Supplementary information for

Preparation and single enantiomers of chiral at metal biscyclometallated iridium complexes

David L. Davies,* Kuldip Singh, Shalini Singh and Barbara Villa Marcos
Department of Chemistry, University of Leicester
Leicester LE1 7RH

Fig. S1:Wireframe crystal structures showing key NOEs of \wedge S-1a (left) and $\Delta \mathrm{S}$-1a (right).
Fig.S2: X-ray crystal structure of Λ S-1b. Selected bond lengths (Á) and bond angles (${ }^{\circ}$) 8
Fig.S3: X-ray crystal structure of Δ S-2a. Selected bond lengths (Á) and bond angles (${ }^{\circ}$) 9
Fig S4 CD spectra of $\Delta S-2 a(D)$ and $\Lambda S-2 a(L)$ 9
Fig S5 ${ }^{1} \mathrm{H}$ NMR spectra of racemic, $\Delta-\mathbf{4 a}$ and $\Lambda-\mathbf{4 a}$ 10
Fig S6 CD spectra of $\Delta-4 a$ and $\Lambda-4 a$ 11
Fig S7a and S7b HPLC of racemic 4a and Λ-4a 11-12
Fig S8 NMR spectra of product from reaction of $\Delta \Delta$-3a with (S)- Na (L1) showing $\Delta \mathrm{S}-1 \mathbf{1 a}$ 13 formed in very high diasteroselectivityFig S9 NMR spectra of product from reaction of $\Delta \Delta$-3a with (S)-Na(L2) showing only $\Delta \mathrm{S}-\mathbf{2 a}$13

General information and materials

All reactions were carried out under an inert atmosphere of nitrogen and under microwave irradiation unless stated otherwise. After work up all the complexes were air stable. Microwave reactions were carried out in a CEM-Discover commercial microwave reactor. ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were obtained using a DRX 400 MHz spectrometer. Chemical shifts were recorded in ppm (on δ scale with tetramethylsilane as internal reference), and coupling constants are reported in Hz . FAB mass spectra were obtained on a Kratos concept mass spectrometer using NOBA as matrix. The electrospray (ES) mass spectra were recorded using a micromass Quattra LC mass spectrometer in HPLC grade acetonitrile except methanol for 2.6d. UV - Vis absorption measurements were carried out on a Shimadzu UV - 1600 series spectrometer in dry DCM. Cyclic voltammetry measurements were performed with an Eco Chemie Autolab using a one-compartment cell under N_{2} gas, equipped with a Pt disc working electrode, a Pt gauze counter electrode and a silver wire reference electrode. The supporting electrolyte was $\mathrm{Et}_{4} \mathrm{NClO}_{4}\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in acetonitrile. Elemental analyses were performed at London Metropolitan University. All starting materials were obtained from Aldrich or Alfa Aesar.

General preparative procedure

The general procedure was as follows a mixture of the chiral ligand ($\left.\mathrm{X}^{\wedge} \mathrm{Y}=(\mathrm{S})-\mathrm{HL} 1,(\mathrm{~S})-\mathrm{HL} 2\right)$, (2.2-2.4 equiv) and an equimolar amount of NaOMe in methanol (3 ml) was warmed gently at $40^{\circ} \mathrm{C}$ for 15 mins. A solution of the appropriate dimer $\left[\operatorname{Ir}\left(\mathrm{C}^{\wedge} \mathrm{N}\right)_{2} \mathrm{Cl}\right]_{2} \mathbf{1 a , b}$ (1 equiv) in DCM (6 ml) was added and the mixture was stirred for 2-4 hrs at room temperature. After this time the solvent was removed in vacuo and the residue was dissolved in DCM (15 ml) and passed through celite. The filtrate was reduced in volume and hexane was added slowly to induce precipitation. The precipitate was isolated, washed with hexane and dried in vacuo.

