D\DA.M (
		ASH-10-90-10ML-220MM-30MIN.M)
Last changed	:	5/5/2012 4:24:56 PM by lqh
		(modified after loading)
Method Info	:	ASH-50-50-1ML-254MM-50MIN

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 Å, Wavelength=220 nm

8
7334
2666

*** End of Report ***

Instrument 1 5/5/2012 4:25:02 PM lqh

Data File D:\LC\DATA\LQH\LQH-7-25\LQH-7-25\ 2012-04-13 08-50-51\092-0201.D Sample Wame: LQH-7-25

Acq. Operator	: LQH Seq. Line : 2
Acq. Instrument	
	: 4/13/2012 9:02:41 AM Inj: 1
	Inj Volume : 5 µl
Acq. Method	: D:\LC\DATA\LQH\LQH-7-25\LQH-7-25A 2012-04-13 08-50-51\ASH-10-90-10ML-
	220 WM.M
Last changed	: 4/13/2012 9:30:22 AM by LQH
	(modified after loading)
Analysis Method	: D:\LC\DATA\LQH\LQH-7-25\LQH-7-25A 2012-04-13 08-50-51\092-0201.D\DA.M (
	ASH-10-90-10ML-220MM.M)
Last changed	: 4/19/2012 7:45:28 PM by THL
V0/D1 A, \0a	(modified after loading) welength=220 nm(DALC/DATAN_QH/LOH-7-251/QH-7-25A2012-04-13 08-50-51/092-0201.D)
mAU 1	N
""~~ -	
1	
	MeO
400-	
300-	N
200 -	
	3m }
100-	
	10 12 14 16 18 20 22 24 26 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier a	Dilution Factor with ISTDs
Signal 1: VMD1 A	., Wavelength=220 nm
Deals DetTime Term	a Hideb lyon Whicht lyon
Peak RetTime Typ	
# [min]	[min] mAW *s [mAW] % -
1 10.342 BB	
2 21.511 BB	
2 21.JII DD	1.2000 1.3400124 101.3431/ 43.3013
Totals :	3.08772e4 682.45879
LODGID .	0.00118C3 008.30017
	*** End of Report ***

Instrument 1 4/19/2012 7:45:35 PM THL

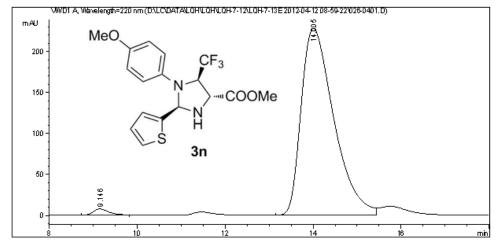
Data File D:\LC\D&TA\LQH\LQH-7-11-13E\LQH-7-11-13E 2012-04-19 17-47-46\094-0401.D Sample Wame: LQH-7-13E

		 Seg. Line : 4	
Acq. Instrument		Location : Vial 94	
	: 4/19/2012 6:53:14 PM	Inj: 1	
INJECTION DAVE	, 4) 19) 2012 0.33.14 FM	Inj Volume : 5 µl	
Acq. Method	• D. \ I C\ D XT X\ I O W\ I O W_ 7 _ 1 1 _ 1 2 F	\LQH-7-11-13E 2012-04-19 17-47-46\ASH-10-90-	
Acq. nechou	1ML-220NM-25MIN.M	(LQR-1-11-13E 2012-04-13 11-41-40(A3R-10-30-	
Last aboved			
Last changed	: 4/19/2012 7:10:02 PM by LQH	•	
Inclusio Mathed	(modified after loading)	VION 2 11 128 2012 04 10 12 42 46V004 0401 N	
Anarysis nernoa	DA.M (ASH-10-90-1ML-220MM-2	\LQH-7-11-13E 2012-04-19 17-47-46\094-0401.D\ FMIN M\	
Last changed			
Last changed	: 4/27/2012 12:51:46 PM by LQ (modified after loading)	h	
W/D1 A. Wat	elength=220 nm (D\LC\DATA\LOH\LOH\-7-11-13	ELQH-7-11-13E2012-04-19 17-47-46094-0401.D)	
mAU		ω	
		Ä	
140-	MeO,		
1	IVIEO	{ }	
120-	FS	or ()	
1 1	1. 11	CF ₃	
100			
	N_		
	Ť	>·····COOMe	
80-			
60-		1 / }	
	10		
40-	3	m	
	-		
20	171.01	{	
	-		
o <u> </u>	<u> </u>		
°	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
8	10 12 14 16	<u>18 20 22 24 26</u>) min
		= == = = = = = = = = = = = = = = = = = =	
	Area Percent Report		
		= == = = = = = = = = = = = = = = = = = =	
Sorted By	: Signal		
Multiplier	: 1.0000		
Dilution	: 1.0000		
	Dilution Factor with ISTDs		
•			
Signal 1: VWD1 A	, Wavelength=220 nm		
	·····		
Peak RetTime Typ	e Width Area Height	Area	
# [min]	[min] mAU *s [mAU]		
	-		
1 10.171 BB	0.4240 273.79938 9.872		
	1.1820 1.18497e4 150.526		
2 21.368 BB	1.1820 1.18497e4 150.526	0, 111410	
2 21.368 BB			
	1.1820 1.18497e4 150.526 1.21235e4 160.398		
2 21.368 BB			

*** End of Report ***

Instrument 1 4/27/2012 12:51:52 PM LQH

Data File D:\LC\DATA\LQH\LQH\LQH-7-12\LQH-7-12C 2012-03-29 14-46-58\074-0201.D Sample Name: LQH-7-12C


Acq. Operator :	: LQH Se	g. Line : 2	
Acq. Instrument :	: Instrument 1 L	ocation : Vial 74	
Injection Date :	: 3/29/2012 2:59:00 PM	Inj: 1	
	Ілј	Volume : 5 µl	
Acq. Method :	: D:\LC\201201\LQH\LQH-7-12\LQH-7-1;	2C 2012-03-29 14-46-58\ASH-10-90-3	10 ML -
	220 NM.M		
Last changed :	: 3/29/2012 3:30:44 PM by LQH		
	(modified after loading)		
Analysis Method :	: D:\LC\DATA\LQH\LQH\LQH-7-12\LQH-7-	-12C 2012-03-29 14-46-58\074-0201.	.D\DA.M
	(ASH-10-90-10ML-220MM.M)		
Last changed :	: 4/19/2012 3:07:01 PM by THL		
	(modified after loading)		
	elength=220 nm (DALCADATA/LQH/LQH/LQH7-12/LQH7- 	12C 2012-03-29 1446-580/4-0201.0)	
mAU	n MeO		
	$\int \int CF_3$		
500 -			
		COOMe	
400 -			
		14.532	
300-		Ť	
	N_S	\wedge	
	3n	(\land)	
200 -		(\land)	
	()		
100 -	$\{ \setminus \}$		
	/		
	· · · · · · · · · · · ·		
8	10 12	14 16	min
	Area Percent Report		
Sorted By	: Signal		
Multiplier	: 1.0000		
Dilution	: 1.0000		
use multipiler a	Dilution Factor with ISTDs		
Circal L. UTBL 1	, Wavelength=220 nm		
signar i: voor A,	, wavelength=220 ldm		
Peak RetTime Type	e Width Area Height A:	rea	
# [min]	-	# TCG	
	-	-	
	0.4225 1.67283e4 603.26660 50		
2 14.532 BV			
Totals :	3.34136e4 893.26666		
		=================	

*** End of Report ***

Instrument 1 4/19/2012 3:07:06 PM THL

Data File D:\LC\D&TA\LQH\LQH\LQH-7-12\LQH-7-13E 2012-04-12 08-59-22\026-0401.D Sample Wame: LQH-7-13C

	==					
Acq. Operator	:	LQH	Seq. Line :		4	
Acq. Instrument	:	Instrument 1	Location :	- \	/ial	26
Injection Date	:	4/12/2012 9:44:38 AM	Inj :		1	
		II	ij Volume :	ŝ	5 µl	
Acq. Method	:	D:\LC\201201\LQH\LQH-7-12\LQH-7-	-13E 2012-0) 4-	12	08-59-22\ASH-10-90-10ML-
		220NM-30MIN.M				
Last changed	:	3/28/2012 12:22:29 PM by FX				
Analysis Method	:	D:\LC\DATA\LQH\LQH\LQH-7-12\LQH-	-7-13E 2012	2-0) 4-13	2 08-59-22\026-0401.D\DA.M
		(ASH-10-90-10ML-220MM-30MIN.M)				
Last changed	:	4/19/2012 3:15:22 PM by THL				
		(modified after loading)				
Method Info	:	ASH-50-50-1ML-254MM-50MIN				

Area Percent Report

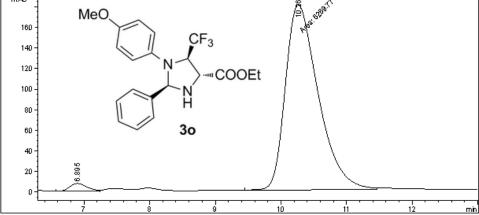
•

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilut ion	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

Peak RetTin # [min]						·	Area ۴
	-						
1 9.14	6 BB	0.3785	190.	59898	7.9	56214	1.5996
2 14.00	5 BV	0.7935	1.172	50e4	227.4	49529	98.4004
Totals :			1.191	56e4	235.0	05743	

