Supporting Online Material for

Catalytic asymmetric conjugate addition of Grignard reagents to chromones

Carlos Vila, Valentín Hornillos, Martín Fañanás-Mastral and Ben L. Feringa

Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4, 9747 AG, Groningen, The Netherlands b.l.feringa@rug.nl

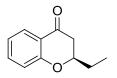
Table of Contents

General Methods	S2
General procedure for the synthesis of the racemic products of the copper catalyzed 1,4	-addition
of Grignard reagents to chromones	S 3
General procedure for the asymmetric 1,4-addition of Grignard reagents to chromones	S 3
Characterization of Products 2, 3, 4, 5, 6, 7	S 3
Characterization of Products 9	S9
Characterization of Products 10	S9
NMR spectra of characterized compounds	S11
HPLC data of the compounds	S27

General Methods:

Column chromatography was performed on silica gel (Silica-P flash silica gel from Silicycle, size 40-63 µm). TLC was performed on silica gel 60/Kieselguhr F254. Components were visualized by UV and staining with a solution of a mixture of $KMnO_4$ (10 g) and K_2CO_3 (10 g) in H₂O (500 mL). Mass spectra were recorded on a AEI-MS-902 mass spectrometer (EI+) or a LTQ Orbitrap XL (ESI+). ¹H- and ¹³C-NMR were recorded on a Varian AMX400 (400 and 101 MHz, respectively) using CDCl₃ as solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CHCl₃: d 7.26 for ¹H, d 77.0 for ¹³C). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p =pentet, br = broad, m = multiplet), coupling constants (Hz), and integration. Optical rotations were measured in CHCl₃ on a Schmidt + Haensch polarimeter (Polartronic MH8) with a 10 cm cell (c given in g/100 mL). Conversion of the reaction was determined by GC (GC, HP6890: MS HP5973) with an HP5 column (Agilent Technologies, Palo Alto, CA). Enantiomeric excess values were determined by HPLC analysis using a Shimadzu LC-10ADVP HPLC equipped with a Shimadzu SPD-M10AVP diode array detector. All reactions were carried out under a nitrogen atmosphere using oven dried glassware and using standard Schlenk techniques. All solvents were reagent grade and were dried and distilled prior to use, if necessary. Tetrahydrofuran (THF), tertbutyl methyl ether (t-BuOMe) and diethylether (Et₂O) were distilled over Na/benzophenone. Toluene and dichloromethane (CH₂Cl₂) were distilled over calcium hydride. All the ligands, copper salts and chromanones were purchased from Aldrich, ABCR and Acros and used as received. Grignard reagents RMgBr (R = Et, *n*-pentyl, *n*-hexyl, *i*-Bu, 3-pentyl, dodecyl, cyclopentyl) were purchased from Aldrich. Phenethylmagnesium bromide and but-3-en-1ylmagnesium bromide were prepared from the corresponding alkyl bromides and magnesium turnings in Et₂O following standard procedures. Grignard reagents were titrated using sec-BuOH and catalytic amounts of 1,10-phenanthroline.

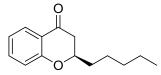
General procedure for the synthesis of the racemic product of the copper catalyzed 1,4addition addition of Grignard reagents to chromones


CuBr·SMe₂ (0.01 mmol, 2.02 mg) and PPh₃ (0.012 mmol, 6.3 mg) were dissolved in dry DCM (2.0 mL) and the mixture was stirred at room temperature for 10 min. The mixture was cooled to -80 °C and subsequently the corresponding Grignard reagent solution (1.25 equiv.) were added dropwise. The reaction mixture was stirred at -80 °C for another 10 min. Then a solution of chromonone (0.2 mmol) in DCM (1.0 mL) was added dropwise. The reaction mixture was stirred until TLC (*n*-pentane:EtOAc 9:1) showed full conversion and quenched with saturated aqueous NH₄Cl solution (2 mL). The mixture was separated and the water layer was extracted with DCM (3×5 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was evaporated under *vacuo*. Purification by flash chromatography over silica gel, using *n*-pentane:Et₂O 9:1 afforded the desired compounds. (The reaction in some cases shown 1,2 and 1,4 addition products)

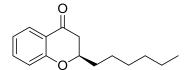
General procedure for the asymmetric 1,4-addition of Grignard reagents to chromones:

CuBr·SMe₂ (0.01 mmol, 2.02 mg) and L4 (*R*,*S*)-Rev-Josiphos (0.012 mmol, 7.2 mg) were dissolved in dry DCM (2.0 mL) and the mixture was stirred at room temperature for 10 min. The mixture was cooled to -80 °C and subsequently the corresponding Grignard reagent solution (1.25 equiv.) was added dropwise. The reaction mixture was stirred at -80 °C for another 10 min. Then a solution of chromonone (0.4 mmol) in DCM (1.0 mL) was added slowly over 1h using a syringe pump. The reaction was stirred until TLC (*n*-pentane:EtOAc 9:1) showed full conversion and quenched with saturated aqueous NH₄Cl solution (2 mL). The mixture was separated and the water layer was extracted with DCM (3×5 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was evaporated under *vacuo*. Purification by flash chromatography over silica gel, using *n*-pentane:Et₂O 9:1 afforded the desired compounds.

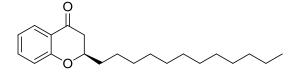
Characterization of products 2, 3, 4, 5, 6, 7


(R)-2-ethylchroman-4-one $(2a)^1$

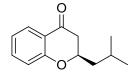
Synthesized according the general procedure, obtained in 98% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH), hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 14.2$ min, minor enantiomer $t_r = 16.0$ min, ee= 95%; $[\alpha]^{25}_{D} = +51.5$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 7.8, 1.3 Hz, 1H), 7.44 (td, J = 7.8, 1.6 Hz, 1H), 7.03-6.88 (m, 2H), 4.45-4.29 (m, 1H), 2.66 (d, J = 7.8 Hz, 2H), 1.88 (dp, J = 14.7, 7.4 Hz,


1H), 1.81-1.69 (m, 1H), 1.05 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 161.6, 135.8, 126.8, 121.0, 120.9, 117.8, 78.9, 42.4, 27.9, 9.2 ppm; HRMS (ESI) calculated for C₁₁H₁₃O₂ [M + H] 177.0910 found 177.0910.

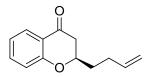
(R)-2-pentylchroman-4-one (2b)


Synthesized according the general procedure, obtained in 80% yield; oil;enantiomeric excess was determined by HPLC (Chiracel OBH), hexane:i-PrOH 99:1, 0.5 mL/min, minor enantiomer $t_r = 12.3$ min, major enantiomer $t_r = 12.9$ min, ee= 96%; $[\alpha]^{25}_{D} = +48.9$ (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 7.8, 1.7 Hz, 1H), 7.46 (td, J = 8.0, 1.6 Hz, 1H), 7.02-6.94 (m, 2H), 4.43 (qd, J = 7.6, 5.2 Hz, 1H), 2.68 (d, J = 7.5 Hz, 2H), 1.88 (dddd, J = 12.8, 10.1, 7.4, 5.3 Hz, 1H), 1.75-1.64 (m, 1H), 1.61-1.41 (m, 2H), 1.39-1.29 (m, 4H), 0.91(t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 161.7, 135.9, 126.9, 121.1, 121.0, 117.8, 77.9, 43.0, 34.9, 31.5, 24.5, 22.5, 14.0 ppm; HRMS (ESI) calculated for C₁₄H₁₉O₂ [M + H] 219.1380 found 219.1379.

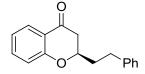
(R)-2-hexylchroman-4-one (2c)


Synthesized according the general procedure, obtained in 87% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH), hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 12.1$ min, minor enantiomer $t_r = 12.8$ min, ee= 96%; $[\alpha]^{25}_{D}= +51.3$ (c 1.09, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 7.8, 1.6 Hz, 1H), 7.44 (td, J = 7.8, 1.5 Hz, 1H), 7.00-6.94 (m, 2H), 4.42 (qd, J = 7.6, 5.4 Hz, 1H), 2.67 (d, J = 7.9 Hz, 2H), 1.93-1.81 (m, 1H), 1.69 (ddd, J = 13.9, 10.4, 5.4 Hz, 1H), 1.60-1.40 (m, 2H), 1.39-1.21 (m, 6H), 0.89 (t, J = 6.7 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 161.7, 135.9, 126.9, 121.1, 121.0, 117.9, 77.9, 43.0, 34.9, 29.0, 24.8, 22.6, 14.0 ppm; HRMS (ESI) calculated for C₁₅H₂₁O₂ [M + H] 233.1536 found 233.1537.

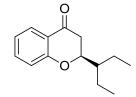
(R)-2-dodecylchroman-4-one (2d)


Synthesized according the general procedure, obtained in 53% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH), hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 10.6$ min, minor enantiomer $t_r = 11.5$ min, ee= 86%; $[\alpha]^{25}_{D}= +24.5$ (c 0.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.82 (dd, J = 7.8, 1.6 Hz, 1H), 7.41 (td, J = 7.8, 2.0 Hz, 1H), 6.96-6.91 (m, 2H), 4.41-4.35 (m, 1H), 2.63 (d, J = 7.9 Hz, 2H), 1.89-1.77 (m, 1H), 1.71-1.60 (m, 1H),1.55-1.35 (m, 2H), 1.33-1.10 (m, 18H), 0.83 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 161.6, 135.8, 126.9, 121.0, 120.9, 117.8, 77.9, 42.9, 34.9, 31.9, 29.63, 29.59, 29.57, 29.49, 29.43, 29.32, 29.29, 24.8, 22.6, 14.0 ppm; HRMS (ESI) calculated for C₂₁H₃₃O₂ [M + H] 317.2475 found 317.2477.