Synthesis of $\Delta S / \wedge S-1 a$

This was prepared from $\left[\operatorname{Ir}(\mathrm{ppz})_{2} \mathrm{Cl}_{2} \mathbf{a}(140 \mathrm{mg}, 0.136 \mathrm{mmol}),(\mathrm{S})-\mathrm{HL}_{1}(61.3 \mathrm{mg}, 0.299 \mathrm{mmol})\right.$, and $\mathrm{NaOMe}(16.2 \mathrm{mg}, 0.299 \mathrm{mmol})$ and after work up gave $\Delta \mathrm{S} / \wedge \mathrm{S}$ 1a as a grey solid (combined yield $157 \mathrm{mg}, 85 \%$). Slow diffusion of hexane into a DCM solution of 1a afforded selectively crystals of the $\Lambda \mathrm{S}$ isomer ($63 \mathrm{mg}, 34 \%$), the $\Delta \mathrm{S}$ isomer ($40 \mathrm{mg}, 21 \%$) was obtained from the mother liquor, by recrystallisation from methanol/diethylether .Anal.Calcd for $\mathrm{C}_{30} \mathrm{H}_{28} / \mathrm{IN}_{5} \mathrm{O}_{2}$: C, 52.77, H , 4.13, $N, 10.26$. Found (\wedge S): C, $52.68, H, 4.12, N, 10.17 \%$.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \Delta \mathrm{S}: \delta 8.05,8.03\left(2 \mathrm{H}, 2 \mathrm{X} \mathrm{d}, J=2.7, \mathrm{H}_{\mathrm{e}, \mathrm{e}^{\prime}}\right), 7.63\left(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}_{\mathrm{g}^{\prime}}\right), 7.60-7.57(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{4, \mathrm{~g}}\right), 7.17-7.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2, \mathrm{~d}, \mathrm{~d}^{\prime}}\right), 6.84\left(1 \mathrm{H}, \mathrm{td}, J=7.4,1.2, \mathrm{H}_{\mathrm{c}}\right), 6.80\left(1 \mathrm{H}, \mathrm{td}, J=7.8,1.2, \mathrm{H}_{\mathrm{c}^{\prime}}\right), 6.67(1 \mathrm{H}$, $\left.\mathrm{d}, J=7.8, \mathrm{H}_{1}\right), 6.64-6.58\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b} . \mathrm{b}^{\prime}, \mathrm{f}^{\prime}}\right), 6.52\left(1 \mathrm{H}, \mathrm{t}, J=2.7, \mathrm{H}_{\mathrm{f}}\right), 6.37\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.6, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.33$ $\left(1 \mathrm{H}, \mathrm{ddd}, J=7.8,6.7,1.2, \mathrm{H}_{3}\right), 6.21\left(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.2, \mathrm{H}_{\mathrm{a}}\right), 4.18\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,3.9, \mathrm{H}_{6}\right), 3.76(1 \mathrm{H}, \mathrm{t}, J$ $\left.=8.9, \mathrm{H}_{5}\right), 3.04\left(1 \mathrm{H}\right.$, ddd, $\left.J=9.4,3.5,1.9, \mathrm{H}_{7}\right), 2.01\left(1 \mathrm{H}\right.$, septd, $\left.J=7.0,1.9, \mathrm{H}_{8}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J=7.0$, $\left.\mathrm{Me}_{\mathrm{A}}\right), 0.33\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0, \mathrm{Me}_{\mathrm{B}}\right) .{ }^{13} \mathrm{C}$ NMR: $169.82\left(\mathrm{C}_{9}\right), 161.58\left(\mathrm{C}_{11}\right), 144.06\left(\mathrm{C}_{\mathrm{h}}\right), 143.87\left(\mathrm{C}_{\mathrm{h}^{\prime}}\right), 139.13$ $\left(\mathrm{C}_{\mathrm{g}}\right), 138.26\left(\mathrm{C}_{\mathrm{g}^{\prime}}\right), 135.89\left(\mathrm{Ca}_{\mathrm{a}^{\prime}}\right), 134.84\left(\mathrm{C}_{\mathrm{i}}\right), 134.28\left(\mathrm{C}_{\mathrm{a}}\right), 132.96\left(\mathrm{C}_{2}\right), 130.23\left(\mathrm{C}_{\mathrm{i}^{\prime}}\right), 129.39\left(\mathrm{C}_{4}\right), 125.77$, $\left(C_{b}\right), 125.62\left(C_{b^{\prime}}\right), 125.23\left(C_{e, e^{\prime}}\right), 124.76\left(C_{1}\right), 121.52\left(C_{c}\right), 120.78\left(C_{c^{\prime}}\right), 112.33\left(C_{3}\right), 110.59,110.43\left(C_{d}\right.