*** End of Report ***


Instrument 1 4/19/2012 3:15:27 PM THL

ple Mame: LQH-8-3	JA	
Acq. Operator		 Seq. Line : 2
Acq. Instrument		Location : Vial 96
	: 6/19/2012 6:23:19 PM	
injection bare		
Acq. Method		Inj Volume : 5 µl 30 2012-06-19 17-51-29\ASH-10-90-10ML-220M
Last changed	6/19/2012 6:38:14 PM by HZL	
Analysis Method	(modified after loading) : D:\LC\DATA\LQH\LQH-8-27\LQH-8- 10-90-10ML-220WM.M)	30 2012-06-19 17-51-29\096-0201.D\DA.M (AS
Last changed	: 6/26/2012 4:55:43 PM by YDC (modified after loading)	
WVD1 A, War	elength=220 nm (DALCADATA/LQH/LQH-8-27/LQH-8-3	30 2012-06-19 17-51-29\096-0201.D)
mAU (1	
80-	MeO	
	CF	3 8
60 -		10.2
1 1 1	N N	
		"COOEt / \
	$\sim \sqrt{N}$	
40- ($\langle \rangle$
		$ \rangle$
1 1 (
	30	$\langle \rangle$
20-		
1 1 }		
1 1 /		
	7 8 9	10 11 12
	Area Percent Report	
Sorted By	: Signal	
Multiplier	: 1.0000	
Dilution	: 1.0000	
Use Multiplier a	Dilution Factor with ISTDs	
-		
Signal 1: VWD1 A	, Wavelength=220 nm	
D		
Peak RetTime Typ		Area
# [min]	[min] mAU *s [mAU]	8
	- -	-
1 6.886 MM	0.3444 1887.22559 91.33221	
2 10.346 BB	0.5101 1850.94141 55.05832	49.5147
Totals :	3738.16699 146.39053	
	*** End of Report ***	

Instrument 1 6/26/2012 4:55:52 PM YDC

Data File D:\LC\DATA\LQH\LQH-8-33\LQH-8-33A 2012-06-21 10-11-38\099-0101.D Sample Name: LQH-8-33A

Acg. Operator	: LQH	Seg. Line : 1	
Acq. Instrument		Location : Vial 99	
	: 6/21/2012 10:13:17 AM	Inj: 1	
injection pare	: 0/21/2012 10:13:11 AM	INJ: I Inj Volume: 5 ul	
lan Kabud			
Acq. method		LQH-8-33A 2012-06-21 10-11-38\ASH-10-90-10ML-	
	220NM-20MIN.M	T m T	
-	: 8/29/2011 8:17:27 PM by		
ANALYSIS METHOD		LQH-8-33A 2012-06-21 10-11-38\099-0101.D\DA.M (
	ASH-10-90-10ML-220NM-20M	•	
Last changed	: 6/26/2012 5:02:45 PM by		
	(modified after loading)		
Method Info	: ASH-50-50-1ML-254NM-50M1	11	
	veleogth=220 pm (DNLC)DATAN OHN OH-9-	-33/LQH-8-33A2012-06-21 10-11-38/099-0101.D)	_
mAU 1			
		R	
	MeO	/≏_,≪?*	
160 -		(.)e°	
1 100 1	F- \		
	CF:	2 / m	
140 -	CF ₃	3 / 7	
140 -		3 / 1	
	N N		
140 -	N N	³ COOEt	
140 -	N N		
140 - 120 - 100 -	N N		
140 -	N N		
140 - 120 - 100 - 80 -			
140 - 120 - 100 -	N N		
140 - 120 - 100 - 80 -			

Area Percent Report

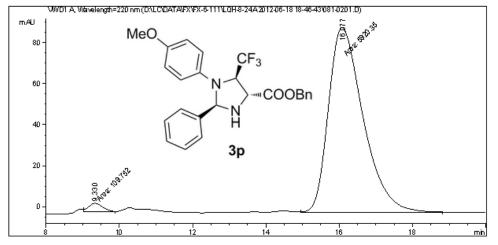
Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	; Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

#	[min]	••	Width [min]	mAU	*5	[mAU		8
1	6.895	w	0.2870	139.	97893	7.	52152	2.1838 97.8162
Total	.5 ;			6409	.75090	187.	64876	

6409.75090 187.64876

-----*** End of Report ***


Instrument 1 6/26/2012 5:02:52 PM YDC

Data File D:\LC\DATA\LQH\LQH-8-20\LQH-8-20 2012-06-15 16-44-39\081-0201.D Sample Wame: LQH-8-20

Instrument 1 6/26/2012 4:47:09 PM YDC

Data File D:\LC\DATA\FX\FX-6-111\LQH-8-24A 2012-06-18 18-46-43\081-0201.D Sample Wame: LQH-8-24A

Acq. Operator	;	FX Seq. Line : 2
Acq. Instrument	;	Instrument 1 Location : Vial 81
Injection Date	;	6/18/2012 6:59:05 PM Inj: 1
		Inj Volume : 5 µl
Acq. Method	;	D:\LC\DATA\FX\FX-6-111\LQH-8-24A 2012-06-18 18-46-43\ASH-10-90-10ML-220MM-
		20MIN.M
Last changed	;	8/29/2011 8:17:27 PM by LTL
Analysis Method	;	D:\LC\DATA\FX\FX-6-111\LQH-8-24A 2012-06-18 18-46-43\081-0201.D\DA.M (ASH-
		10-90-10ML-220MM-20MIN.M)
Last changed	;	6/26/2012 4:51:35 PM by YDC
		(modified after loading)
Method Info	;	ASH-50-50-1ML-254NM-50MIN

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier a	; Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

			Width [min]			-	·	Area ۴
						•		
	9.330	• •						1.8201
2	16.077	MM	1.0947	5920.	35059	90.1	L3962	98.1799
Total	5 :			6030.	10287	94.2	27655	

*** End of Report ***

Instrument 1 6/26/2012 4:51:41 PM YDC

Data File D:\LC\DATA\LQH\LQH-8-27\LQH-8-30 2012-06-19 17-51-29\095-0401.D

Sample Name: LH-8-30B-ADH _____ Acq. Operator : HZL Acq. Instrument : Instrument 1 Seg. Line : 4 Location : Vial 95 Injection Date : 6/19/2012 6:50:27 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-27\LQH-8-30 2012-06-19 17-51-29\ADH-10-90-10ML-220MM. Acg. Method М Last changed : 8/27/2011 9:22:22 AM by LQH Analysis Method : D:\LC\DATA\LQH\LQH-8-27\LQH-8-30 2012-06-19 17-51-29\095-0401.D\DA.M (ADH-10-90-10ML-220NM.M) Last changed : 6/26/2012 4:58:58 PM by YDC (modified after loading) W/D1A, Wavelength=220 nm (D\LC\DATA\LQH\QH8-27\LQH8-30 2012-06-19 17-51-29\095-0401.D) A.4.89 mAU 5 175 MeO. 150 CF_3 125 "COO^{t-}Bu 100 Н 75 3q 50 25 D 5.5 5.25 5.75 6.25 6.75 7 Ŕ 6 5 7.25 min Area Percent Report _____ Sorted By : Signal ; Multiplier 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] # [min] 5 1 5.557 MM 0.2435 2814.84985 192.65303 52.6410 2 6.316 MM 0.2617 2532.41187 161.26326 47.3590 Totals : 5347.26172 353.91629

**** End of Report ***

Instrument 1 6/26/2012 4:59:04 PM YDC

Data File D:\LC\DATA\LQH\LQH-8-33\LQH-8-33A 2012-06-21 10-11-38\100-0301.D Sample Wame: LQ-8-33B

Acq. Operator		C	0
		Seq. Line :	
Acq. Instrument		Location :	
пјестіол раге	: 6/21/2012 10:45:16 AM	Inj:	
1		Inj Volume :	
Acq. Method	220NM-10MIN.M	/ LUR-0-338 2012-06-2	1 10-11-38\ADH-10-90-10ML-
Last changed	: 8/27/2011 9:21:42 AM by	1.0 H	
-			1 10-11-38\100-0301.D\DA.M (
	ADH-10-90-10ML-220NM-10		
Last changed	: 6/26/2012 5:04:40 PM by		
-	(modified after loading		
WVD1 A, We	rvelength=220 nm (DALC\DATA\LQH\LQH-8		-38\100-0301.D)
mAU -]		MeO	
		A AN MOO	
350 -		_/ັ∖_≦` MeO	\sim
1		14	
300 -		1]) CF3
		1 \	
250 -		{ }	N N
		$\{ \}$	
200			$\sim \sqrt{N}$
200	r		
150 -	j		
	}		L/ 2-
100	1		~ 3q
100 -	(\	-å×
	1	\	100 mm
50 -	/		Ř
0 			
4.5	5	5.5 6	6.5 n
	area Percent Ren		
	Area Percent Rep	 ort	
		ort	
 Sorted By	: Sigmal	ort	
Sorted By Multiplier	: Signal : 1.0000	ort	
Sorted By Multiplier Dilution	: Signal : 1.0000 : 1.0000		
 Sorted By Multiplier Dilution	: Signal : 1.0000		
Sorted By Multiplier Dilution	: Signal : 1.0000 : 1.0000		
Sorted By Multiplier Dilution Use Multiplier ,	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST		
Sorted By Multiplier Dilution Use Multiplier	: Signal : 1.0000 : 1.0000		
Sorted By Multiplier Dilution Use Multiplier , Signal 1: VWD1 ,	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST A, Wavelength=220 nm		
Sorted By Multiplier Dilution Use Multiplier Signal 1: VMD1 . Peak RetTime Tyj	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST A, Wavelength=220 nm pe Width Area He	ght Area	
Sorted By Multiplier Dilution Use Multiplier Signal 1: VUD1 . Peak RetTime Ty] # [min]	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST A, Wavelength=220 nm pe Width Area He [min] mAU *s [mAU	ight Area	
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 . Peak RetTime Tyj # [min]	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST A, Wavelength=220 nm pe Width Area He [min] mAU *s [mAU] %	
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 . Peak RetTime Tyj # [min] 1 5.562 MF	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST A, Wavelength=220 nm pe Width Area He [min] mAU *s [mAU 	ight Area] % .38461 96.0066	
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 . Peak RetTime Tyj # [min]	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST A, Wavelength=220 nm pe Width Area He [min] mAU *s [mAU] %	
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 . Peak RetTime Tyj # [min] 1 5.562 MF	: Signal : 1.0000 : 1.0000 & Dilution Factor with IST A, Wavelength=220 nm pe Width Area He [min] mAU *s [mAU 	ight Area] % 	