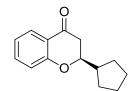
(R)-2-isobutylchroman-4-one (2e)


Synthesized according the general procedure, obtained in 82% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH), hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 12.4$ min, minor enantiomer $t_r = 13.2$ min, ee= 98%; $[\alpha]^{25}_{D} = +57.2$ (c 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (dd, J = 7.8, 1.5 Hz, 1H), 7.34 (td, J = 7.8, 1.6 Hz, 1H), 6.90-6.83 (m, 2H), 4.45-4.36 (m, 1H), 2.61-2.48 (m, 2H), 1.88-1.71 (m, 2H), 1.34 (ddd, J = 13.8, 7.9, 4.6 Hz, 1H), 0.864 (d, J = 6.4 Hz, 3H), 0.857 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 161.6, 135.9, 126.9, 121.1, 121.0, 117.9, 76.3, 43.9, 43.4, 24.2, 23.0, 22.2 ppm; HRMS (ESI) calculated for C₁₃H₁₇O₂ [M + H] 205.1223 found 205.1223.

(R)-2-(but-3-en-1-yl)chroman-4-one (2f)

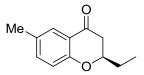

Synthesized according the general procedure, obtained in 79% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 15.3$ min, minor enantiomer $t_r = 17.1$ min, ee= 87%; $[\alpha]^{25}_{D} = +44.4$ (c 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.3 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H), 6.98-6.90 (m, 2H), 5.79 (ddt, J = 16.9, 10.1, 6.6 Hz, 1H), 5.03 (d, J = 17.1 Hz, 1H), 4.97 (d, J = 10.2 Hz, 1H), 4.45-4.37 (m, 1H), 2.64 (d, J = 7.7 Hz, 2H), 2.33-2.16 (m, 2H), 1.95 (td, J = 14.2, 8.0 Hz, 1H), 1.74 (ddd, J = 13.9, 8.9, 6.7 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 161.5, 137.2, 135.9, 126.9, 121.2, 121.0, 117.8, 117.5, 77.0, 42.9, 34.0, 29.0 ppm; HRMS (ESI) calculated for C₁₃H₁₅O₂ [M + H] 203.1067 found 203.1066.

(R)-2-phenethylchroman-4-one $(2g)^2$

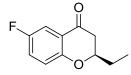

Synthesized according the general procedure, obtained in 77% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 95:5, 0.5 mL/min, major enantiomer $t_r = 29.2$ min, minor enantiomer $t_r = 12.5$ min, ee= 75%; $[\alpha]^{25}_{D} = +56.7$ (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 8.1, 1.7 Hz, 1H), 7.49 (td, J = 7.8, 1.6 Hz, 1H), 7.32-7.29 (m, 2H), 7.26-7.19 (m, 3H), 7.03-7.00 (m, 2H), 4.44 (ddt, J = 11.0, 8.6, 4.5 Hz, 1H), 2.96-2.81 (m, 2H), 2.77-2.65 (m, 2H), 2.23 (dtd, J = 14.2, 8.6, 5.7 Hz, 1H), 2.00 (dddd, J = 13.9, 9.2, 7.2, 4.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 161.5, 140.9, 136.0, 128.5, 128.4, 127.0, 126.2, 121.3, 121.1, 117.9, 76.8, 43.0, 36.5, 31.1 ppm; HRMS (ESI) calculated for C₁₇H₁₇O₂ [M + H] 253.1223 found 253.1224.

(S)-2-(pentan-3-yl)chroman-4-one (2h)

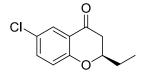
Synthesized according the general procedure, obtained in 68% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 11.4$ min, minor enantiomer $t_r = 12.3$ min, ee= 84%; $[\alpha]^{25}_{D} = + 53.5$ (c 0.92, CHCl₃);¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 7.9, 1.5 Hz, 1H), 7.44 (ddd, J = 8.4, 7.3, 1.8 Hz, 1H), 7.01-6.94 (m, 2H), 4.43 (ddd, J = 13.5, 4.9, 2.70 Hz, 1H), 2.75 (dd, J = 16.6, 13.5 Hz, 1H), 2.60 (dd, J = 16.6, 2.7 Hz, 1H), 1.69-1.59 (m, 2H), 1.58-1.49 (m, 2H), 1.36 (dt, J = 15.7, 7.9 Hz, 1H), 0.96 (t, J = 7.3 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 162.1, 135.8, 126.9, 121.0, 117.9, 79.5, 44.8, 40.0, 21.5, 21.3, 11.4 ppm; HRMS (ESI) calculated for C₁₄H₁₉O₂ [M + H] 219.1380 found 219.1380.


(S)-2-cyclopentylchroman-4-one (2i)

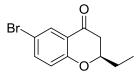
Synthesized according the general procedure, obtained in 79% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 13.8$ min, minor enantiomer $t_r = 14.5$ min, ee= 97%; $[\alpha]_{D}^{25} = +72.1$ (c 0.9,


CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 7.8, 1.3 Hz, 1H), 7.45 (td, J = 7.8, 1.7 Hz, 1H), 7.00-6.93 (m, 2H), 4.22 (ddd, J = 9.6, 7.8, 5.7 Hz, 1H), 2.74-2.64 (m, 2H), 2.28-2.20 (m, 1H), 1.97-1.89 (m, 1H), 1.79-1.74 (m, 1H), 1.72-1.50 (m, 5H), 1.37-1.25 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 161.8, 135.9, 126.9, 121.04, 121.0, 117.9, 81.7, 44.1, 42.2, 28.8, 28.4, 25.5, 25.4 ppm; HRMS (ESI) calculated for C₁₄H₁₇O₂ [M + H] 217.1223 found 217.1223.

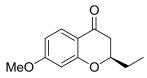
(R)-2-ethyl-6-methylchroman-4-one (3)


Synthesized according the general procedure, obtained in 93% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 13.8$ min, minor enantiomer $t_r = 15.2$ min, ee= 92%; $[\alpha]^{25}_{D} = +69.6$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 1.3 Hz, 1H), 7.25 (dd, J = 8.4, 2.1 Hz, 1H), 6.86 (d, J = 8.4, 1H), 4.32 (qd, J = 7.6, 5.6 Hz, 1H), 2.64 (d, J = 8.0 Hz, 2H), 2.28 (s, 3H), 1.87 (dp, J = 14.4, 7.3 Hz, 1H), 1.80-1.68 (m, 1H), 1.05 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 159.7, 137.0, 130.5, 126.4, 120.6, 117.6, 79.0, 42.6, 28.0, 20.4, 9.3 ppm; HRMS (ESI) calculated for C₁₂H₁₅O₂ [M + H] 191.1067 found 191.1065.

(R)-2-ethyl-6-fluorochroman-4-one (4)

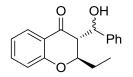

Synthesized according the general procedure, obtained in 75% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 12.9$ min, minor enantiomer $t_r = 14.3$ min, ee= 92%; $[\alpha]^{25}_{D} = +72.3$ (c 1.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.45 (dd, J = 8.3, 3.1 Hz, 1H), 7.12 (td, J = 8.6, 3.2 Hz, 1H), 6.89 (dd, J = 9.0, 4.2, 1H), 4.29 (m, 1H), 2.66-2.62 (m, 2H), 1.83 (dp, J = 14.7, 7.4 Hz, 1H), 1.77-1.65 (m, 1H), 1.01 (t, J = 7.5 Hz, 3H) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -121.9 (td, $J_{H-F} = 8.0, 4.3$) ¹³C NMR (100 MHz, CDCl₃) δ 191.8 (d, $J_{C-F} = 1.8$), 158.0 (d, $J_{C-F} = 31.6$), 156.9 (d, $J_{C-F} = 208.6$), 123.4 (d, $J_{C-F} = 24.6$), 121.4 (d, $J_{C-F} = 6.5$), 119.5 (d, $J_{C-F} = 7.3$), 111.8 (d, $J_{C-F} = 23.2$), 79.3, 42.2, 27.8, 9.2 ppm; HRMS (ESI) calculated for C₁₁H₁₂FO₂ [M + H] 195.0816 found 195.0815.

(R)-6-chloro-2-ethylchroman-4-one (5)

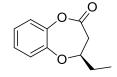

Synthesized according the general procedure, obtained in 85% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 13.6$ min, minor enantiomer $t_r = 15.2$ min, ee= 90%; $[\alpha]^{25}_{D} = +78.2$ (c 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 2.7 Hz, 1H), 7.40 (dd, J = 8.8, 2.7 Hz, 1H), 6.93 (d, J = 8.8 Hz, 1H), 4.36 (ddt, J = 11.0, 6.9, 5.5 Hz, 1H), 2.72-2.61 (m, 2H), 1.89 (dp, J = 14.7, 7.4 Hz, 1H), 1.83-1.71 (m, 1H), 1.07 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 160.1, 135.7, 126.6, 126.2, 121.7, 119.6, 79.3, 42.2, 27.9, 9.2 ppm; HRMS (ESI) calculated for C₁₁H₁₂ClO₂ [M + H] 211.0520 found 211.0519.