$, $\left.d^{\prime}\right), 110.25\left(\mathrm{C}_{10}\right), 107.07\left(\mathrm{C}_{f^{\prime}}\right), 106.84\left(\mathrm{C}_{f}\right), 70.74\left(\mathrm{C}_{7}\right), 66.41\left(\mathrm{C}_{5,6}\right), 28.89\left(\mathrm{C}_{8}\right), 19.21\left(\mathrm{Me}_{\mathrm{B}}\right), 14.37\left(\mathrm{Me}_{A}\right)$. $[\alpha]_{\mathrm{D}}-593^{\circ}$ in CHCl_{3}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \Lambda \mathrm{S}: \delta 8.07\left(1 \mathrm{H}, \mathrm{d}, J=2.9, \mathrm{H}_{\mathrm{e}^{\prime}}\right), 7.99\left(1 \mathrm{H}, \mathrm{d}, J=2.9, \mathrm{H}_{\mathrm{e}}\right)$, $7.80\left(1 \mathrm{H}, \mathrm{d}, J=2.1, \mathrm{H}_{\mathrm{g}^{\prime}}\right), 7.62\left(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.8, \mathrm{H}_{4}\right), 7.43(1 \mathrm{H}, \mathrm{d}, J=$ 2.3, H_{g}), $7.15-7.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}, \mathrm{~d}_{\mathrm{d}} \mathrm{d}^{\prime}\right), 6.84\left(1 \mathrm{H}, \mathrm{td}, J=7.6,1.5, \mathrm{H}_{\mathrm{c}}\right), 6.80$ $\left(1 \mathrm{H}, \mathrm{td}, J=7.6,1.5, \mathrm{H}_{\mathrm{c}^{\prime}}\right), 6.73-6.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1, \mathrm{~b}}\right), 6.63(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.3$, $\left.\mathrm{H}_{\mathrm{f}^{\prime}}\right), 6.61\left(1 \mathrm{H}, \mathrm{td}, J=7.3,1.2, \mathrm{H}_{\mathrm{b}^{\prime}}\right), 6.52\left(1 \mathrm{H}, \mathrm{t}, J=2.3, \mathrm{H}_{\mathrm{f}}\right), 6.34(1 \mathrm{H}$, ddd, $\left.J=7.8,6.7,0.8, H_{3}\right), 6.29\left(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.5, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.18(1 \mathrm{H}, \mathrm{dd}, J$
 $\left.=7.6,1.5, \mathrm{H}_{\mathrm{a}}\right), 4.29-4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}, 6\right), 3.93\left(1 \mathrm{H}, \mathrm{ddd}, J=8.8,4.4,3.2, \mathrm{H}_{7}\right), 0.53(1 \mathrm{H}$, septd,$J=7.0$, 3.1, H_{8}), $0.28\left(3 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{Me}_{\mathrm{B}}\right), 0.20\left(3 \mathrm{H}, \mathrm{d}, J=6.7, \mathrm{Me}_{\mathrm{A}}\right) .{ }^{13} \mathrm{C}$ NMR: $170.08\left(\mathrm{C}_{9}\right), 161.66\left(\mathrm{C}_{11}\right)$, $144.60\left(C_{h^{\prime}}\right), 143.89\left(C_{h}\right), 138.19\left(\mathrm{C}_{\mathrm{g}^{\prime}}\right), 137.01\left(\mathrm{C}_{\mathrm{g}}\right), 135.14\left(\mathrm{C}_{\mathrm{i}}\right), 134.25\left(\mathrm{C}_{\mathrm{a}^{\prime}}\right), 133.83\left(\mathrm{C}_{\mathrm{a}}\right), 133.16\left(\mathrm{C}_{2}\right)$, $129.95\left(C_{i^{\prime}}\right), 129.61\left(C_{4}\right), 125.78,125.75\left(C_{1, b^{\prime}}\right), 125.49\left(C_{b}\right), 125.27\left(C_{e}\right), 124.55\left(C_{e^{\prime}}\right), 121.55\left(C_{c}\right)$, $120.91\left(\mathrm{C}_{\mathrm{c}^{\prime}}\right), 112.42\left(\mathrm{C}_{3}\right), 110.54\left(\mathrm{C}_{\mathrm{d}}\right), 110.36\left(\mathrm{C}_{10}\right), 110.21\left(\mathrm{C}_{\mathrm{d}^{\prime}}\right), 107.04\left(\mathrm{C}_{\mathrm{f}^{\prime}}\right), 106.73\left(\mathrm{C}_{\mathrm{f}}\right), 71.75\left(\mathrm{C}_{7}\right)$, $66.51\left(\mathrm{C}_{5,6}\right), 28.42\left(\mathrm{C}_{8}\right), 18.58\left(\mathrm{Me}_{\mathrm{B}}\right), 12.87\left(\mathrm{Me}_{\mathrm{A}}\right) .[\alpha]_{\mathrm{D}}+582^{\circ}$ in $\mathrm{CHCl}_{3} . \mathrm{MS}(\mathrm{FAB}): m / z 683[\mathrm{M}]^{+}$.