----- *** End of Report ***

Instrument 1 6/26/2012 5:04:46 PM YDC

Sample Name: LQH-8-91

Data File D:\LC\DATA\LQH\LQH-8-91\LQH-8-81 2012-08-27 14-55-30\081-0201.D

_____ Acq. Operator : lqh Acq. Instrument : Instrument l Seg. Line : 2 Location : Vial 81 Injection Date : 8/27/2012 3:07:21 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-91\LQH-8-81 2012-08-27 14-55-30\ASH-10-90-10ML-220MM. Acg. Method М Last changed : 8/27/2011 9:19:02 AM by LQH Analysis Method : D:\LC\DATA\LQH\LQH-8-91\LQH-8-81 2012-08-27 14-55-30\081-0201.D\DA.M (ASH-10-90-10ML-220NM.M) Last changed : 8/30/2012 7:25:31 PM by THL (modified after loading) WWD1 A, Wavelength=220 nm(DXLCDATALQHLQH8-911LQH8-812012-08-27 1455-301081-0201.D) 51.4° 1574.8.1 mAU 8 285 'a CF₂CI 50 "COOMe ۵ Ĥ -50 3r CI -100 -150 -200 1D 12 13 11 14 min Area Percent Report _____ Sorted By : Signal : Multiplier 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 10.103 MT 0.9053 1.57149e4 289.31451 49.9472 2 12.585 TM 0.9844 1.57481e4 266.63849 50.0528 Totals : 3.14631e4 555.95300 *** End of Report ***

Instrument 1 8/30/2012 7:25:36 PM THL

Data File D:\LC\D&TA\LQH\LQH-8-9598102\LQH-8-9598102-2 2012-08-30 10-54-43\084-0201.D Sample Wame: LQH-8-95

Acq. Operator :	
Acq. Instrument :	
Injection Date :	8/30/2012 11:07:01 AM Inj: 1
lag Wothed	Inj Volume : 5 µl
Acq. Method :	D:\LC\DATA\LQH\LQH-8-9598102\LQH-8-9598102-2 2012-08-30 10-54-43\ASH-10- 90-10ML-220NM-20MIN.M
ast changed :	8/29/2011 8:17:27 PM by LTL
	D:\LC\DATA\LQH\LQH-8-9598102\LQH-8-9598102-2 2012-08-30 10-54-43\084-0201.
-	D\DA.M (ASH-10-90-10ML-220MM-20MIN.M)
Last changed :	8/30/2012 7:27:59 PM by THL
Method Info :	(modified after loading) ASH-50-50-1ML-254MM-50MIM
WVD1 A, Wave	elength=220 nm (D/LC/DATA/LQH/LQH-8-9598102/LQH-8-9598102-2 2012-08-30 10-54-431084-0201.D)
mAU j	ž – L
	/≌∖ MeO
250 -	
200 -	
200]	N COOM
}	
150 -	
1	
100	2.
100 -	CI ~ 3r
1	
50 -	
1	ş / \
0	
8	9 10 11 12 13 14 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Jse Multiplier &	Dilution Factor with ISTDs
Signal 1: VWDl A,	, Wavelength=220 nm
Peak RetTime Type	e Width Area Height Area
# [min]	[min] mAU *s [mAU] %
	- 0.5502 244.45634 6.78117 1.6567
	0.3302 244.43634 6.76117 1.6367 0.7905 1.45110e4 283.63538 98.3433
Fotals :	1.47555e4 290.41655
	*** End of Report ***
	•
	12 7.20.06 DH TH

Instrument 1 8/30/2012 7:28:06 PM THL

Data File D:\LC\DATA\LQH\LQH-7-52\LQH-7-52 2012-04-16 13-36-24\077-0201.D

Sample Name: LQH-7-52A _____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seq. Line : 2 Location : Vial 77 Injection Date : 4/16/2012 1:48:34 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-52\LQH-7-52 2012-04-16 13-36-24\ASH-10-90-10ML-220MM. Acg. Method М : 4/16/2012 2:13:44 PM by LQH Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-7-52\LQH-7-52 2012-04-16 13-36-24\077-0201.D\DA.M (ASH-10-90-10ML-220NM.M) : 9/6/2012 10:42:52 AM by thl Last changed (modified after loading) WWD1 A Wavelength=220 nm(DALCOATANLOHLOH-7-52%LOH-7-52%2012-04-16 13:36-24/077-0201.D) MMC0. No. A. La. . P mAU 13.594 300 CF₂Br 250 COOMe 200 н 150 3s 100 50 ٥ 12 13 15 17 18 14 16 19 20 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1,0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU *s [mAU] % 1 13.594 MT 1.5033 2.47681e4 274.60031 49.4550 2 17.181 FM 1.3902 2.53140e4 303.48828 50.5450 5.00821e4 578.08859 Totals :

*** End of Report ***

Instrument 1 9/6/2012 10:42:57 AM thl

Data File D:\LC\DATA\LQH\LQH-7-52\LQH-7-52 2012-04-16 13-36-24\078-0301.D

Sample Name: LQH-7-52B _____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 3 Location : Vial 78 Injection Date : 4/16/2012 2:15:44 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-52\LQH-7-52 2012-04-16 13-36-24\ASH-10-90-10ML-220MM. Acg. Method М : 4/16/2012 2:14:37 PM by LQH Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-7-52\LQH-7-52 2012-04-16 13-36-24\078-0301.D\DA.M (ASH-10-90-10ML-220NM.M) : 5/5/2012 4:38:02 PM by 1qh Last changed (modified after loading) WWD1 A. Wavelergth=220 nm (DALC/DATALQH/LQH/7-52/LQH/7-52/2012-04-16 13-36-24/078-0301.D) mAU 1400 MeO CF₂Br 1200 1000 COOMe 800 600 3s 400 · 200 ç 13.7 ٥ 12 14 16 18 20 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU *s [mAU] % 1 13.748 BV 1.3413 3222.45190 35.80244 2.4929 2 17.030 VB 1.3514 1.26045e5 1446.62573 97.5071 1.29268e5 1482.42817 Totals : *** End of Report ***

Instrument 1 5/5/2012 4:38:08 PM lqh

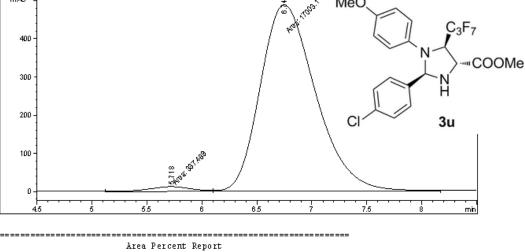
Data File D:\LC\DATA\LQH\LQH-8-104\LQH-8-104 2012-08-30 18-27-07\095-0401.D

Sample Name: LQH-8-100 _____ Acq. Operator : THL Seg. Line : 4 Acq. Instrument : Instrument 1 Location : Vial 95 Injection Date : 8/30/2012 7:09:02 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-104\LQH-8-104 2012-08-30 18-27-07\ASH-10-90-10ML-Acg. Method 220NM-20MIN.M : 8/30/2012 7:10:47 PM by THL Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-8-104\LQH-8-104 2012-08-30 18-27-07\095-0401.D\DA.M (ASH-10-90-10ML-220NM-20MIN.M) : 8/30/2012 7:30:59 PM by THL Last changed (modified after loading) Method Info : ASH-50-50-1ML-254MM-50MIN W/D1 A, Wavelength=220 nm (DALC/DATA/LQH/LQH-8-104/LQH-8-104 2012-08-30 18-27-07/095-0401.D) mAU MeO 400 C_2F_5 \$ 56 10° 11'1' 350 -COOMe 300 250 F 200 C 150 3t 100 50 ٥ 6.5 75 ė. 8.5 ģ 9.5 10 min Area Percent Report _____ Sorted By : Simul 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU *s [mAU] % 1 6.685 MT 0.4514 1.17182e4 432.68066 49.8861 2 8.545 FM 0.6829 1.17717e4 287.31390 50.1139 2.34899e4 719.99457 Totals : _____

Instrument 1 8/30/2012 7:31:06 PM THL

Data File D:\LC\D&TA\LQH\LQH-8-9598102\LQH-8-9598102-2 2012-08-30 10-54-43\086-0301.D Sample Wame: LQH-8-102