(R)-6-bromo-2-ethylchroman-4-one (6)

Synthesized according the general procedure, obtained in 81% yield; oil; enantiomeric excess was determined by HPLC (Chiracel ODH),hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer $t_r = 14.4$ min, minor enantiomer $t_r = 15.9$ min, ee= 89%; $[\alpha]^{25}_{D} = +64.3$ (c 1.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 2.2 Hz, 1H), 7.45 (dd, J = 8.8, 2.1 Hz, 1H), 6.80 (d, J = 8.8 Hz, 1H), 4.32-4.24 (m, 1H), 2.65-2.52 (m, 2H), 1.81 (dp, J = 14.7, 7.4 Hz, 1H), 1.75-1.54 (m, 1H), 0.99 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 160.5, 138.5, 129.3, 122.2, 120.0, 113.7, 79.3, 42.1, 27.8, 9.2 ppm; HRMS (ESI) calculated for C₁₁H₁₂BrO₂ [M + H] 255.0015 found 255.0016.


(*R*)-2-ethyl-7-methoxychroman-4-one (7)

Synthesized according the general procedure, obtained in 81% yield; oil; enantiomeric excess was determined by HPLC (Chiracel OJH),hexane:i-PrOH 99:1, 0.5 mL/min, minor enantiomer $t_r = 28.9$ min, minor enantiomer $t_r = 30.3$ min, ee= 92%; $[\alpha]_{D}^{25} = +50.9$ (c 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.8 Hz, 1H), 6.53 (dd, J = 8.8, 2.4 Hz, 1H), 6.40 (d, J = 2.3 Hz, 1H), 4.38-4.29 (m, 1H), 3.81 (s, 3H), 2.66-2.54 (m, 2H), 1.86 (dp, J = 14.7, 7.3 Hz, 1H), 1.80-1.68 (m, 1H), 1.05 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ

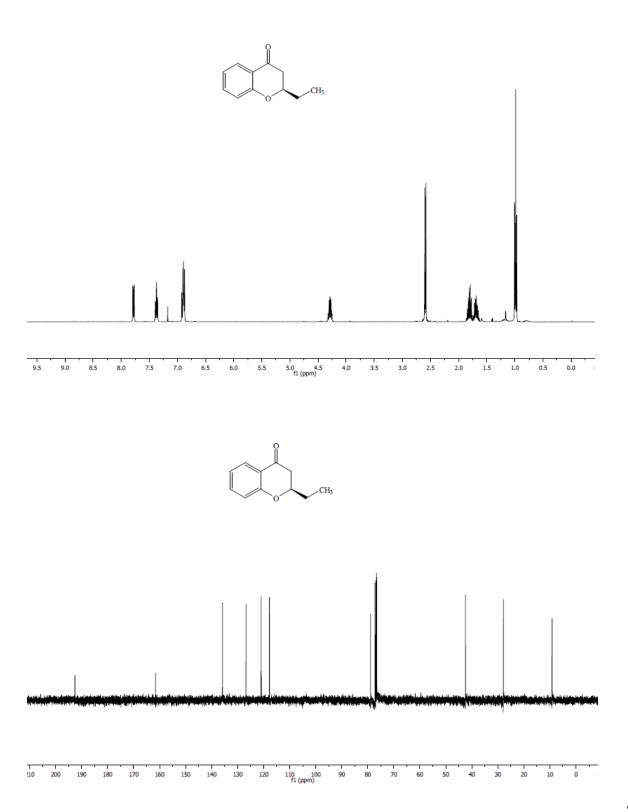

191.2, 166.0, 163.6, 128.6, 114.9, 109.7, 100.6, 79.4, 55.6, 42.2, 28.0, 9.3 ppm; HRMS (ESI) calculated for $C_{12}H_{15}O_3$ [M + H] 207.1016 found 207.1016.

(2*R*,3*R*)-2-ethyl-3-(hydroxy(phenyl)methyl)chroman-4-one (9)

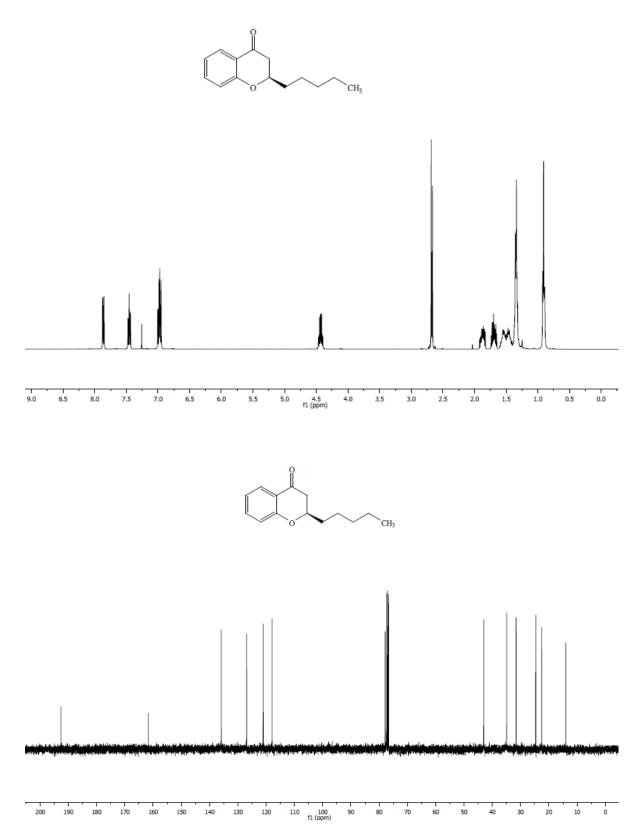
CuBr·SMe₂ (0.01 mmol, 2.02 mg) and L4 (R,S)-Rev-Josiphos (0.012 mmol, 7.2 mg) were dissolved in dry DCM (2.0 mL) and the mixture was stirred at room temperature for 10 min. The mixture was cooled to -80 °C and subsequently the corresponding Grignard reagent solution (1.25 equiv.) was added dropwise. The reaction mixture was stirred at -80 °C for another 10 min. Then a solution of chromonone 2a (0.4 mmol, 58.4 mg) in DCM (1.0 mL) was added slowly over 1h using a syringe pump. The reaction was stirred until TLC (npentane:EtOAc 9:1) showed full conversion. PhCHO (1.6 mmol, 150 µL) was added and the mixture was stirred at room temperature for 3 h. After that the reaction mixture was guenched with saturated aqueous NH_4Cl solution (2 mL). The mixture was separated and the water layer was extracted with DCM (3×5 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was evaporated under vacuo. Purification by flash chromatography over silica gel, using *n*-pentane: Et_2O 9:1 afforded the desired compound 9 was obtained as an oil (101.5 mg, 0.36 mmol, 90% yield, dr: 1:1.1); ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J = 7.8, 1.5 Hz, 1H),7.75 (d, J = 7.8 Hz, 1H), 7.54-7.20 (m, 12H), 7.01 (t, J = 7.5 Hz, 1H), 6.99-6.92 (m, 3H), 5.15 (d, J = 6.7 Hz, 1H), 4.98^* (d, J = 9.1 Hz, 1H), 4.72-4.63 (m, 1H), 4.04^* (ddd, J = 9.4, 5.0, 2.3 Hz, 1H), 2.90 (dd, J = 6.6, 4.8 Hz, 1H), 2.73^{*} (dd, J = 9.1, 2.3 Hz, 1H), 1.87-1.67 (m, 2H), 1.63-1.51 (m, 1H), 1.50-1.39^{*} (m, 1H), 0.95 (t, J = 7.3 Hz, 3H), 0.84^{*} (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 193.4, 159.6, 158.9, 141.4, 141.1, 136.6, 136.4, 128.7, 128.5, 128.43, 128.39, 128.0, 127.22, 127.0, 126.8, 126.8, 126.3, 121.3, 121.1, 118.20, 118.17, 79.7, 79.3, 72.9, 72.6, 57.9, 57.0, 25.1, 24.7, 9.84, 9.75 ppm; HRMS (ESI) calculated for C₁₈H₁₉O₃ [M + H] 283.1329 found 283.1328.