Synthesis of $\Delta S / \Lambda S-1 b$

This was prepared from $\left[\mathrm{Ir}(\mathrm{ppy})_{2} \mathrm{Cl}\right]_{2} \mathbf{b}(70 \mathrm{mg}, 0.065 \mathrm{mmol}),(\mathrm{S})-\mathrm{HL}_{1}(29.3 \mathrm{mg}, 0.143 \mathrm{mmol})$, and $\mathrm{NaOMe}(7.7 \mathrm{mg}, 0.143 \mathrm{mmol}$) and after work up gave $\Delta \mathrm{S} / \Lambda \mathrm{S}-1 \mathrm{~b}$ as a yellow solid (combined yield $68 \mathrm{mg}, 75 \%)$. Both isomers crystallised out together in DCM/hexane or DCM/diethylether solvent mixtures but they could be separated by hand picking due to significant variation in colour and shape of the crystals. Anal.Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{IrN} \mathrm{N}_{3} \mathrm{O}_{2} . \mathrm{NaCl}: \mathrm{C}$, $53.50, H, 3.96, N, 5.51$. Found (ΛS): C, $54.69, H, 3.35, N, 5.40 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \Delta \mathrm{S}: \delta 8.87\left(1 \mathrm{H}, \mathrm{ddd}, J=5.4,1.6,0.8, \mathrm{H}_{\mathrm{h}^{\prime}}\right), 8.59(1 \mathrm{H}$,
 ddd, $\left.J=5.8,1.6,0.8, \mathrm{H}_{\mathrm{h}}\right), 7.85-7.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{e}, \mathrm{e}^{\prime}}\right), 7.72(1 \mathrm{H}, \mathrm{td}, J=$ $\left.7.4,1.6, \mathrm{H}_{\mathrm{f}^{\prime}}\right), 7.65\left(1 \mathrm{H}, \mathrm{td}, J=7.4,1.6, \mathrm{H}_{\mathrm{f}}\right), 7.58-7.53\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4, \mathrm{~d}}, \mathrm{~d}^{\prime}\right), 7.13-7.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2, \mathrm{~g}^{\prime}}\right), 6.92$
$\left(1 \mathrm{H}, \mathrm{ddd}, J=7.4,5.8,1.6, \mathrm{H}_{\mathrm{g}}\right), 6.82\left(1 \mathrm{H}, \mathrm{td}, J=7.8,1.2, \mathrm{H}_{\mathrm{c}}\right), 6.79\left(1 \mathrm{H}, \mathrm{td}, J=7.8,1.2, \mathrm{H}_{\mathrm{c}^{\prime}}\right), 6.70(1 \mathrm{H}, \mathrm{td}$, $\left.J=7.4,1.2, H_{b}\right), 6.66-6.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1, \mathrm{~b}^{\prime}}\right), 6.40\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.34(1 \mathrm{H}, \mathrm{ddd}, J=7.8,6.7$, $\left.1.2, \mathrm{H}_{3}\right), 6.19\left(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.2, \mathrm{H}_{\mathrm{a}}\right), 4.18\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,3.5, \mathrm{H}_{6}\right), 3.65\left(1 \mathrm{H}, \mathrm{t}, J=8.9, \mathrm{H}_{5}\right), 3.08(1 \mathrm{H}$, ddd, $\left.J=9.7,3.9,1.9, \mathrm{H}_{7}\right), 1.79\left(1 \mathrm{H}\right.