Acq. Operator	: THL Seg. Line : 3
	: Instrument 1 Location : Vial 86
Injection Date	: 8/30/2012 11:28:41 AM Inj: 1
Acq. Method	Іпј Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-9598102\LQH-8-9598102-2 2012-08-30 10-54-43\ASH-10- 90-10ML-220MM-20MIN.M
	: 8/29/2011 8:17:27 PM by LTL
Analysis Method	1 : D:\LC\DATA\LQH\LQH-8-9598102\LQH-8-9598102-2 2012-08-30 10-54-43\086-0301.
Last changed	D\DA.M (ASH-10-90-10ML-220MM-20MIN.M) : 8/30/2012 7:35:21 PM by THL
happ charged	(modified after loading)
Method Info	: ASH-50-50-1ML-254MM-50MIM
	avelength=220 nm (DALC/DATAVLQH/LQH-8-9598102/LQH-8-9598102-2 2012-08-30 10-54-43'086-0301.D)
mAU (MeO
	/°∖_o∾ MeO、 _
250 -	
	$ $ $ $ C_2F_5
200	
	N coo
150 -	
100 -	
	∫ \ ^{Ci} 3t
50 -	s vor
1	<u>s</u> 48 /
0	<u>ä</u> eee
	6.5 7 7.5 8 8.5 9 9.5 10 min
6	
6	6.5 7 7.5 8 8.5 9 9.5 10 min
6	6.5 7 7.5 8 8.5 9 9.5 10 min
6 	Δ. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6 Sorted By	3.5 7 7.5 8 8.5 9 9.5 10 min Area Percent Report : Signal
5 Sorted By Multiplier	Area Percent Report : Signal : 1.0000
5 Sorted By Multiplier Dilution	<u>Area Percent Report</u> : Signal : 1.0000 : 1.0000
5 Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000
5 Sorted By Multiplier Dilution	<u>Area Percent Report</u> : Signal : 1.0000 : 1.0000
6 Sorted By Multiplier Dilution Use Multiplier	<u>Area Percent Report</u> : Signal : 1.0000 : 1.0000
6 Sorted By Multiplier Dilution Use Multiplier	Δ -
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty	0.5 7 7.5 8 8.5 9 9.5 10 min Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min]	
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min]	Δ 7 7.5 8 8.5 9 9.5 10 min Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 1 6.539 MM	Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 1 6.539 MM	Δ 7 7.5 8 8.5 9 9.5 10 min Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 1 6.539 MM	Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report Area Percent Report 1.0000 1.0000
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report
6 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report


Data File D:\LC\DATA\LQH\LQH-8-104\LQH-8-104 2012-08-30 18-27-07\087-0201.D Sample Wame: LQH-8-104

Acq. Operator :	THL Seq. Line : 2
Acq. Instrument :	Instrument 1 Location : Vial 87
Injection Date :	8/30/2012 6:39:07 PM Inj: 1
	Inj Volume : 5 µl
Acq. Method :	D:\LC\DATA\LQH\LQH-8-104\LQH-8-104 2012-08-30 18-27-07\ASH-10-90-10ML- 220NM.M
Last changed :	8/30/2012 6:55:30 PM by THL
-	(modified after loading)
Analysis Method :	D:\LC\DATA\LQH\LQH-8-104\LQH-8-104 2012-08-30 18-27-07\087-0201.D\DA.M (ASH-10-90-10ML-220MM.M)
Last changed :	8/30/2012 7:32:23 PM by THL
V10/D1_0_304: -	(modified after loading) Hength=220 nm(DALCDATANLOHN-104LOH8-1042012-08-30 18-27-07'087-0201.D)
mAU 1	iengm=220 nm(UXLC/WATA/LUH/LUH/8-104/LUH/8-104/2012-08-30 18-27-07/087-0201.0)
m AU	A MeO
700-	/*
	() g () C ₃ F ₇
600-	∫ \ ^E
500-	
400-	
300-	
200 - /	
200] /	
100-	
	55 6 6.5 7 7.5 8 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier s	Dilution Factor with ISTDs
Signal 1: VWD1 A,	Wavelength=220 nm
D 1. D	
Peak RetTime Type	
# [min]	[min] mAU *s [mAU] %
1 5.607 W	 0.4179 2.00135e4 745.77631 49.8831
2 6.754 VB	
2 0.154 VD	0.000/ 2.010/064 0/0.04000 00.1100
Totals :	4.01208e4 1321.82263
	*** End of Report ***

Instrument 1 8/30/2012 7:32:28 PM THL

Data File D:\LC\DATA\LQH\LQH-8-104\LQH-8-104 2012-08-30 18-27-07\094-0301.D Sample Wame: LQH-8-105

Acq. Operator	;	THL	Seq. Line : 3
Acq. Instrument	1	Instrument l	Location : Vial 94
Injection Date	;	8/30/2012 6:57:09 PM	Inj: 1
			Inj Volume : 5 µl
Acq. Method	:	D: \LC\ DATA\ LQH\ LQH-8-104	4\LQH-8-104 2012-08-30 18-27-07\ASH-10-90-10ML-
		220 NM-20MIN.M	
Last changed	:	8/30/2012 6:58:05 PM by	THL
-		(modified after loading)	
Analysis Method	;	D: \LC\ DATA\ LQH\ LQH-8-104	4\LQH-8-104 2012-08-30 18-27-07\094-0301.D\DA.M (
-		ASH-10-90-10ML-220MM-20M	IIN.M)
Last changed	;	8/30/2012 7:33:52 PM by	THL
-		(modified after loading)	
Method Info	;	ASH-50-50-1ML-254MM-50M1	IA
WVD1 A, We	ne	length=220 nm (DALCADATA/LQH/LQH-8-	104LQH-8-104 2012-08-30 18-27-07'0940301.D)
mAU -l			

Sorted By		:	Signal	
Multiplier		:	1.0000	
Dilution		:	1.0000	
Use Multiplier	6	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

#	[min]	•••	Width [min]	mAU	*5	[mAU		5
1	5.718 6.747	МГ	0.4447	337.	48895	12.	64949	 1.9462 98.0538
Totals	:			1.734	06e4	500.	62467	

Instrument 1 8/30/2012 7:33:57 PM THL

Sample Name: LQH-8-107-ADH

Data File D:\LC\DATA\LQH\LQH-8-107\LQH-8-107-0DH 2012-09-01 08-58-57\092-0201.D

Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 2 Location : Vial 92 Injection Date : 9/1/2012 9:11:40 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-107\LQH-8-107-0DH 2012-09-01 08-58-57\0DH-10-90-10ML-Acg. Method 220**NM.M** : 9/1/2012 9:31:30 AM by LQH Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-8-107\LQH-8-107-0DH 2012-09-01 08-58-57\092-0201.D\DA.M (0DH-10-90-10ML-220MM.M) : 9/4/2012 1:01:00 PM by FX Last changed (modified after loading) \W/D1A_Wavelergth=220 nm(D\LC\DATA\LQH\LQH8-107LQH8-107-0DH2012-09-01 08-58-57'092-0201.D) 141400 , safe mAU 4.7.78 MeO ھ 1200 C₆F₁₃ 1000 COOMe 800 -600 -3v 400 -CI 200 ٥ 3.5 4 45 5.5 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] % # [min] ----|-----|--4.201 FM 0.1810 1.47499e4 1358.55847 49.8429 4.778 MF 0.2078 1.48429e4 1190.38440 50.1571 1 2 2.95927e4 2548.94287 Totals : *** End of Report ***

Instrument 1 9/4/2012 1:01:04 PM FX

Sample Name: LQH-8-107

_____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 3 Location : Vial 93 Injection Date : 9/1/2012 9:33:04 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-107\LQH-8-107-0DH 2012-09-01 08-58-57\0DH-10-90-10ML-Acg. Method 220NM-10MIN.M Last changed : 9/1/2012 8:55:50 AM by LQH Analysis Method : D:\LC\DATA\LQH\LQH-8-107\LQH-8-107-0DH 2012-09-01 08-58-57\093-0301.D\DA.M (0DH-10-90-10ML-220MM-10MIN.M) Last changed : 9/4/2012 1:04:11 PM by FX (modified after loading) WWD1A, Wavelength=220 nm (DALCADATANLOHA8-107ADA8-107-0DH2012-09-01 08-58-57'093-0301.D) mAU -ATA' MeO 2000 $C_{6}F_{13}$ 1750 1500 "COOMe 1250 н 1000 -3v 750 -500 , ¹99' 250 0 4.6 5 5.2 4 42 44 48 min _____ Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 4.212 MF 0.1721 346.81021 33.58257 1.1931 4.774 FM 0.2146 2.87217e4 2230.45142 98.8069 2 Totals : 2.90686e4 2264.03399 _____

Data File D:\LC\DATA\LQH\LQH-8-107\LQH-8-107-0DH 2012-09-01 08-58-57\093-0301.D

*** End of Report ***

Instrument 1 9/4/2012 1:04:18 PM FX

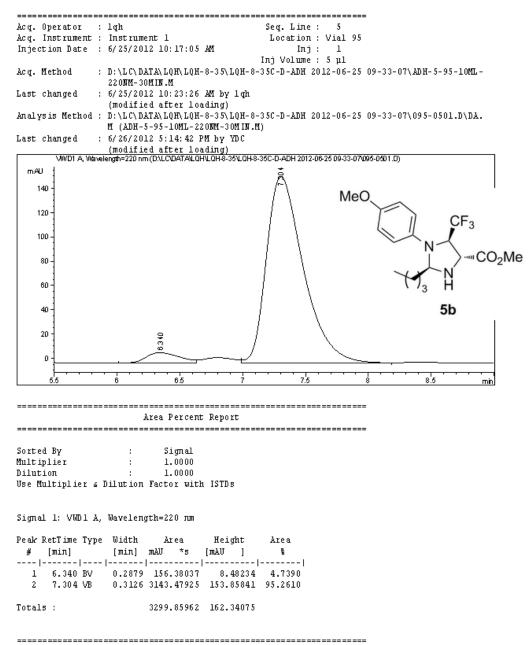
Data File D:\LC\DATA\LQH\LQH-7-112\LQH-7-112-2 2012-05-28 08-59-23\092-0201.D