(R)-4-ethyl-3,4-dihydro-2H-benzo[b][1,4]dioxepin-2-one (10)

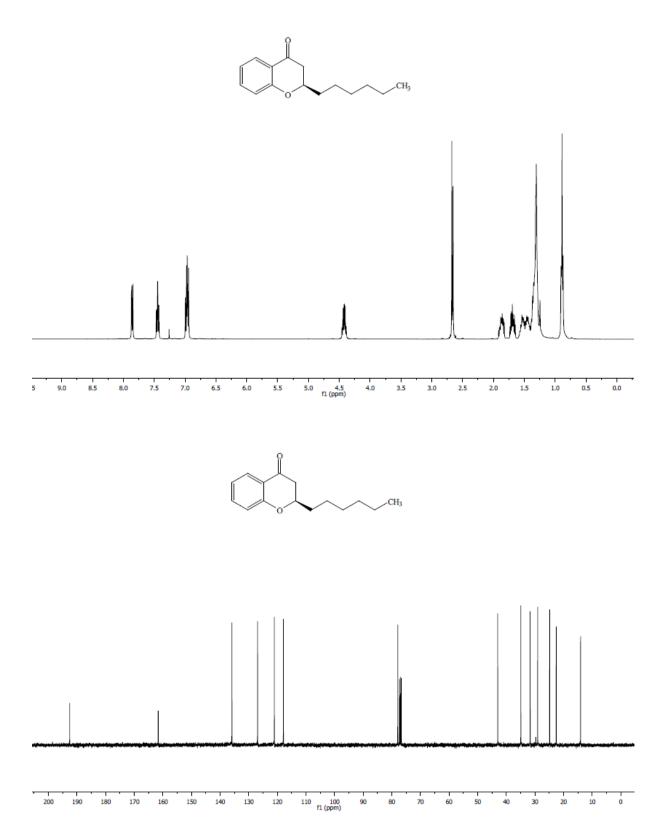
(*R*)-2-ethylchroman-4-one (**2a**) (0.25 mmol, 44.1 mg) and MCPBA (0.625 mmol, 107.9 mg) were dissolved in 5 mL of ClCH₂CH₂Cl, and the mixture was heated to 60 °C. The reaction mixture was stirred until TLC (*n*-pentane:EtOAc 9:1) showed full conversion and quenched with

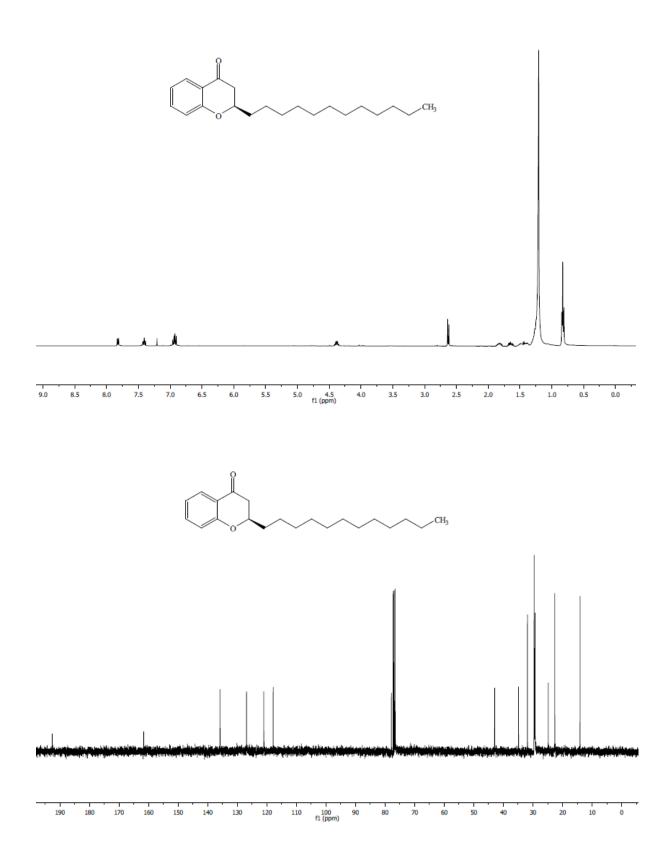

saturated aqueous NaHCO₃ solution (10 mL) and 15 mL of DCM. The mixture was separated and the organic layer was washed with aq. NaHCO₃ (2×7 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was evaporated under *vacuo*. Purification by flash chromatography over silica gel, using *n*-pentane:Et₂O 9:1 afforded the desired compound **10** as an oil (33.7 mg, 0.178 mmol, 71% yield); oil; enantiomeric excess was determined by HPLC (Chiracel ODH), hexane:i-PrOH 99:1, 0.5 mL/min, major enantiomer t_r = 30.9 min, minor enantiomer t_r = 23.7 min, ee= 93%; [α]²⁵_D= +67.1 (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.19-7.08 (m, 4H), 4.62-4.53 (m, 1H), 2.83 (dd, *J* = 13.2, 5.5 Hz, 1H), 2.65 (dd, *J* = 13.2, 7.5 Hz, 1H), 1.93-1.80 (m, 1H), 1.67-1.55 (m, 1H), 1.08 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 145.9, 144.8 126.7, 125.5, 124.1, 120.2, 84.0, 37.5, 27.5, 10.0 ppm; HRMS (ESI) calculated for C₁₁H₁₃O₃ [M + H] 193.0859 found 193.0858.

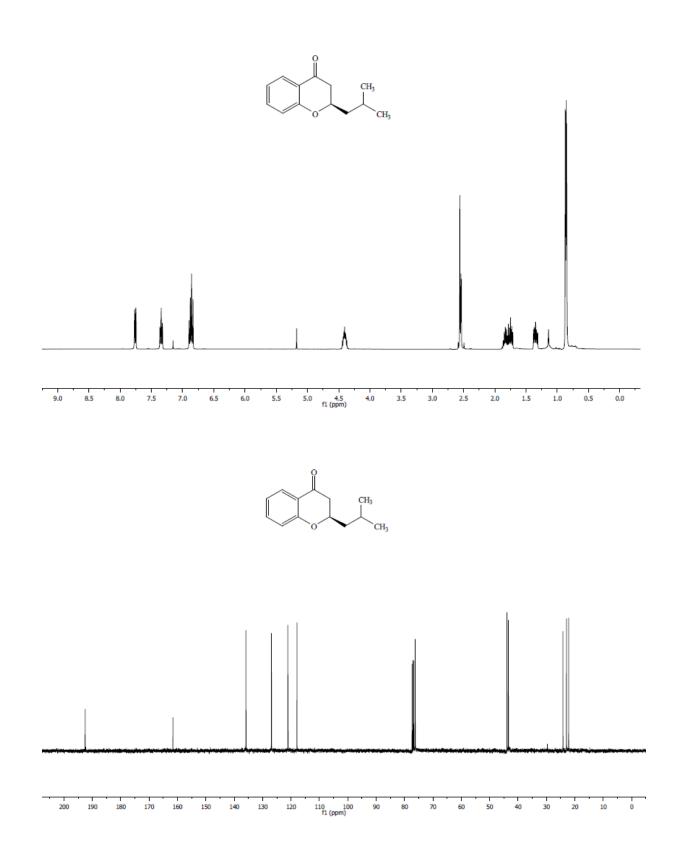
References:

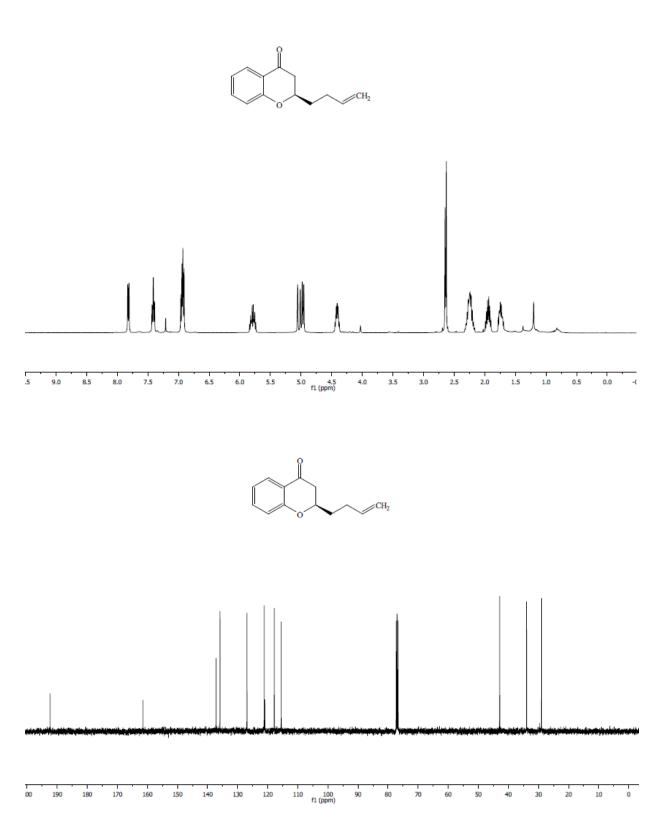

- 1-. L. Wang, X. Liu, Z. Dong, X. Fu, and X. Feng, Angew. Chem. Int. Ed. 2008, 47, 8670.
- 2-. M. M. Biddle, M. Lin and K. A.Scheidt, J. Am. Chem. Soc. 2007, 129, 3830-3831.