$, septd, $\left.J=7.0,1.9, \mathrm{H}_{8}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J=6.6, \mathrm{Me}_{\mathrm{A}}\right), 0.20(3 \mathrm{H}, \mathrm{d}, J=$ 7.0, Me_{B}). ${ }^{13} \mathrm{C}$ NMR: $169.30\left(\mathrm{C}_{\mathrm{k}}\right), 169.06\left(\mathrm{C}_{9}\right), 168.23\left(\mathrm{C}_{\mathrm{k}^{\prime}}\right), 161.55\left(\mathrm{C}_{11}\right), 152.54\left(\mathrm{C}_{\mathrm{i}}\right), 155.33\left(\mathrm{C}_{\mathrm{i}^{\prime}}\right), 150.12$ $\left(C_{h}\right), 149.17\left(C_{h^{\prime}}\right), 144.64\left(C_{j}\right), 144.05\left(C_{j^{\prime}}\right), 136.63\left(C_{f^{\prime}}\right), 136.36\left(C_{f}\right), 134.20\left(C_{a^{\prime}}\right), 132.89\left(C_{2}\right), 132.21$ $\left(C_{a}\right), 129.48\left(C_{b}\right), 129.07\left(C_{4}\right), 128.99\left(C_{b^{\prime}}\right), 125.18\left(C_{1}\right), 123.91,123.80\left(C_{d, d^{\prime}}\right), 121.83\left(C_{g^{\prime}}\right), 121.04\left(C_{g}\right)$, $120.91\left(\mathrm{C}_{\mathrm{c}}\right), 120.14\left(\mathrm{C}_{\mathrm{c}^{\prime}}\right), 118.54,117.88\left(\mathrm{C}_{\mathrm{e}, \mathrm{e}^{\prime}}\right), 112.30\left(\mathrm{C}_{3}\right), 110.51\left(\mathrm{C}_{10}\right), 69.82\left(\mathrm{C}_{7}\right), 66.86\left(\mathrm{C}_{5,6}\right), 28.85$ $\left(\mathrm{C}_{8}\right), 19.65\left(\mathrm{Me}_{\mathrm{A}}\right), 14.50\left(\mathrm{Me}_{\mathrm{B}}\right) .[\alpha]_{\mathrm{D}}-532^{\circ}($ for $\Delta \mathrm{S}: \wedge \mathrm{S} 15: 1)$ in DCM.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \Lambda \mathrm{S}: \delta 9.02\left(1 \mathrm{H}, \mathrm{ddd}, J=5.8,1.6,0.8, \mathrm{H}_{\mathrm{h}^{\prime}}\right), 8.41$ $\left(1 \mathrm{H}, \mathrm{d}, J=5.8, \mathrm{H}_{\mathrm{h}}\right), 7.87\left(1 \mathrm{H}, \mathrm{d}, J=8.2, \mathrm{H}_{\mathrm{e}^{\prime}}\right), 7.80(1 \mathrm{H}, \mathrm{d}, J=8.2$, $\left.\mathrm{H}_{\mathrm{e}}\right), 7.72\left(1 \mathrm{H}, \mathrm{td}, J=8.2,1.6, \mathrm{H}_{\mathrm{f}^{\prime}}\right), 7.65\left(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.9, \mathrm{H}_{4}\right)$, $7.63\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.2,1.6, \mathrm{H}_{\mathrm{f}}\right), 7.54\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.2, \mathrm{H}_{\mathrm{d}}\right), 7.51$ $\left(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.6, \mathrm{H}_{\mathrm{d}^{\prime}}\right), 7.14-7.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2, \mathrm{~g}^{\prime}}\right), 7.03(1 \mathrm{H}$, ddd, $\left.J=7.4,5.9,1.6, H_{g}\right), 6.83\left(1 \mathrm{H}, \mathrm{td}, J=7.4,1.2, \mathrm{H}_{\mathrm{c}}\right), 6.79(1 \mathrm{H}$, td, $\left.J=7.8,0.8, \mathrm{H}_{\mathrm{c}^{\prime}}\right), 6.75\left(1 \mathrm{H}, \mathrm{td}, J=7.4,1.6, \mathrm{H}_{\mathrm{b}}\right), 6.69(1 \mathrm{H}, \mathrm{dd}, J$