Sample Name: LQH-7-112 _____ Acq. Operator : lqh Seg. Line : 2 Acq. Instrument : Instrument 1 Location : Vial 92 Injection Date : 5/28/2012 9:11:16 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-112\LQH-7-112-2 2012-05-28 08-59-23\ASH-10-90-10ML-Acg. Method 220**NM.M** : 5/28/2012 9:24:43 AM by lqh Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-7-112\LQH-7-112-2 2012-05-28 08-59-23\092-0201.D\DA.M (ASH-10-90-10ML-220NM.M) : 6/26/2012 5:18:04 PM by YDC Last changed (modified after loading) \W/D1A_Wavelergth=220 nm(D\LC\DATA\LQH\LQH-7-112\LQH-7-112-2 2012-05-28 08-59-23002-0201.D) mAU MeO 175 -88 CF_3 150 125 CO₂Me 100 2 75 5a 50 · 25 D 5.5 6.5 45 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area 5.007 W 0.1891 2251.54395 182.44080 50.7874 5.989 W 0.2387 2181.72974 139.89024 49.2126 1 2 4433.27368 322.33104 Totals : *** End of Report ***

Instrument 1 6/26/2012 5:18:11 PM YDC

Data File D:\LC\DATA\YL\YL-2-64\YL-2-64 2012-05-28 11-37-48\095-0801.D

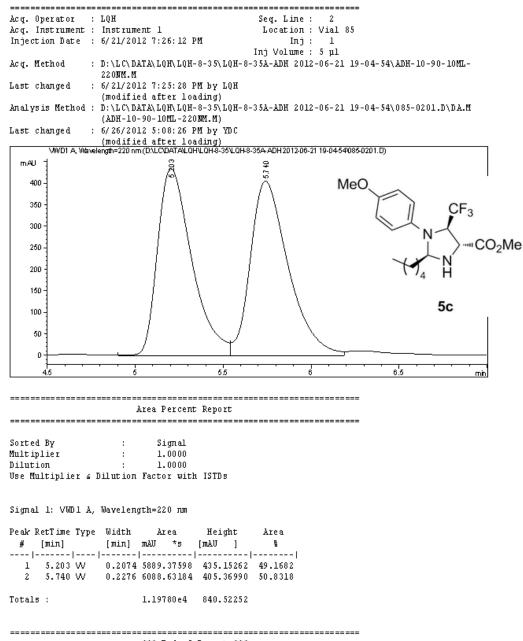
Sample Name: LQH-7-118 _____ Acq. Operator : HZL Acq. Instrument : Instrument 1 Seg. Line : 8 Location : Vial 95 Injection Date : 5/28/2012 1:58:13 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\YL\YL-2-64\YL-2-64 2012-05-28 11-37-48\ASH-10-90-10ML-220MM-Acg. Method 10MIN.M Last changed : 8/27/2011 8:50:19 AM by hzl Analysis Method : D:\LC\DATA\YL\YL-2-64\YL-2-64 2012-05-28 11-37-48\095-0801.D\DA.M (ASH-10-90-10ML-220MM-10MIN.M) Last changed : 6/26/2012 5:57:51 PM by YDC (modified after loading) WWD1 A, Wavelength=220 nm (DALCADATAVYLYL-2-64 YL-2-64 2012-05-28 11-37-48/095-0801.D) mAU MeO 300 CF_3 250 CO₂Me 200 н $^{\prime 2}$ 150 5a 100 8 50 ٥ 55 ด่ 65 min Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 5.135 MM 0.2402 329.34320 22.85277 5.4984 2 6.133 MM 0.2691 5660.43652 350.52914 94.5016 Totals : 5989.77972 373.38192 *** End of Report ***


Instrument 1 6/26/2012 5:57:59 PM YDC

Data File D:\LC\DATA\LQH\LQH-8-35\LQH-8-35C-D-ADH 2012-06-25 09-33-07\093-0301.D

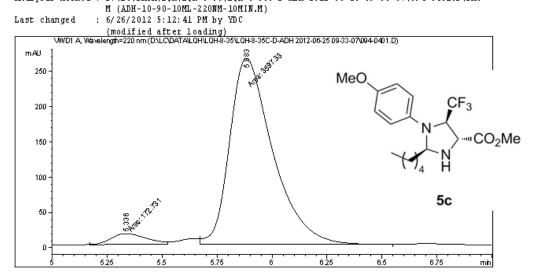
Sample Name: LQH-8-35D _____ Acq. Operator : lqh Seg. Line : 3 Location : Vial 93 Acq. Instrument : Instrument 1 Injection Date : 6/25/2012 9:54:51 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-35\LQH-8-35C-D-ADH 2012-06-25 09-33-07\ADH-5-95-10ML-Acg. Method 220**NM.M** : 6/25/2012 10:04:51 AM by lqh Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-8-35\LQH-8-35C-D-ADH 2012-06-25 09-33-07\093-0301.D\DA. M (ADH-5-95-10ML-220NM.M) : 6/26/2012 5:10:34 PM by YDC Last changed (modified after loading) \W/D1A_Wavelergth=220 nm(D\LCDATALQH\QH8-35LQH8-35C-D-ADH 2012-06-25 09-33-070093-0301.D) mAU MeO 120 CF_3 100 «CO₂Me 80 -60 -5b 40 -20 n. 7.5 55 Ŕ 6.5 85 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area 6.385 BV 0.2860 2655.89307 142.44585 49.3448 7.358 VB 0.3128 2726.41968 130.92589 50.6552 1 2 5382.31274 273.37173 Totals : *** End of Report ***

Instrument 1 6/26/2012 5:10:39 PM YDC


Data File D:\LC\DATA\LQH\LQH-8-35\LQH-8-35C-D-ADH 2012-06-25 09-33-07\095-0501.D Sample Wame: LQH-8-36D

*** End of Report ***

Instrument 1 6/26/2012 5:14:48 PM YDC

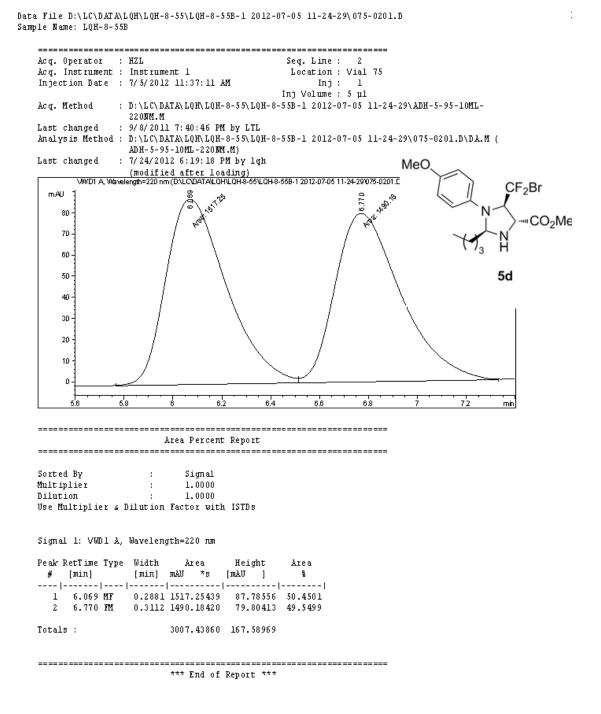

Data File D:\LC\DATA\LQH\LQH-8-35\LQH-8-35A-ADH 2012-06-21 19-04-54\085-0201.D Sample Name: LQH-8-35C

*** End of Report ***

Instrument 1 6/26/2012 5:08:37 PM YDC

Data File D:\LC\DATA\LQH\LQH-8-35\LQH-8-35C-D-ADH 2012-06-25 09-33-07\094-0401.D Sample Name: LQH-8-36C _____ Acq. Operator : lqh Acq. Instrument : Instrument l Seq. Line : 4 Location : Vial 94 Injection Date : 6/25/2012 10:05:59 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-35\LQH-8-35C-D-ADH 2012-06-25 09-33-07\ADH-10-90-Acg. Method 10ML-220MM-10MIN.M : 8/27/2011 9:21:42 AM by LQH Last changed Analysis Method : D:\LC\DATA\LQH\LQH-8-35\LQH-8-35C-D-ADH 2012-06-25 09-33-07\094-0401.D\DA.