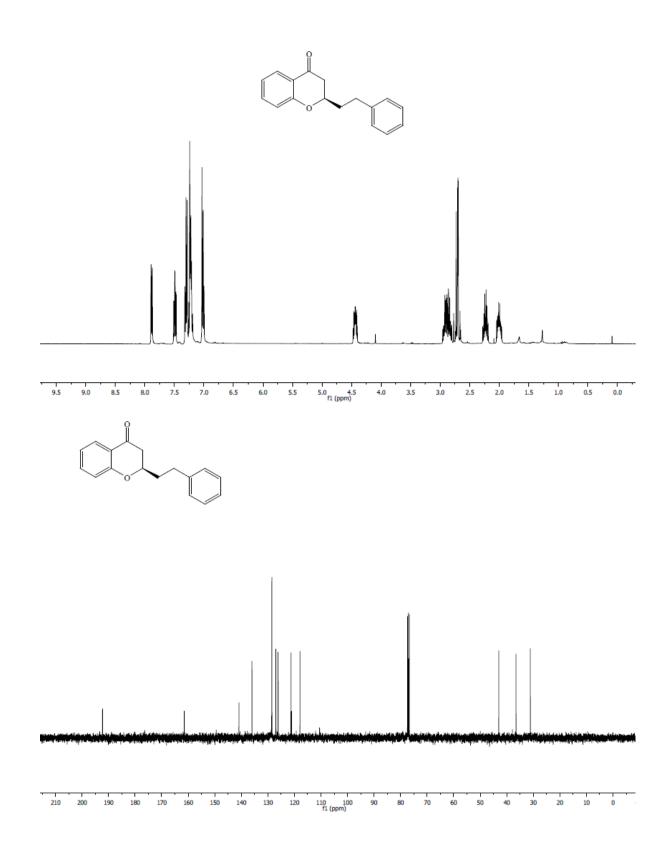
NMR Spectra of Characterized Compounds

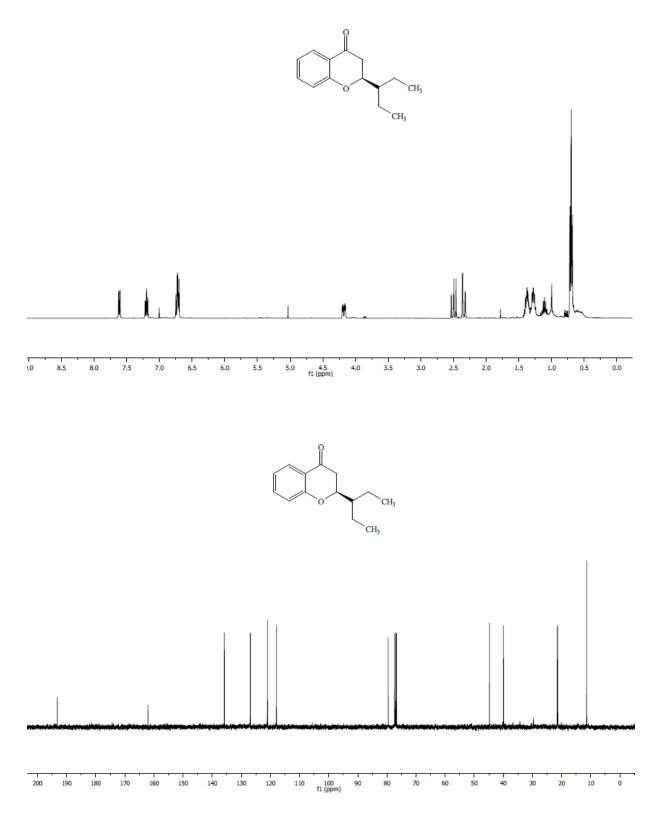

(R)-2-ethylchroman-4-one

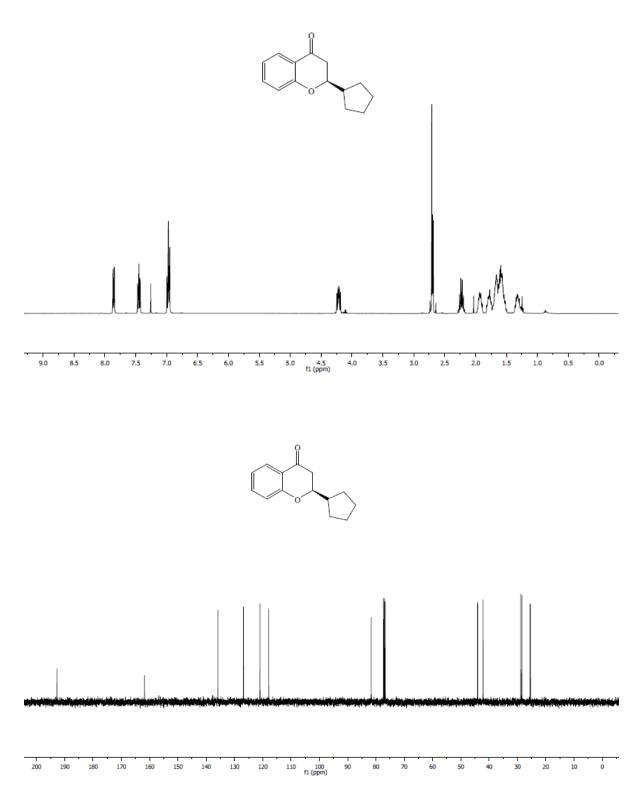

(R)-2-pentylchroman-4-one

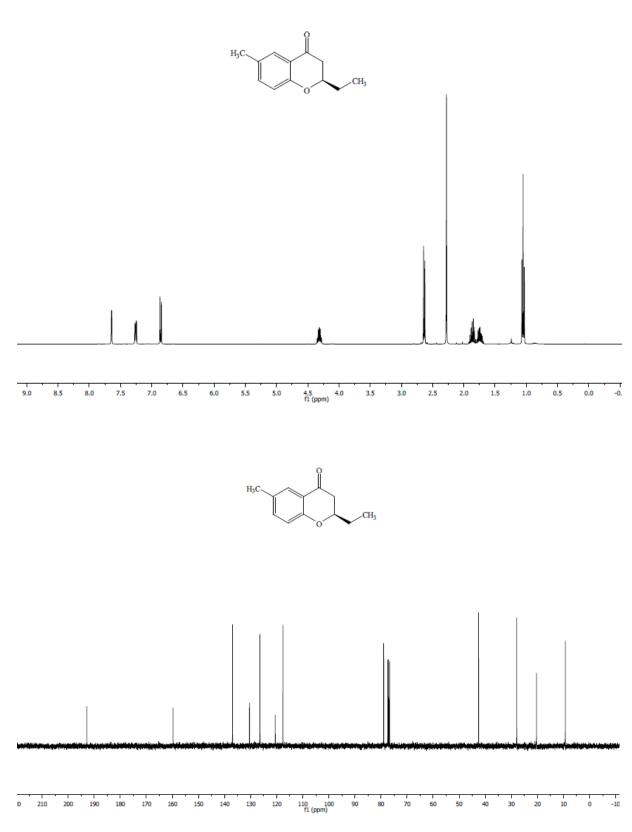

(R)-2-hexylchroman-4-one

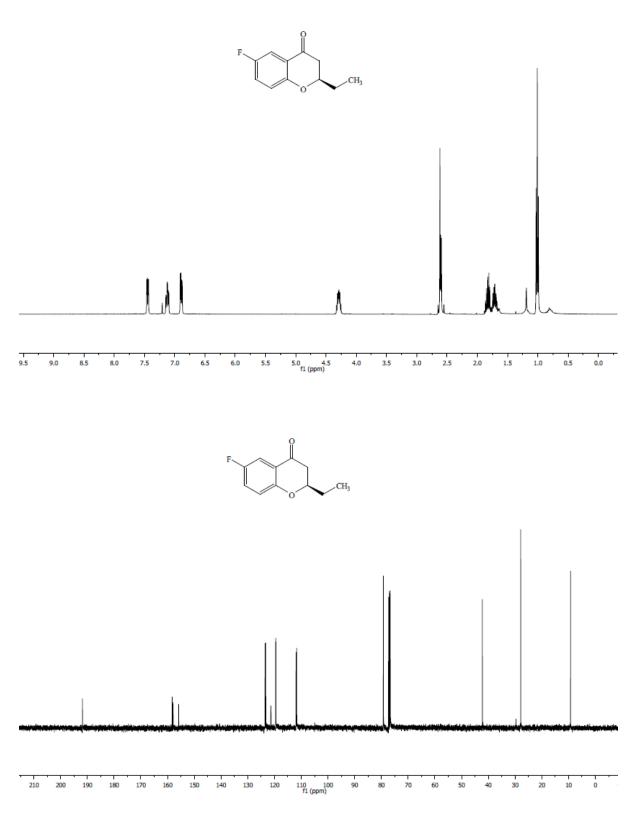

(R)-2-dodecylchroman-4-one

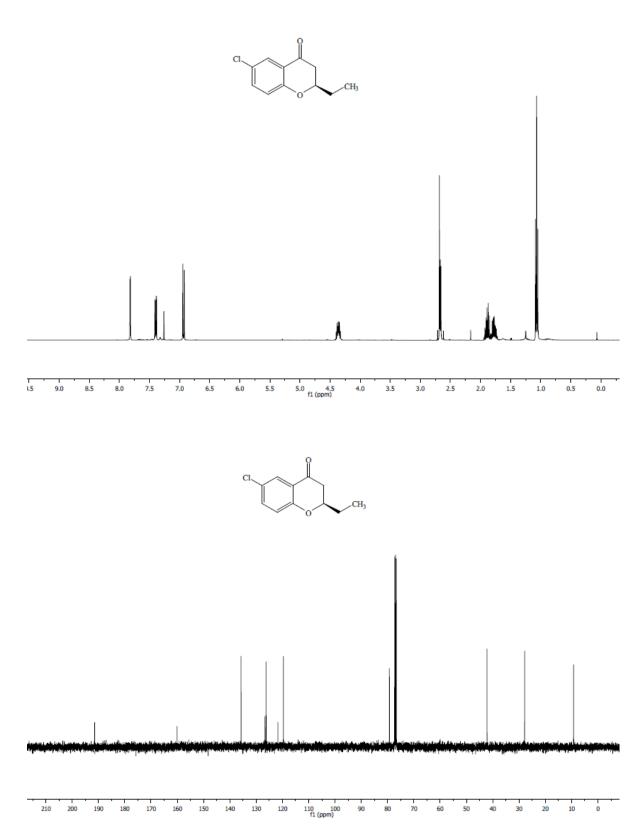

(R)-2-isobutylchroman-4-one


(R)-2-(but-3-en-1-yl)chroman-4-one

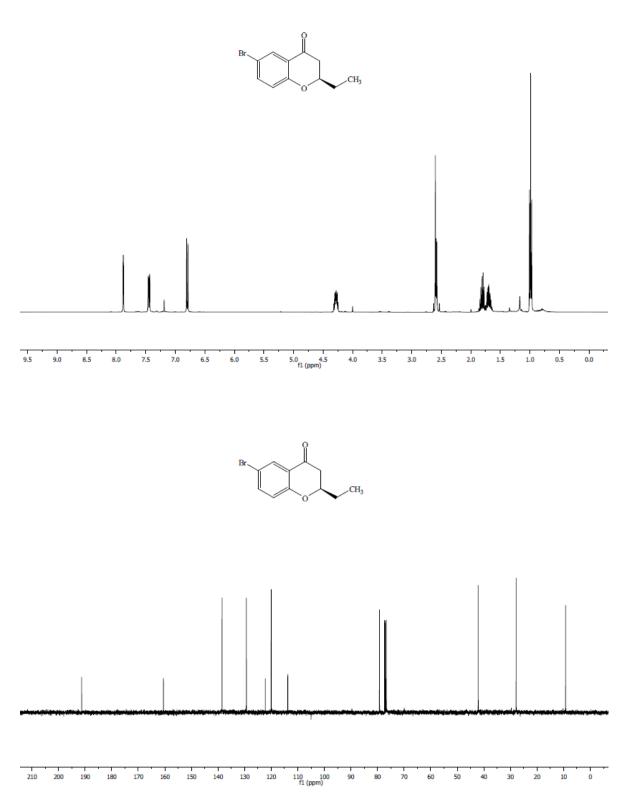

(*R*)-2-phenethylchroman-4-one


(S)-2-(pentan-3-yl)chroman-4-one


(S)-2-cyclopentylchroman-4-one


(R)-2-ethyl-6-methylchroman-4-one

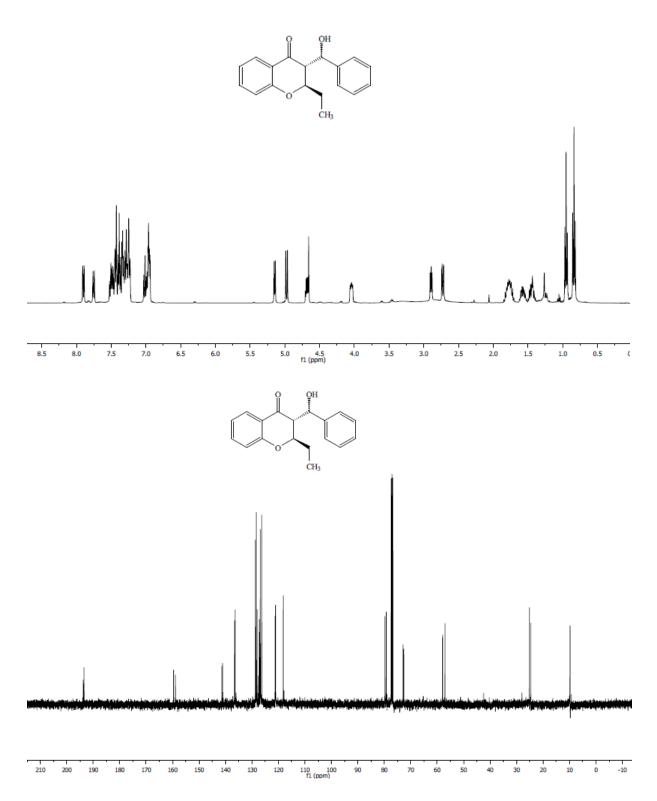
(R)-2-ethyl-6-fluorochroman-4-one



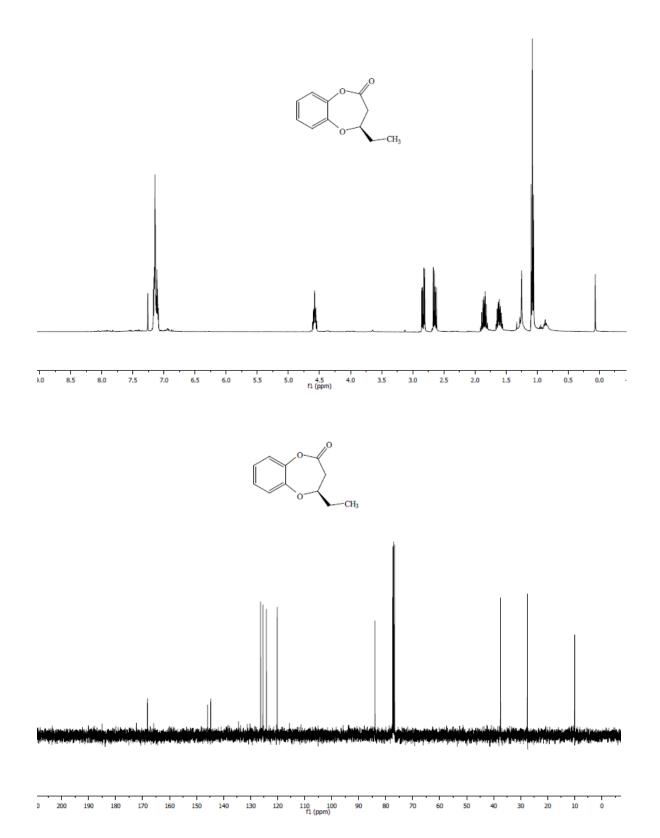
(R)-6-chloro-2-ethylchroman-4-one

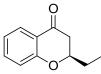

S22

(R)-6-bromo-2-ethylchroman-4-one

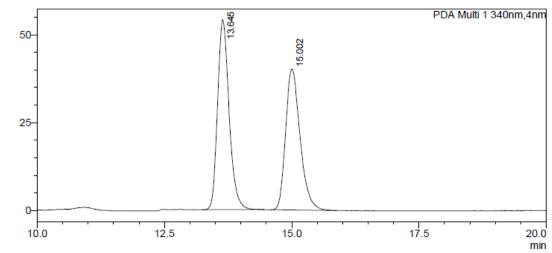


S23