 $\left.=8.6,1.2, \mathrm{H}_{1}\right), 6.66\left(1 \mathrm{H}, \mathrm{td}, J=7.4,1.2, \mathrm{H}_{\mathrm{b}^{\prime}}\right), 6.37(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.7.4,1.2, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.34\left(1 \mathrm{H}, \mathrm{ddd}, J=7.8,6.7,1.2, \mathrm{H}_{3}\right), 6.08\left(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.2, \mathrm{H}_{\mathrm{a}}\right), 4.27-4.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right.$, $\left.{ }_{6}\right), 3.95\left(1 \mathrm{H}\right.$, ddd $\left., J=8.2,4.7,3.1, \mathrm{H}_{7}\right), 0.73\left(1 \mathrm{H}\right.$, septd, $\left.J=7.0,3.1, \mathrm{H}_{8}\right), 0.24\left(3 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{Me}_{\mathrm{B}}\right), 0.06$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0, \mathrm{Me}_{\mathrm{A}}\right) .{ }^{13} \mathrm{C}$ NMR: $169.28\left(\mathrm{C}_{\mathrm{k}}\right), 169.19\left(\mathrm{C}_{9}\right), 168.62\left(\mathrm{C}_{\mathrm{k}^{\prime}}\right), 161.67\left(\mathrm{C}_{11}\right), 153.39\left(\mathrm{C}_{\mathrm{i}}\right), 148.86$ $\left(C_{h^{\prime}}\right), 148.72\left(C_{i^{\prime}}\right), 147.73\left(C_{h}\right), 145.11\left(C_{j^{\prime}}\right), 144.48\left(C_{j}\right), 136.63\left(C_{f^{\prime}}\right), 136.56\left(C_{f}\right), 133.31\left(C_{2}\right), 132.45$ $\left(\mathrm{C}_{\mathrm{a}^{\prime}}\right), 131.35\left(\mathrm{C}_{\mathrm{a}}\right), 129.78\left(\mathrm{C}_{4}\right), 129.37\left(\mathrm{C}_{\mathrm{b}, \mathrm{b}^{\prime}}\right), 124.79\left(\mathrm{C}_{1}\right), 123.84,123.77\left(\mathrm{C}_{\mathrm{d}, \mathrm{d}^{\prime}}\right), 121.68\left(\mathrm{C}_{\mathrm{g}}\right), 121.63$ $\left(\mathrm{C}_{\mathrm{g}^{\prime}}\right), 121.19\left(\mathrm{C}_{\mathrm{c}}\right), 120.28\left(\mathrm{C}_{\mathrm{c}^{\prime}}\right), 119.03\left(\mathrm{C}_{\mathrm{e}}\right), 118.18\left(\mathrm{C}_{\mathrm{e}^{\prime}}\right), 112.68\left(\mathrm{C}_{3}\right), 109.98\left(\mathrm{C}_{10}\right), 72.04\left(\mathrm{C}_{7}\right), 66.77\left(\mathrm{C}_{5}\right.$, $\left.{ }_{6}\right), 28.82\left(\mathrm{C}_{8}\right), 18.58\left(\mathrm{Me}_{\mathrm{B}}\right), 12.75\left(\mathrm{Me}_{\mathrm{A}}\right) \cdot[\alpha]_{\mathrm{D}}+570^{\circ}$ in DCM. MS (FAB): $m / z 706[\mathrm{M}+\mathrm{H}]^{+}$.

