### Supporting information

## A superior catalyst with dual redox cycles for the selective reduction

# of NO<sub>x</sub> by ammonia

Zhiming Liu, <sup>\*a</sup> Yang Yi,<sup>a</sup> Junhua Li,<sup>\*b</sup> Seong Ihl Woo,<sup>c</sup> Baoyi Wang,<sup>d</sup> Xingzhong Cao,<sup>d</sup> and Zhuoxin Li<sup>d</sup>

<sup>a</sup> State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, China

<sup>b</sup> School of Environment, Tsinghua University, Beijng 100084, China

- <sup>c</sup> Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
- <sup>d</sup> Key laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

<sup>\*</sup> Corresponding author. Tel: +86-10-64427356 E-mail: <u>liuzm@mail.buct.edu.cn</u> (Z. Liu); <u>lijunhua@tsinghua.edu.cn</u> (J. Li).

#### 1. Catalyst preparation and catalytic tests

The Cu-Ce-Ti catalysts with different ratio of Cu/Ce/Ti were prepared by the hydrothermal method. Appropriate amounts of Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and Ti(SO<sub>4</sub>)<sub>2</sub> were dissolved in deionized water at room temperature and stirred for 1 hour, then ammonia solution was added slowly to the above solution under vigorous stirring until pH is ca. 11. After stirring for 2 h, the obtained suspension was transferred to a Teflon-sealed autoclave and aged at 120 °C for 48 h. The obtained precipitate was filtered and washed with deionized water thoroughly. The resulting powder was dried at 120 °C for 12 h and then calcined in air at 500 °C for 6 h. In comparison, Cu-Ti, Ce-Ti and TiO<sub>2</sub> were also prepared by the same preparation method as described above. The state-of-the art SCR V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>/TiO<sub>2</sub> catalyst with 1 wt.% V<sub>2</sub>O<sub>5</sub> and 5 wt.% WO<sub>3</sub> was also prepared by the conventional impregnation method using NH<sub>4</sub>VO<sub>3</sub>, (NH<sub>4</sub>)<sub>10</sub>W<sub>12</sub>O<sub>41</sub>, H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O as precursors and TiO<sub>2</sub> as the support. After impregnation, the sample was then dried at 120 °C for 12 h and calcined at 120 °C for 48.

The activity measurements were carried out in a fixed-bed quartz reactor using a 0.12 g catalyst of 40-60 meshes. The feed gas mixture contained 500 ppm NO, 500 ppm NH<sub>3</sub>, 0 or 5% H<sub>2</sub>O, 0 or 50 ppm SO<sub>2</sub>, 5% O<sub>2</sub> and helium as the balance gas. The total flow rate of the feed gas was 300 cm<sup>3</sup> min<sup>-1</sup>, corresponding to a GHSV of 64,000 h<sup>-1</sup>. The reaction temperature was increased from 150 °C to 400 °C in steps of 50 °C. The composition of the product gas was analyzed by a chemiluminescence NO/NO<sub>2</sub> analyzer (Thermal Scientific, model 42i-HL) and gas chromatograph

(Shimadzu GC 2014 equipped with Porapak Q and Molecular sieve 5A columns). A molecular-sieve 5A column was used for the analysis of  $N_2$  and Porapak Q column for that of  $N_2O$ . The activity data were collected when the catalytic reaction practically reached steady-state condition at each temperature.

#### 2. Catalyst characterization

X-ray diffraction (XRD) measurements were carried out on a Rigaku D/MAX-RB X-ray Diffractometer with Cu Ka radiation. XPS measurements were conducted on an ESCALab220i-XL electron spectrometer from VG Scientific using 300W Mg Ka radiation, calibrated internally by carbon deposit C 1s binding energy (BE) at 284.8 eV. A least-square routine of peak fitting was used for the analysis of XPS spectra. Positron annihilation experiments were performed with a fast-slow coincidence ORTEC system with a time resolution of 196 ps full width at half maximum. A  $5 \times 10^5$ of <sup>22</sup>Na source was sandwiched between two identical Bq samples. Temperature-programmed reduction (H2-TPR) experiments were conducted on a chemisorption analyzer (Micromeritics, ChemiSorb 2720 TPx) under a 10% H<sub>2</sub> gas flow (50 mL min<sup>-1</sup>) at a rate of 10 °C min<sup>-1</sup> up to 650 °C.

The structure of catalysts was studied by the micro-Raman spectroscopy (Renisaw, InVia) under the 532 nm<sup>-1</sup> excitation laser light. In situ DRIFTS experiments were performed on an FTIR spectrometer (Nicolet Nexus 870) equipped with a smart collector and an MCT detector cooled by liquid nitrogen. Prior to each experiment, the sample was pretreated at 400  $^{\circ}$ C for 1 h in a flow of helium and then cooled down to 200  $^{\circ}$ C. The background spectrum was collected in flowing helium and

automatically subtracted from the sample spectrum. The reaction conditions were controlled as follows: 100 mL min<sup>-1</sup> total flow rate, 500 ppm NH<sub>3</sub> or 500 ppm NO + 5 % O<sub>2</sub>, and helium as the balance. All spectra were recorded by accumulating 100 scans with a resolution of 4 cm<sup>-1</sup>.