(R)-2-ethyl-7-methoxychroman-4-one

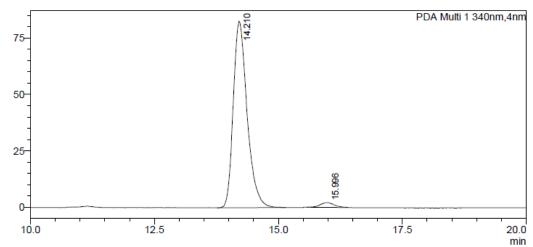

(2R,3R)-2-ethyl-3-(hydroxy(phenyl)methyl)chroman-4-one

(R)-4-ethyl-3,4-dihydro-2H-benzo[b][1,4]dioxepin-2-one



HPLC data of the compounds

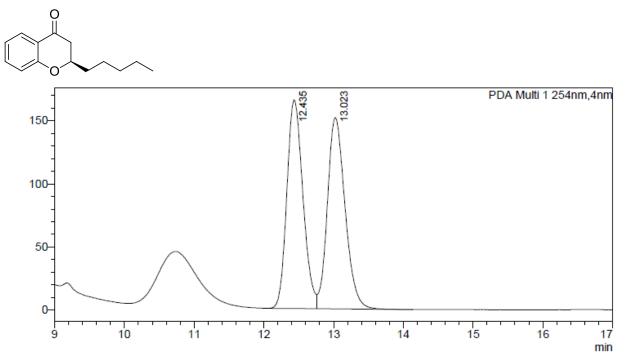
<Chromatogram>



<Peak Table>

PDA C	h1 340nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	13.645	851567	54031	0.000		51.821
2	15.002	791717	40031	0.000		48.179
Total		1643284	94062			100.000

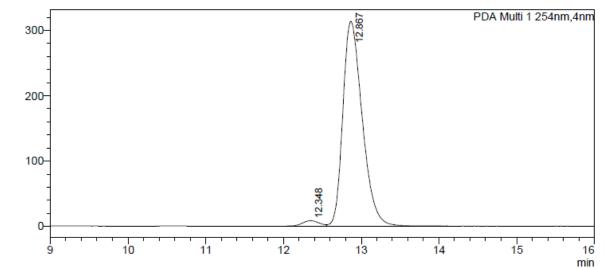
<Chromatogram>


mAU

<Peak Table>

PDA C	h1 340nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	14.210	1603072	82510	0.000		97.562
2	15.996	40052	2089	0.000		2.438
Total		1643124	84599			100.000

UV Spectrum

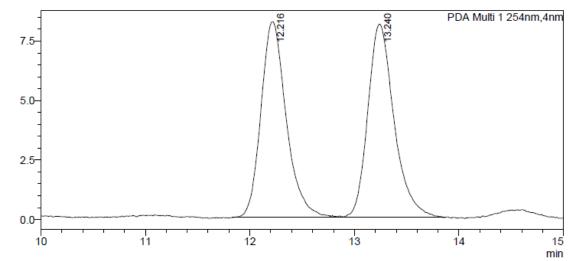


<Peak Table>

	h1 254nm					
² eak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	12.435	2653644	165283	0.000		49.840
2	13.023	2670653	151722	0.000		50.160
Total		5324297	317005			100.000