Area Percent Report


Sorted By	:	Signal			
Multiplier	:	1.0000			
Dilution	:	1.0000			
Use Multiplier s	Dil ut ion	Factor with	ISTDs		

Signal 1: VWD1 A, Wavelength=220 nm

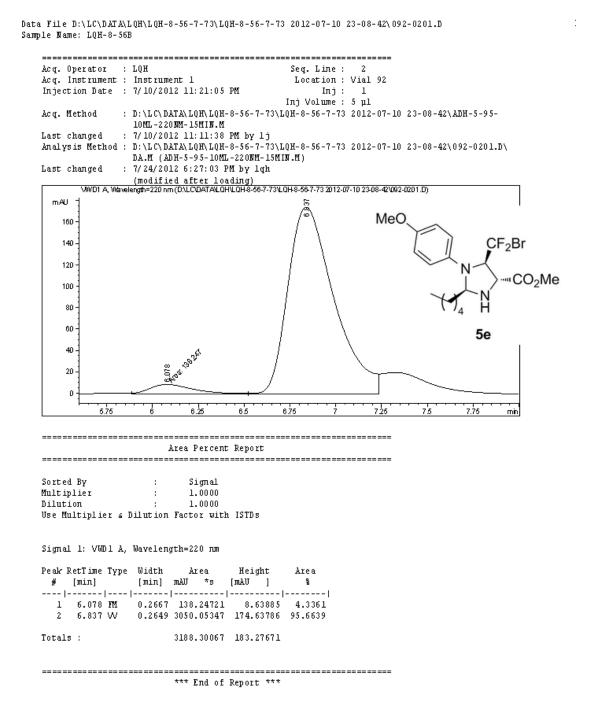
Peak R	etTime	Туре	Width	Ar	cea	Heig	nt	Area
	• •		[min]			•		
-								
1	5.336	MM	0.1869	172.	73112	15.4	10249	4.5816
2	5.883	MM	0.2272	3597.	33276	263.9	0302	95.4184
Totals	:			3770.	06389	279.3	0550	

**** End of Report ***

Instrument 1 6/26/2012 5:12:50 PM YDC

Instrument 1 7/24/2012 6:19:24 PM 1qh

Data File D:\LC\DATA\LQH\LQH-8-56\LQH-8-56 2012-07-07 11-23-06\092-0201.D


Sample Name: LQH-8-56A _____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 2 Location : Vial 92 Injection Date : 7/7/2012 11:35:23 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-56\LQH-8-56 2012-07-07 11-23-06\ADH-5-95-10ML-220MM-Acg. Method 10MIN.M Last changed : 9/8/2011 7:41:24 PM by LTL Analysis Method : D:\LC\DATA\LQH\LQH-8-56\LQH-8-56 2012-07-07 11-23-06\092-0201.D\DA.M (ADH-5-95-10ML-220NM-10MIN.M) Last changed : 7/24/2012 6:24:32 PM by lqh (modified after loading) WWD1A, Wavelength=220 nm (DALCNDATAALQHYLQH8-56 AQH8-56 2012-07-07 11-23-060092-0201.D) mAU MeO 100 ż CF₂Br 80 CO₂Me 60 5d 40 STOR STOR 20 33 Û 6.6 68 7.2 74 62 64 min Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 6.232 MM 0.2615 80.70725 5.14422 3.9697 2 6.903 MM 0.3013 1952.36633 108.01278 96.0303 Totals : 2033.07359 113.15700 *** End of Report ***

Instrument 1 7/24/2012 6:24:38 PM 1qh

Data File D:\LC\DATA\LQH\LQH-8-55\LQH-8-55C 2012-07-05 09-16-58\074-0201.D

Sample Name: LQH-8-55C _____ Acq. Operator : lqh Acq. Instrument : Instrument l Seg. Line : 2 Location : Vial 74 Injection Date : 7/5/2012 9:29:49 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-8-55\LQH-8-55C 2012-07-05 09-16-58\ADH-5-95-10ML-220MM. Acg. Method М Last changed : 9/8/2011 7:40:46 PM by LTL Analysis Method : D:\LC\DATA\LQH\LQH-8-55\LQH-8-55C 2012-07-05 09-16-58\074-0201.D\DA.M (ADH-5-95-10ML-220MM.M) Last changed : 7/24/2012 6:21:14 PM by 1qh (modified after loading) WDIA, Wavelength=220 nm (DALCODATALOHUQH8-55% 2012-07-05 09-16-58/074-0201.D) . *** mAU œ Par an MeO 120 CF₂Br 100 "CO₂Me 80 H 60 4 5e 40 20 ٥ 625 5.75 6.75 7.25 6.5 75 Ŕ min Area Percent Report _____ Sorted By : Signal : Multiplier 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] # [min] 5 1 5.946 MT 0.2869 2383.96265 138.47212 50.1718 2 6.717 TM 0.3131 2367.63867 126.03162 49.8282 Totals : 4751.60132 264.50374 *** End of Report ***

Instrument 1 7/24/2012 6:21:18 PM 1qh

Instrument 1 7/24/2012 6:27:08 PM 1qh

Data File D:\LC\DATA\LQH\LQH-8-35\LQH-8-35A-ADH 2012-06-21 19-04-54\084-0101.D Sample Wame: LQH-8-35A

Acq. Operator	: LQH Seq. Line : l
Acq. Instrument	
	: 6/21/2012 7:05:40 PM Inj: 1
	Inj Volume : 5 µl
Acq. Method	: D:\LC\DATA\LQH\LQH-8-35\LQH-8-35A-ADH 2012-06-21 19-04-54\ADH-10-90-10ML- 220MM.M
Last changed	: 6/21/2012 7:25:01 PM by LQH
	(modified after loading)
Analysis Method	: D:\LC\DATA\LQH\LQH-8-35\LQH-8-35A-ADH 2012-06-21 19-04-54\084-0101.D\DA.M (ADH-10-90-10ML-220MM.M)
Last changed	: 6/26/2012 5:06:37 PM by YDC
V0/D1 A. \061	(modified after loading) velegth=220 nm(D:\LCVDATALQH\LQH8-35\LQH8-35\ADH2012-06-21 19-045440840101.D)
mAU 1	
1	
350-	The set of the MeO
	Na Va MIEO
300-	
250 -	
	Nº LOO MO
200-	, → ""CO ₂ Me
	Pn N
150 -	$\left(1 \right) \left(1$
100-	5f
50 -	
30-	
7	75 8 85 9 9.5 10 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier a	; Dilution Factor with ISTDs
Simual ly Winn 1 &	λ, Wavelength=220 nm
Fight I, FWDI A	e watereigen wet im
Peak RetTime Typ	e Width Area Height Area
# [min]	[min] mAU *s [mAU] %
	-
1 7.711 MF	
2 8.685 M	0.3749 7487.61865 332.88815 51.7392
Totals :	1.44719e4 704.75385

*** End of Report ***

Instrument 1 6/26/2012 5:06:43 PM YDC

Data File D:\LC\DATA\LQH\LQH-8-36\LQH-8-36 2012-06-22 08-32-57\087-0201.D Sample Wame: LQH-8-36B

Acq. Operator	
Acq. Instrument	
	: 6/22/2012 8:45:38 AM Inj: 1
	Inj Volume : 5 µl
Acq. Method	: D:\LC\DATA\LQH\LQH-8-36\LQH-8-36 2012-06-22 08-32-57\ADH-10-90-10ML-220MM-
ast changed	20MIN.M : 8/29/2011 8:14:57 PM by LTL
	: D:\LC\DATA\LQH\LQH-8-36\LQH-8-36 2012-06-22 08-32-57\087-0201.D\DA.M (ADH-
-	10-90-10ML-220NM-20MIN.M)
ast changed	: 6/26/2012 5:16:07 PM by YDC
	(modified after loading)
lethod Info	: ASH-50-50-1ML-254MM-50MIN
WVD1 A, Wav	elength=220 nm (D/LC/DATA/LQH/LQH8-36/LQH8-36 2012-06-22 08-32-57/087-0201.D)
mAU]	ç
175	<i>∫</i> ∞∖
175-	MeO
150 -	
100	
125 -	
100 -	
75 -	
	5f
50 -	
	_ / \
25 -	
<u>ه ا</u>	
· · · · · · · · · · · · · · · · · · ·	75 8 85 9 95 10 105 min
	<u>mm aui ui 8,8 8 66 6 67.</u>
	Area Percent Report
	Area Percent Report
Gorted By	: Signal
Gorted By Multiplier	
Sorted By Multiplier Dilution	: Signal : 1.0000
Sorted By Multiplier Dilution	: Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Jse Multiplier &	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs
Sorted By Multiplier Dilution Jse Multiplier &	: Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VMD1 &	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min]	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm e Width Area Height Area [min] mAU *s [mAU] %
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 	<pre>: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm e Width Area Height Area [min] mAU *s [mAU] % - </pre>
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm e Width Area Height Area [min] mAU *s [mAU] % - 0.2959 170.97664 8.44586 4.0805
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 	<pre>: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm e Width Area Height Area [min] mAU *s [mAU] % - </pre>
Sorted By fultiplier Dilution Jse Multiplier & Signal 1: VWD1 & Peak RetTime Typ # [min] 	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm e Width Area Height Area [min] mAU *s [mAU] % - 0.2959 170.97664 8.44586 4.0805
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VMD1 & Peak RetTime Type # [min] 1 7.771 BV 2 8.757 VB	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm e Width Area Height Area [min] mAU *s [mAU] % -

Instrument 1 6/26/2012 5:16:19 PM YDC

Data File D:\LC\DATA\LQH\LQH-7-93\LQH-7-93 2012-05-16 19-01-36\082-0201.D

Sample Name: LQH-7-93 _____ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 2 Location : Vial 82 Injection Date : 5/16/2012 7:13:22 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-93\LQH-7-93 2012-05-16 19-01-36\ASH-10-90-10ML-220MM. Acg. Method М Last changed : 8/27/2011 9:19:02 AM by LQH Analysis Method : D:\LC\DATA\LQH\LQH-7-93\LQH-7-93 2012-05-16 19-01-36\082-0201.D\DA.M (ASH-10-90-10ML-220NM.M) Last changed : 6/26/2012 6:03:01 PM by YDC (modified after loading) WWD1A Wavelength=220 nm (D:\LCDATA\LQH\QH-7-93\LQH-7-93 2D12-05-16 19-01-36\062-0201.D) mAU 5.310 MeO 300 CF₃ 250 CO₂Me 200 150 100 5g 50 ۵ 5.5 5.75 4.75 5 5.25 425 45 Ŕ min Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] # [min] 8 1 4.772 **IM** 0.1988 3929.65063 329.40140 49.6393 2 5.310 VB 0.2142 3986.76709 284.93958 50.3607 Totals : 7916.41772 614.34097 *** End of Report ***