Fig. S1 N<sub>2</sub> selectivities of  $Cu_{0.1}Ti_{0.9}O_x$ ,  $Ce_{0.1}Ti_{0.9}O_x$  and  $Cu_{0.1}Ce_{0.1}Ti_{0.8}O_x$  catalysts (500 ppm NO, 500 ppm NH<sub>3</sub>, 5% O<sub>2</sub>, balance He, GHSV= 64,000 h<sup>-1</sup>)



**Fig. S2** NO<sub>x</sub> conversion as a function of temperature (a) and as a function of time at 250 °C (b) over Cu<sub>0.1</sub>Ce<sub>0.1</sub>Ti<sub>0.8</sub>O<sub>x</sub> catalyst in the presence of H<sub>2</sub>O and SO<sub>2</sub> (500 ppm NO, 500 ppm NH<sub>3</sub>, 5% O<sub>2</sub>, 5% H<sub>2</sub>O, 50 ppm SO<sub>2</sub>, balance He, GHSV= 64,000 h<sup>-1</sup>).



**Fig. S3** The effects of H<sub>2</sub>O and SO<sub>2</sub> on the activity of  $Cu_{0.1}Ti_{0.9}O_x$  catalysts (500 ppm NO, 500 ppm NH<sub>3</sub>, 5% O<sub>2</sub>, 5% H<sub>2</sub>O, 50 ppm SO<sub>2</sub>, balance He, GHSV=64,000 h<sup>-1</sup>).



**Fig. S4** The effects of H<sub>2</sub>O and SO<sub>2</sub> on the activity of  $Ce_{0.1}Ti_{0.9}O_x$  catalysts (500 ppm NO, 500 ppm NH<sub>3</sub>, 5% O<sub>2</sub>, 5% H<sub>2</sub>O, 50 ppm SO<sub>2</sub>, balance He, GHSV=64,000 h<sup>-1</sup>).

•



Fig. S5 Comparison of NH<sub>3</sub>-SCR activity of Cu-Ce-Ti catalysts with that of  $V_2O_5$ -WO<sub>3</sub>/TiO<sub>2</sub> (500 ppm NO, 500 ppm NH<sub>3</sub>, 5% O<sub>2</sub>, balance He, GHSV=64,000 h<sup>-1</sup>).



Fig. S6 XRD patterns of  $TiO_2$ ,  $Cu_{0.1}Ti_{0.9}O_x$ ,  $Ce_{0.1}Ti_{0.9}O_x$  and  $Cu_{0.1}Ce_{0.1}Ti_{0.8}O_x$ .



Fig. S7 Cu 2p XPS spectra of  $Cu_{0.1}Ti_{0.9}O_x$  and  $Cu_{0.1}Ce_{0.1}Ti_{0.8}O_x$  catalysts.



Fig. S8 Ce 3d XPS spectra of  $Ce_{0.1}Ti_{0.9}O_x$  and  $Cu_{0.1}Ce_{0.1}Ti_{0.8}O_x$  catalysts.



Fig. S9 Ti 2p XPS spectra of  $Cu_{0.1}Ti_{0.9}O_x$ ,  $Ce_{0.1}Ti_{0.9}O_x$  and  $Cu_{0.1}Ce_{0.1}Ti_{0.8}O_x$  catalysts.



Fig. S10 Cu 2p(a), Ce3d(b) and Ti2p(c) XPS spectra of the used Cu<sub>0.1</sub>Ce<sub>0.1</sub>Ti<sub>0.8</sub>O<sub>x</sub> catalyst.



Fig. S11 The lifetime spectra of  $Cu_{0.1}Ti_{0.9}O_x(-)$ ,  $Ce_{0.1}Ti_{0.9}O_x(-)$  and  $Cu_{0.1}Ce_{0.1}Ti_{0.8}O_x$ 

(-)catalysts.



Fig. S12 H<sub>2</sub>-TPR profiles of Cu<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub>, Ce<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub> and Cu<sub>0.1</sub>Ce<sub>0.1</sub>Ti<sub>0.8</sub>O<sub>x</sub> catalysts.

Temperature-programmed reduction (H<sub>2</sub>-TPR) analysis was conducted to investigate the reduction behavior of Cu<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub>, Ce<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub> and Cu<sub>0.1</sub>Ce<sub>0.1</sub>Ti<sub>0.8</sub>O<sub>x</sub> catalysts. As illustrated in Fig.S12, Cu<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub> shows a hydrogen consumption peak at 120 °C, which is attributed to the reduction of CuO particles being in strong interaction with the TiO<sub>2</sub>.<sup>1,2</sup> The reduction peak is significantly lower than that of the bulk and unsupported CuO, which is reduced at about 300 °C.<sup>3</sup> Ce<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub> exhibited two reduction peaks at around 350 and 570 °C. The former small peak is probably assigned to the reduction of Ce<sup>4+</sup> to Ce<sup>3+</sup>.<sup>1,4</sup> Interestingly, the Cu<sub>0.1</sub>Ce<sub>0.1</sub>Ti<sub>0.8</sub>O<sub>x</sub> catalyst possesses an intense peak centering around 150 °C and the reduction peak starts at lower temperature compared with Cu<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub> catalyst.