<Chromatogram>

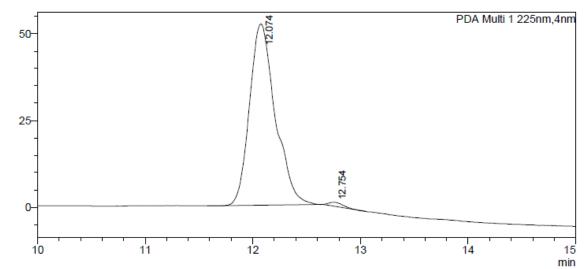
mAU



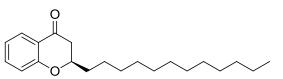
P	DA C	h1 254nm					
P	eak#	Ret. Time	Area	Height	Conc.	Unit	Area%
	1	12.348	126546	8407	0.000		2.271
	2	12.867	5446001	313573	0.000		97.729
·	Total		5572547	321980			100.000

0

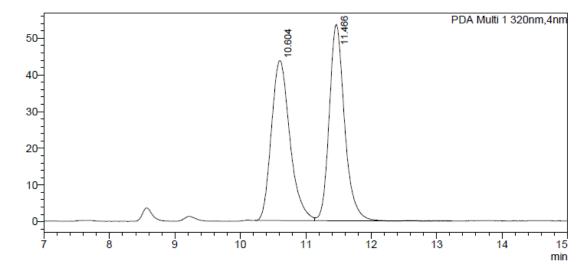
<Chromatogram>



<Peak Table>

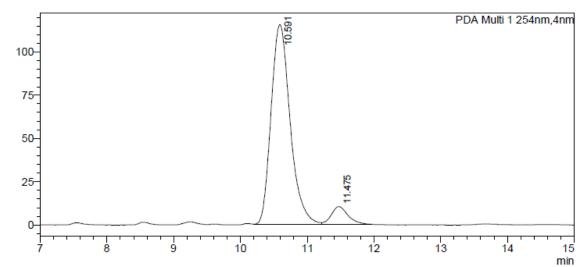

PDA C	h1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	12.216	138569	8225	0.000		49.350
2	13.240	142217	8131	0.000		50.650
Total		280786	16357			100.000

<Chromatogram>


mAU

PDA C	h1 225nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	12.074	868951	52237	0.000		98.871
2	12.754	9925	1154	0.000		1.129
Tota		878876	53391			100.000

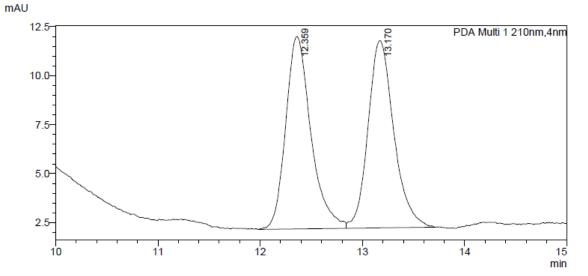
<Chromatogram> mAU



<Peak Table>

PDA C	h1 320nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	10.604	858504	43615	0.000		49.665
2	11.466	870074	53516	0.000		50.335
Total		1728578	97131			100.000

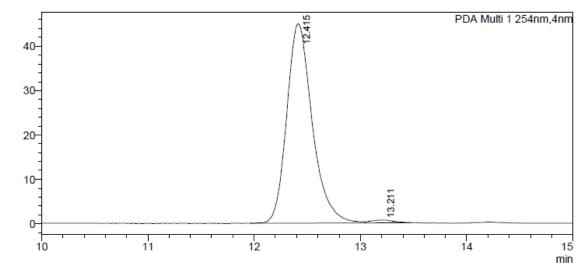
<Chromatogram>


mAU

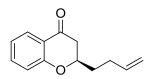
PDA C	h1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	10.591	2288582	115504	0.000		92.783
2	11.475	178020	10274	0.000		7.217
Total		2466601	125778			100.000

0

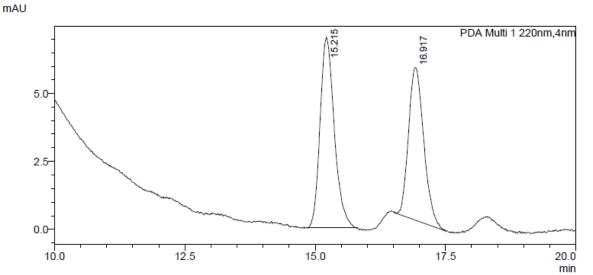
<Chromatogram>



<Peak Table>

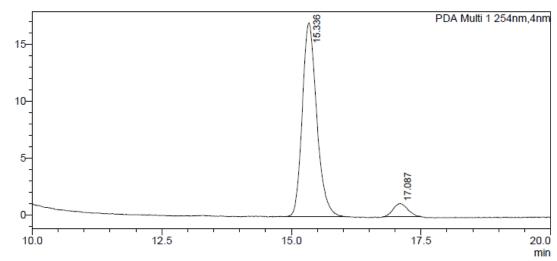

PDA C	h1 210nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	12.359	168442	9813	0.000		50.141
2	13.170	167495	9563	0.000		49.859
Total		335937	19376			100.000

<Chromatogram>

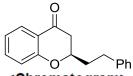

mAU

PDA	Ch1 254nm					
Peak	# Ret. Time	Area	Height	Conc.	Unit	Area%
	1 12.415	750569	44950	0.000		98.790
	2 13.211	9192	632	0.000		1.210
Tot	al	759761	45582			100.000

<Chromatogram>

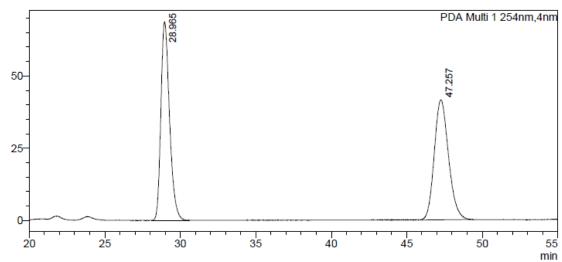


<Peak Table>


PDA C	h1 220nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	15.215	132949	6997	0.000		53.767
2	16.917	114322	5615	0.000		46.233
Total		247271	12612			100.000

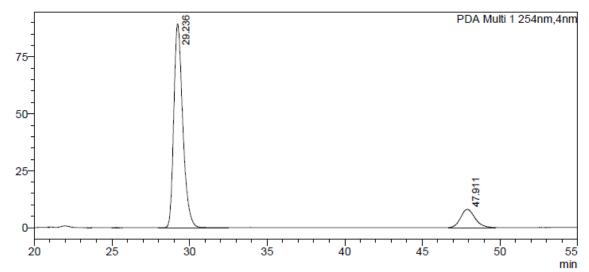
<Chromatogram>

mAU

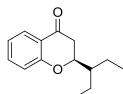


PDA C	h1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	15.336	330494	17034	0.000		93.699
2	17.087	22226	1160	0.000		6.301
Total		352720	18195			100.000

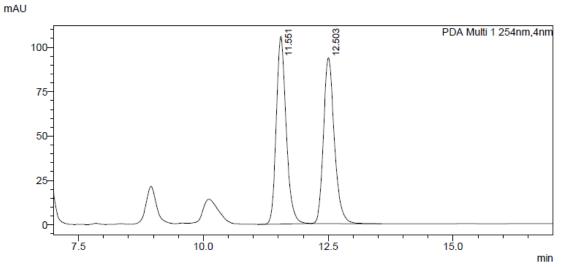
<Chromatogram>



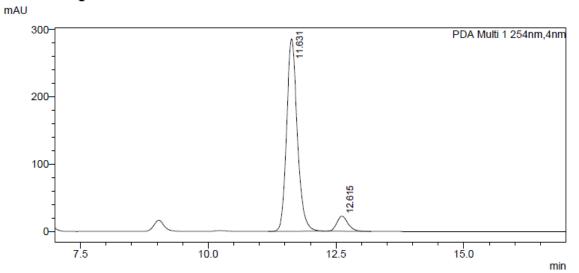
<Peak Table>

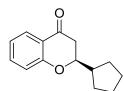

P	'DA C	h1 254nm					
Ρ	'eak#	Ret. Time	Area	Height	Conc.	Unit	Area%
	1	28.965	2731946	68724	0.000		50.055
Γ	2	47.257	2725920	41516	0.000		49.945
Γ	Total		5457866	110239			100.000

<Chromatogram>

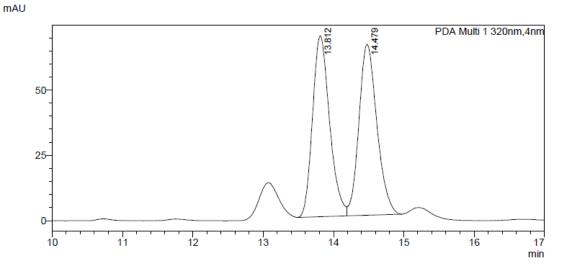

mAU

PDA C	h1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	29.236	3593665	89448	0.000		87.532
2	47.911	511873	7987	0.000		12.468
Total		4105538	97434			100.000


<Chromatogram>

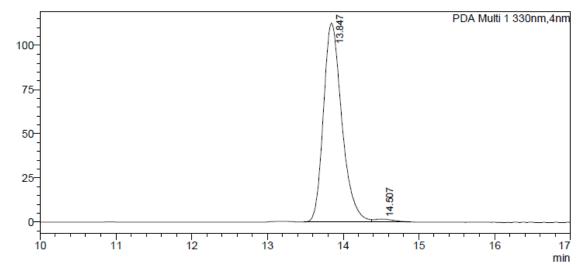

<Peak Table>

	Ch1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	11.551	1453356	105572	0.000		50.662
2	12.503	1415357	93426	0.000		49.338
Tota		2868713	198998			100.000