Instrument 1 6/26/2012 6:03:06 PM YDC

Data File D:\LC\DATA\THL\THL-14-79\THL-14-79 2012-05-17 12-24-45\083-0401.D Sample Wame: 1qh-7-99

Acq. Operator	: thl Seq. Line : 4
Acq. Instrument	
Injection Date	: 5/17/2012 1:04:47 PM Inj: 1
	Inj Volume : 5 µl
Acq. Method	: D:\LC\DATA\THL\THL-14-79\THL-14-79 2012-05-17 12-24-45\ASH-10-90-10ML-
last changed	220MM-20MIN.M : 8/29/2011 8:17:27 PM by LTL
-	: D:\LC\DATA\THL\THL-14-79\THL-14-79 2012-05-17 12-24-45\083-0401.D\DA.M (
	ASH-10-90-10ML-220MM-20MIN.M)
Last changed	: 6/26/2012 6:09:09 PM by YDC
	(modified after loading)
Method Info	: ASH-50-50-1ML-254AM-50MIA
WVD1 A. War	velength=220 nm (DXLC/DATA/THL/THL-14-79/THL-14-79 2012-05-17 12-24-45/083-0401.D)
mAU 1	<u> </u>
1	Å
200 -	/°\ MeO
200	
175 -	
1	
150 -	N NO M
125-	
100-	
75-	5g
50-	
1	
25	
o 1	
- 1	· · · · · · · · · · · · · · · · · · ·
425	45 4.75 5 525 55 5.75 6 625 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000 : 1.0000
Dilution Nee Multiplier c	: 1.0000 Dilution Factor with ISTDs
ose nureipiier a	PTRETOW INCOL WICH 19102
Signal 1: VWD1 A	λ, Wavelength=220 nm
	an a
Peak RetTime Typ	
# [min] ll	[min] mAU *s [mAU] %
1 4.786 W	
2 5.333 VB	

Totals : 3282.83241 237.16120

----- *** End of Report ***

Instrument 1 6/26/2012 6:09:17 PM YDC

Data File D:\LC\DATA\LQH\LQH-YDC-1-85\LQH-YDC-1-85-ADH 2012-04-26 18-17-17\074-0201.D Sample Wame: LQH-YDC-1-85

	LQH	Seq. Line : 2
Acq. Instrument :		Location : Vial 74
Injection Date :	: 4/26/2012 6:29:11 PM	Inj: 1
		Inj Volume : 5 µl
Acq. Method :	D:\LC\DATA\LQH\LQH-YDC-1-	-85\LQH-YDC-1-85-ADH 2012-04-26 18-17-17\ADH-10-
	90-10ML-220MM.M	
-	: 8/27/2011 9:22:22 AM by L	
Analysis Method :		-85\LQH-YDC-1-85-ADH 2012-04-26 18-17-17\074-0201.
	D\DA.M (ADH-10-90-10ML-22	•
Last changed :	: 4/27/2012 12:42:14 PM by	LQH
	(modified after loading)	
	siengin=220 nm (D::CCUATALQH/CQH-1DC ~	C-1-85\LQ.H.YDC-1-85-ADH 2012-04:26 18-17-17/074-0201.D)
mAU 1	A a to	en and the of th
175	/ <u>^</u> ?	E. MeO.
175 -	1 ta.	NIEO.
	{ }	
150 -	{ }	
	1 \	
125 -	\	N
1	(\	
100 -	(\	$\wedge \wedge N$
1	()	
75	f \	
1		
50 -		5h
1		
25-		
1		
		<u> </u>
<u> </u>	<u> </u>	
4.5	5 5.5	6 6.5 7 7.5
	Area Percent Repor	
Sorted By	: Signal	
Sorted By Multiplier	: 1.0000	
Sorted By Multiplier Dilution	: 1.0000 : 1.0000	
Sorted By Multiplier Dilution	: 1.0000	3
Sorted By Multiplier Dilution	: 1.0000 : 1.0000	3
Sorted By Multiplier Dilution Jse Multiplier &	: 1.0000 : 1.0000	3
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 A, Peak RetTime Type # [min]	: 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 nm e Width Area Heig [min] mAU *s [mAU	ght Area] %
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 A, Peak RetTime Type # [min]	: 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 лm e Width Area Heig [min] mAU *s [mAU -	ght Area] % 33124 50.2185
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 A, Peak RetTime Type # [min] 	: 1.0000 : 1.0000 Dilution Factor with ISTDs , Wavelength=220 лm e Width Area Heig [min] mAU *s [mAU -	yht Area] %

Instrument 1 4/27/2012 12:42:19 PM LQH

Data File D:\LC\DATA\LQH\LQH-YDC-1-85\LQH-YDC-1-89 2012-04-28 17-13-46\084-0101.D Sample Wame: LQH-YDC-1-89

Line : 1 ration : Vial 84 Inj : 1 'olume : 5 pl -1-89 2012-04-28 17-13-46\ADH-10-90- -1-89 2012-04-28 17-13-46\084-0101.D\ -1-89 2012-04-28 17-13-46\084-0101.D) MeO
<pre>/olume : 5 µl -1-89 2012-04-28 17-13-46\ADH-10-90- -1-89 2012-04-28 17-13-46\084-0101.D\ -1-89 2012-0428 17-13-46\084-0101.D) MeO NCF3</pre>
-1-89 2012-04-28 17-13-46\ADH-10-90- -1-89 2012-04-28 17-13-46\084-0101.D\ -1-89 2012-0428 17-13-46\084-0101.D) MeO CF3
-1-89 2012-04-28 17-13-46\ADH-10-90- -1-89 2012-04-28 17-13-46\084-0101.D\ -1-89 2012-0428 17-13-46\084-0101.D) MeO CF3
-1-89 2012-04-28 17-13-46\084-0101.D\ -1-89 2012-0428 17-13-46\084-0101.D) MeO
MeO
MeO
MeO
MeO
MeO CF ₃
MeO CF3
MeO CF ₃
CF ₃
CF ₃
N N
N N
N
N=\
j }···•CO₂Me
ən
_9 ⁵ 2
⇔ ,% ^{'o} '
j.et
· · · · · · · · · · · · · · · ·
6 6.5 7
a
:
:
 769
 769
 769
 769

Instrument 1 5/5/2012 4:50:28 PM lqh

Data File D:\LC\DATA\LQH\LQH-7-112\LQH-7-112-2 2012-05-28 08-59-23\093-0301.D

Sample Name: LQH-7-117 _____ Acq. Operator : lqh Seg. Line : 3 Acq. Instrument : Instrument 1 Location : Vial 93 Injection Date : 5/28/2012 9:25:47 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-112\LQH-7-112-2 2012-05-28 08-59-23\ASH-10-90-10ML-Acg. Method 220**NM.M** : 5/28/2012 9:25:07 AM by lqh Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-7-112\LQH-7-112-2 2012-05-28 08-59-23\093-0301.D\DA.M (ASH-10-90-10ML-220NM.M) : 6/26/2012 5:21:07 PM by YDC Last changed (modified after loading) \W/D1A_Wavelergth=220 nm(D\LC\DATA\LQH\LQH-7-112\LQH-7-112-22012-05-2808-59-23083-0301.D\ MeO ٦ . Kar, 3 mAU 5D88 CF_3 350 300 "CO₂Me 250 н 200 5i 150 -100 50 D 4.2 44 4.6 48 52 5.4 5.8 min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 븮 # [min] ----|-----|-4.602 MF 0.2045 4791.29785 390.39377 50.3463 5.088 FM 0.2261 4725.38867 348.27927 49.6537 1 2 9516.68652 738.67303 Totals :

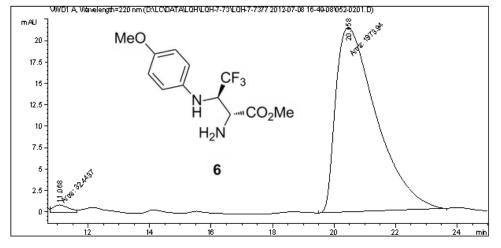
*** End of Report ***

Instrument 1 6/26/2012 5:21:12 PM YDC

Data File D:\LC\DATA\YL\YL-2-64\YL-2-64 2012-05-28 11-37-48\094-0901.D

Sample Name: LQH-7-116 _____ Acq. Operator : HZL Seg. Line : 9 Acq. Instrument : Instrument 1 Location : Vial 94 Injection Date : 5/28/2012 2:09:14 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\YL\YL-2-64\YL-2-64 2012-05-28 11-37-48\ASH-10-90-10ML-220MM-Acg. Method 10MIN.M Last changed : 8/27/2011 8:50:19 AM by hzl Analysis Method : D:\LC\DATA\YL\YL-2-64\YL-2-64 2012-05-28 11-37-48\094-0901.D\DA.M (ASH-10-90-10ML-220MM-10MIN.M) Last changed : 6/26/2012 5:33:43 PM by YDC (modified after loading) WWD1 A, Wavelength=220 nm (DALCADATANYLYL-2-64 YL-2-64 2012-05-28 11-37-48/094-0901.D) 20.⁵ mAU MeO 100 CF_3 80 "CO₂Me 60 40 Let. Barrier 5i 20 808 ۵ 4.4 46 48 52 54 5.6 58 min Area Percent Report _____ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 4.805 MF 0.1988 89.29974 7.48680 5.2529 2 5.163 FM 0.2288 1610.72363 117.31781 94.7471 Totals : 1700.02337 124.80461 ------*** End of Report ***