Fig. S13 In situ DRIFTS of NO+O<sub>2</sub> reacted with pre-adsorbed NH<sub>3</sub> species at 200  $^{\circ}$ C over Cu<sub>0.1</sub>Ce<sub>0.1</sub>Ti<sub>0.8</sub>O<sub>x</sub> catalyst.

The DRIFT spectra of NO+O<sub>2</sub> adsorption over  $Cu_{0.1}Ti_{0.9}O_x$ ,  $Ce_{0.1}Ti_{0.9}O_x$  and  $Cu_{0.1}Ce_{0.1}Ti_{0.8}O_x$  catalysts at 200°C was investigated. Several distinct bands at 1891, 1625, 1601, 1585, 1375, 1274, 1235 and 1218 cm<sup>-1</sup> were observed, which were respectively assigned to the gas phase or weakly adsorbed NO (1891 cm<sup>-1</sup>),<sup>5</sup> adsorbed NO<sub>2</sub> (1601, 1625 cm<sup>-1</sup>),<sup>5,6</sup> bidentate nitrate (1585 cm<sup>-1</sup>),<sup>7,8</sup> bridging nitrate (1274, 1235 and 1218 cm<sup>-1</sup>).<sup>10</sup>

In the case of NH<sub>3</sub> adsorption over these three catalysts, the bands at 1611, 1249 and 1179 cm<sup>-1</sup> can be assigned to the coordinated NH<sub>3</sub> on Lewis acid sites,<sup>10, 11</sup> and that at 3385, 3265 and 3175 cm<sup>-1</sup> can be ascribed to the N-H stretching vibration modes of the coordinated NH<sub>3</sub>.<sup>11</sup> The ionic NH<sub>4</sub><sup>+</sup> bound to Brønsted acid sites(1440 cm<sup>-1</sup>)<sup>8</sup> was also observed over Ce<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>x</sub> and Cu<sub>0.1</sub>Ce<sub>0.1</sub>Ti<sub>0.8</sub>O<sub>x</sub> catalysts, with the N-H stretching vibration modes of NH<sup>4+</sup> (2959 cm<sup>-1</sup>).<sup>12</sup> The peak at 1560 cm<sup>-1</sup> can be

assigned to the scissoring vibration mode of NH<sub>2</sub> species.<sup>9</sup>

The reactivity of adsorbed NH<sub>3</sub> species towards NO+O<sub>2</sub> was evaluated by the time-dependent changes of the IR spectra at 200 °C and the results are shown in Fig. S13. After the catalyst was exposed to NH<sub>3</sub> for the 60 min and purged with helium, the adsorbed NH<sub>3</sub> on Lewis acid sites (3385, 3265, 3175, 1611, 1249 and 1179 cm<sup>-1</sup>),<sup>10, 11</sup> and ionic NH<sub>4</sub><sup>+</sup> bound to Brønsted acid sites(1440 cm<sup>-1</sup>)<sup>8</sup> were observed clearly. Switching the feed gas to NO + O<sub>2</sub> resulted in the decreases of both adsorbed NH<sub>3</sub> and ionic NH<sub>4</sub><sup>+</sup> peak intensities, indicating that both the coordinated NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> participated in the reduction of NO<sub>x</sub>.

### References

- 1 B. Thirupathi and P.G. Smirniotis, Appl. Catal. B, 2011, 110, 195-206.
- E. B. Fox, S. Velua, M. H. Engelhard, Y. Chin, J. T. Miller, J. Kropf and C. Song, J. Catal., 2008, 260, 358-370.
- 3 G. Avrouropoulos and T. Ioannides, Appl. Catal. A, 2003, 244, 155-167.
- 4 D. Yang, L. Wang, Y. Sun and K. Zhou, J. Phys. Chem. C, 2010, **114**, 8926-8932.
- 5 G. Qi, R. T. Yang and R. Chang, *Appl. Catal. B*, 2004, **51**, 93-106.
- 6 K.I. Hadjiivanov, Catal. Rev. Sci. Eng., 2000, 42, 71-144.
- W. Shan, F. Liu, H. He, X. Shi and C. Zhang, *Chem. Commun.*, 2011, 47, 8046-8048.
- 8 D.A. Peňa, B.S. Uphade, E.P. Reddy and P.G. Smirniotis, J. Phys. Chem. B,

2004, 108, 9927-9936.

- 9 W. Shan, F. Liu, H. He, X. Shi and C. Zhang, *Appl. Catal. B*, 2012, 115/116, 100-106.
- 10 G. Zhou, B. Zhong, W. Wang, X. Guan, B. Huang, D. Ye and H. Wu, *Catal. Today*, 2011, **175**, 157-163.
- 11 F. Liu, H. He, Y. Ding and C. Zhang, *Appl. Catal. B*, 2009, **93**, 194-204.
- 12 N.Y. Topsøe, Science, 1994, 265, 1217-1219.