<Chromatogram>

PDA C	h1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	11.631	4158195	285571	0.000		92.412
2	12.615	341420	22514	0.000		7.588
Total		4499615	308085			100.000

<Chromatogram>

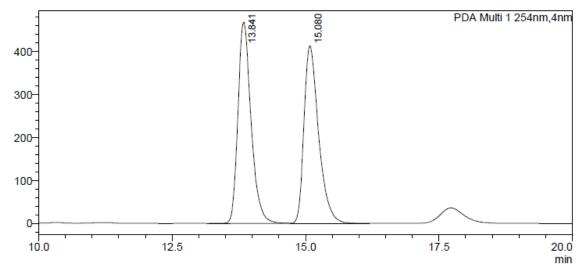


<Peak Table>

PDA C	h1 320nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	13.812	1167909	69298	0.000		50.059
2	14.479	1165158	65435	0.000		49.941
Total		2333067	134733			100.000

<Chromatogram>

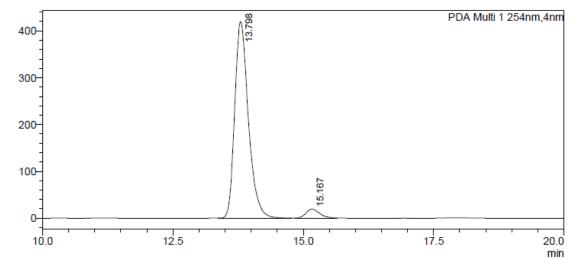
mAU



PDA C	2h1 330nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	13.847	1906764	112610	0.000		98.507
2	14.507	28892	1612	0.000		1.493
Tota		1935655	114222			100.000

Ο Me

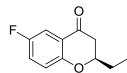
<Chromatogram>



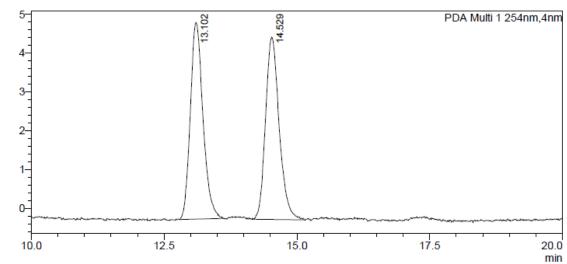
<Peak Table>

PDA C	254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	13.841	8029057	468059	0.000		50.475
2	15.080	7877882	413953	0.000		49.525
Total		15906939	882012			100.000

<Chromatogram>

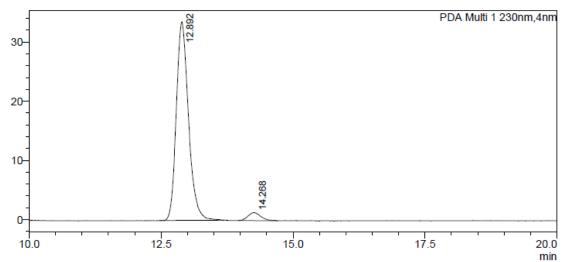

mAU

<Peak Table>


PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	13.798	7643157	419178	0.000		95.670
2	15.167	345888	19122	0.000		4.330
Total		7989045	438299			100.000

<Chromatogram>



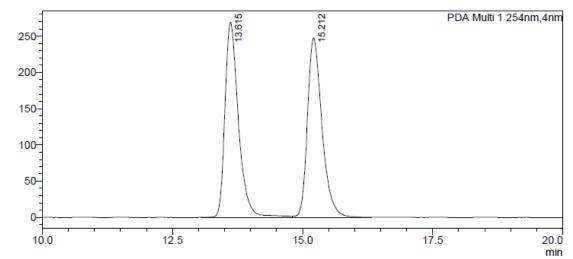
<Peak Table>

	h1 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	13.102	83865	5058	0.000		50.012
2	14.529	83823	4691	0.000		49.988
Total		167688	9749			100.000

<Chromatogram>

mAU

<Peak Table>

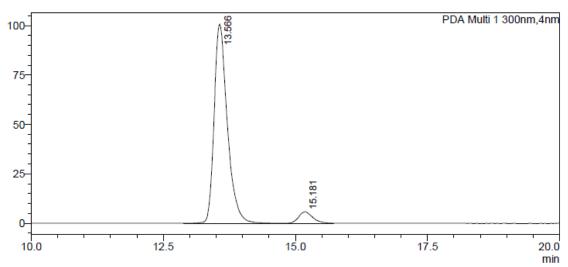

PDA Ch1 230nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	12.892	540517	33549	0.000		96.000
2	14.268	22524	1348	0.000		4.000
Total		563041	34898			100.000

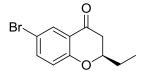
C CI

<Chromatogram>

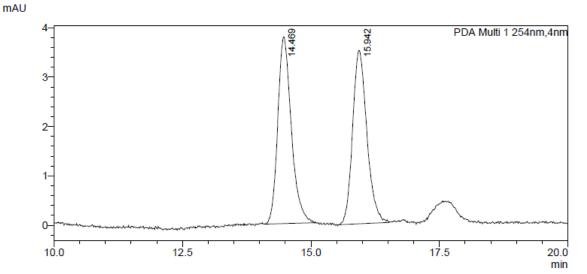
mAU



<Peak Table>

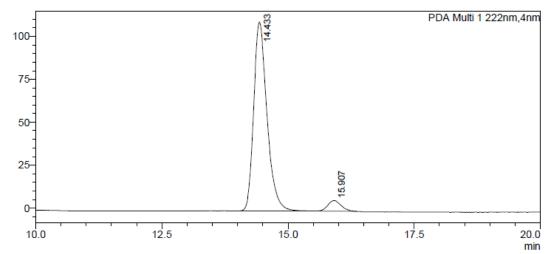

PDA C	254nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	13.615	4863011	269364	0.000		50.266
2	15.212	4811590	247518	0.000		49.734
Total		9674601	516882			100.000

<Chromatogram>

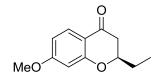

mAU

PDA Ch1 300nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%		
1	13.566	1746535	100575	0.000		94.356		
2	15.181	104464	5691	0.000		5.644		
Total		1850998	106266			100.000		

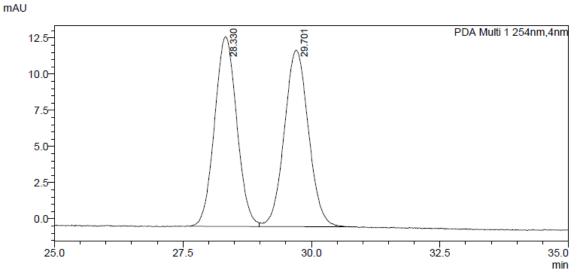
<Chromatogram>



<Peak Table>

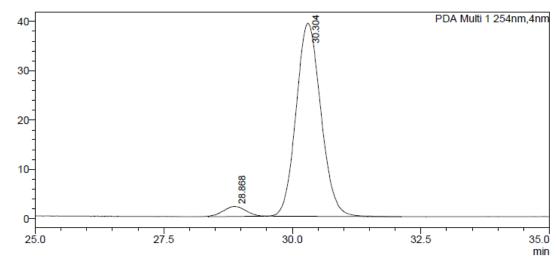

PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%		
1	14.469	69399	3780	0.000		50.619		
2	15.942	67701	3508	0.000		49.381		
Total		137100	7288			100.000		

<Chromatogram>

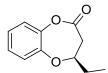

mAU

PDA Ch1 222nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%		
1	14.433	2020386	109906	0.000		94.656		
2	15.907	114059	6212	0.000		5.344		
Total		2134445	116118			100.000		

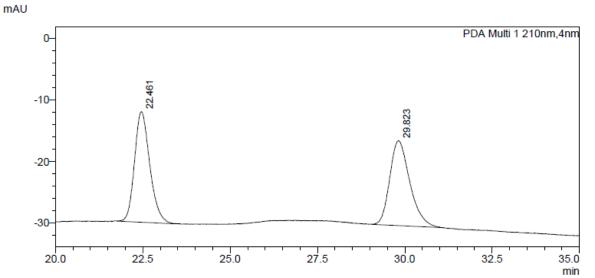
<Chromatogram>



<Peak Table>

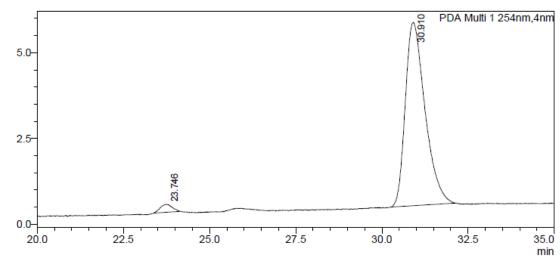

PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%		
1	28.330	394173	13103	0.000		49.733		
2	29.701	398405	12200	0.000		50.267		
Total		792578	25303			100.000		

<Chromatogram>


mAU

PDA C	/NT 2040M					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	28.868	62321	2037	0.000		4.534
2	30.304	1312316	39124	0.000		95.466
Total		1374637	41161			100.000

<Chromatogram>



<Peak Table>

PDA C	h1 210nm					
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%
1	22.461	544285	17975	0.000		49.772
2	29.823	549265	13777	0.000		50.228
Total		1093550	31753			100.000

<Chromatogram>

mAU

PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Area%		
1	23.746	5667	234	0.000		2.599		
2	30.910	212369	5338	0.000		97.401		
Total		218036	5572			100.000		