Instrument 1 6/26/2012 5:33:49 PM YDC


Data File D:\LC\DATA\LQH\LQH-7-73\LQH-7-73 2012-05-05 08-35-24\094-0201.D Sample Wame: LQH-7-73

_____ Acq. Operator : lqh Acq. Instrument : Instrument l Seg. Line : 2 Location : Vial 94 Injection Date : 5/5/2012 8:47:17 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-7-73\LQH-7-73 2012-05-05 08-35-24\ASH-10-90-10ML-220MM. Acq. Method М Last changed : 8/27/2011 9:19:02 AM by LQH Analysis Method : D:\LC\DATA\LQH\LQH-7-73\LQH-7-73 2012-05-05 08-35-24\094-0201.D\DA.M (ASH-10-90-10ML-220NM.M) Last changed : 7/9/2012 11:04:22 PM by FX (modified after loading) W/D1 A. Wavelength=220 nm (DALCADATALQHVLQH-7-73 2L01-7-73 2D12-05-05 08-35-244094-0201.D) 12. 00.00 mAU 8 ã lag. MeO 40 35 CF_3 30 -25 CO₂Me <u>066</u> 20 ä 15 6 10 5 ٥ 16 12 18 14 20 22 min Area Percent Report _____ Sorted By : Signal : Multiplier 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU *s [mAU] 5 # [min] 1 10.882 MM 0.4716 1210.79785 42.79110 49.3992 2 20.066 BB 1.0730 1240.24780 16.21302 50.6008 Totals : 2451.04565 59.00412 *** End of Report ***

Instrument 1 7/9/2012 11:04:30 PM FX

Data File D:\LC\DATA\LQH\LQH-7-73\LQH-7-7377 2012-07-08 16-49-08\052-0201.D Sample Wame: LQH-7-77

Acq. Operator	;	lqh Seq. Line : 2					
Acq. Instrument	;	Instrument 1 Location : Vial 52					
Injection Date	;	7/8/2012 5:21:59 PM Inj: 1					
		Inj Volume : 5 pl					
Acq. Method	;	D: \LC\DATA\LQH\LQH-7-73\LQH-7-7377 2012-07-08 16-49-08\ASH-10-90-10MI	<u>i</u> -				
		220 NM-30MIN.M					
Last changed	;	3/28/2012 12:22:29 PM by FX					
Analysis Method	;	D: \LC\ DATA\ LQH\ LQH-7-73\ LQH-7-7377 2012-07-08 16-49-08\ 052-0201. D\ DA.	.M (
		ASH-10-90-10ML-220MM-30MIN.M)					
Last changed	;	7/9/2012 11:10:50 PM by FX					
		(modified after loading)					
Method Info	;	ASH-50-50-1ML-254MM-50MIN					

Area Percent Report

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier .	s Dilution	Factor with	ISTDs	

Signal 1: VWD1 A, Wavelength=220 nm

		••	Width [min]			-	·	Area %
1	11.068	MM	0.6025	32.	44374	8.9752	4e-1	 1.6170 98.3830
Total	5:			2006.	37989	22.4	12973	

*** End of Report ***

Instrument 1 7/9/2012 11:10:58 PM FX

Sample Name: LQH-10-42

_____ Acq. Operator : TL Seg. Line : 4 Acq. Instrument : Instrument 1 Location : Vial 94 Injection Date : 2/27/2013 4:20:02 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-10-44\LQH-10-44-2 2013-02-27 14-49-06\ADH-40-60-10ML-Acg. Method 220**NM.M** : 2/27/2013 4:39:52 PM by TL Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-10-44\LQH-10-44-2 2013-02-27 14-49-06\094-0401.D\DA.M (ADH-40-60-10ML-220NM.M) : 2/28/2013 5:38:13 PM by FX Last changed (modified after loading) \W/D1 A. Wavelergth=220 nm (D\LC\DATA\LQH\LQH-10-44LQH-10-444.2 2013-02-27 14-49-06024-0401.D) mAU MeO 283 2 CF_3 100 80 -CO₂Me 60 7 40 20 Ô١ -20 14 16 18 ź min _____ Area Percent Report _____ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] 和初 *5 [màひ] % 1 15.190 BV 0.6289 5718.79346 133.62978 49.7633 2 17.287 VB 0.7133 5773.20801 120.18544 50.2367 1.14920e4 253.81522 Totals : *** End of Report ***

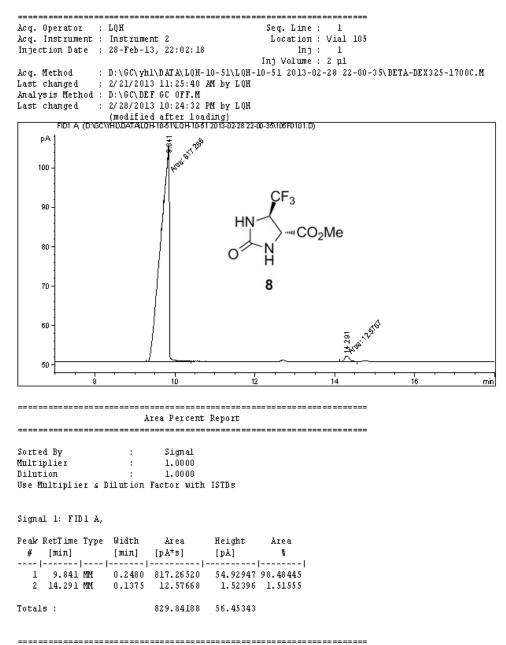
Data File D:\LC\DATA\LQH\LQH-10-44\LQH-10-44-2 2013-02-27 14-49-06\094-0401.D

Instrument 1 2/28/2013 5:38:18 PM FX

Sample Name: LQH-10-49

Data File D:\LC\DATA\LQH\LQH-10-49\LQH-10-49 2013-02-28 15-35-38\095-0201.D

_____ Acq. Operator : FX Seg. Line : 2 Acq. Instrument : Instrument 1 Location : Vial 95 Injection Date : 2/28/2013 3:48:05 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-10-49\LQH-10-49 2013-02-28 15-35-38\ADH-40-60-10ML-Acq. Method 220NM-25MIN.M Last changed : 2/28/2013 3:33:41 PM by FX Analysis Method : D:\LC\DATA\LQH\LQH-10-49\LQH-10-49 2013-02-28 15-35-38\095-0201.D\DA.M (ADH-40-60-10ML-220NM-25MIN.M) Last changed : 2/28/2013 5:36:23 PM by FX (modified after loading) WD1 A. Wavelength=220 nm (DXLCXDATALQHYLQH-10-49/LQH-10-49/2013-02-28 15-35-38/095-0201.D) mAU MeO 250 CF_3 200 "CO₂Me 150 7 100 50 888 ۵ 16 18 χ'n. 14 min 12 _____ Area Percent Report _____ Sorted By : Simul 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU *5 [mAU] % 1 14.869 VB 0.5462 192.52173 5.10563 1.4555 2 16.875 BV 0.6897 1.30349e4 283.27603 98.5445 1.32274e4 288.38166 Totals : _____


Instrument 1 2/28/2013 5:36:30 PM FX

Sample Name: LQH-10-43B _____ Acq. Operator : LQH Acq. Instrument : Instrument 2 Seg. Line : 1 Location : Vial 101 Injection Date : 21-Feb-13, 11:28:27 Inj : 1 Inj Volume : 2 µl : D:\GC\LQH\DATA\LQH-10-43B\LQH-10-43B 2013-02-21 11-26-44\BETA-DEX325-Acg. Method 1700C.M Last changed : 2/21/2013 11:25:40 AM by LQH Analysis Method : D:\GC\DEF GC OFF.M Last changed : 2/21/2013 12:04:24 PM by LQH (modified after loading) FID1 A (D:GCLQH/DATALQH10-438LQH10-438 2013-02-21 11-26-444101FD101.D) Hay SPAS pA⁺ 88 CF_3 90 CO₂Me 80 8 70 · 60 50 10 14 12 18 18 mir _____ Area Percent Report _____ Sorted By . Sional : Multiplier 1.0000 1.0000 Dilution Use Multiplier & Dilution Factor with ISTDs Signal 1: FID1 A, Peak RetTime Type Width Height Area Area [min] [pÅ*s] # [min] [min] [pÅ*s] [pÅ] % 1 9.861 BB 0.1546 581.82855 45.66846 50.08646 2 14.056 MM 0.2295 579.81989 42.10339 49.91354 1161.64844 87.77185 Totals : *** End of Report ***

Data File D:\GC\LQH\DATA\LQH-10-43B\LQH-10-43B 2013-02-21 11-26-44\101F0101.D

Instrument 2 2/21/2013 12:04:37 PM LQH

Data File D:\GC\YHL\DATA\LQH-10-51\LQH-10-51 2013-02-28 22-00-35\105F0101.D Sample Wame: LQH-10-51

*** End of Report ***

Instrument 2 2/28/2013 10:24:38 PM LQH