Crystal data for Λ - $\mathbf{1 b}: \mathrm{C}_{34} \mathrm{H}_{30} \mathrm{IrN}_{3} \mathrm{O}_{2} \cdot \mathrm{CHCl}_{3}, M=824.18$, orthorhombic, $a=9.355(5) \AA, b=14.083(8) \AA$, $c=24.255(13) \AA, \alpha=90.00^{\circ}, b=90.00^{\circ}, v=90.00^{\circ}, V=3196(3) \AA^{3}, T=150(2) \mathrm{K}$, space group P2(1)2(1)2(1), $Z=4,26714$ reflections measured, 6950 independent reflections ($R_{\text {int }}=0.0665$). The final R_{1} values were $0.0348(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.0676(I>2 \sigma(I))$. The final R_{1} values were 0.0390 (all data). The final $w R\left(F^{2}\right)$ values were 0.0688 (all data). Flack parameter $=-$ 0.003(7).

Synthesis of $\Delta S / \wedge S$-2a

This was prepared from $\left[\operatorname{Ir}(\mathrm{ppz})_{2} \mathrm{Cl}_{2}\right.$ a $(70 \mathrm{mg}, 0.068 \mathrm{mmol}),(\mathrm{S})-\mathrm{HL}_{2}(36.8 \mathrm{mg}, 0.164 \mathrm{mmol})$, and $\mathrm{NaOMe}(8.8 \mathrm{mg}, 0.164 \mathrm{mmol})$ and after work up gave $\Delta \mathrm{S} / \Lambda \mathrm{S}-2 \mathrm{a}$ as a yellow solid (combined yield $71 \mathrm{mg}, 75 \%)$. Δ Sisomer was selectively crystallised from methanol, hence, the two isomers were separated via fractional crystallisation from methanol until a ratio of 1:10 was attained for $\Delta \mathrm{S}: \Lambda \mathrm{S}$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{Ir} \mathrm{N}_{5} \mathrm{O}: \mathrm{C}, 56.39, \mathrm{H}, 4.02, \mathrm{~N}, 9.96$. Found ($\Delta \mathrm{S}$): C, 56.28, H, 3.98, N, 9.87%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \Delta \mathrm{S}: \delta 8.06\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{5}\right), 8.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1, \mathrm{H}_{\mathrm{e}}\right), 7.66(1 \mathrm{H}$, $\left.\mathrm{d}, J=3.5, \mathrm{H}_{\mathrm{e}^{\prime}}\right), 7.65\left(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}_{\mathrm{g}^{\prime}}\right), 7.52\left(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}_{\mathrm{g}}\right), 7.19$ $\left(1 \mathrm{H}, \mathrm{ddd}, J=8.6,6.7,1.6, \mathrm{H}_{2}\right), 7.12\left(1 \mathrm{H}, \mathrm{d}, J=7.4, \mathrm{H}_{\mathrm{d}}\right), 7.05(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.7.8,1.6, \mathrm{H}_{4}\right), 7.01-6.92\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{9}, 9^{\prime}, 10\right), 6.82\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.4,0.8, \mathrm{H}_{\mathrm{c}}\right)$, $6.77\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2, \mathrm{H}_{\mathrm{d}^{\prime}}\right), 6.73-6.66\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1, \mathrm{~b}, \mathrm{c}^{\prime}}\right), 6.61(1 \mathrm{H}, \mathrm{td}$, $\left.J=7.8,1.6, \mathrm{H}_{\mathrm{b}^{\prime}}\right), 6.53\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.7, \mathrm{H}_{\mathrm{f}}\right), 6.49\left(1 \mathrm{H}, \mathrm{t}, J=2.7, \mathrm{H}_{\mathrm{f}^{\prime}}\right), 6.39-$ $6.34\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3,8}, 8^{\prime}\right), 6.27\left(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.2, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$
 $\left.7.4,1.2, \mathrm{H}_{\mathrm{a}}\right), 4.94\left(1 \mathrm{H}, \mathrm{q}, J=7.0, \mathrm{H}_{6}\right), 1.51(3 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR: $166.41\left(\mathrm{C}_{11}\right), 161.08\left(\mathrm{C}_{5}\right)$, $144.24\left(C_{h^{\prime}}\right), 143.88\left(C_{h}\right), 141.99\left(C_{7}\right), 137.87\left(C_{g^{\prime}}\right), 137.81\left(C_{g}\right), 135.21\left(C_{4}\right), 134.63\left(C_{i}\right), 134.39\left(C_{a^{\prime}}\right)$, $134.17\left(\mathrm{C}_{\mathrm{a}}\right), 133.70\left(\mathrm{C}_{2}\right), 131.10\left(\mathrm{C}_{\mathrm{i}^{\prime}}\right), 127.92\left(\mathrm{C}_{9}, 9^{\prime}\right), 126.19\left(\mathrm{C}_{10}\right), 125.96\left(\mathrm{C}_{8,8}\right), 125.85\left(\mathrm{C}_{\mathrm{e}}\right), 125.63$ $\left(C_{b}\right), 125.43\left(C_{b^{\prime}}\right), 125.23\left(\mathrm{C}_{e^{\prime}}\right), 123.71\left(\mathrm{C}_{1}\right), 121.68\left(\mathrm{C}_{\mathrm{c}}\right), 121.42\left(\mathrm{C}_{12}\right), 120.75\left(\mathrm{C}_{\mathrm{c}^{\prime}}\right), 112.89\left(\mathrm{C}_{3}\right), 110.54$ $\left(\mathrm{C}_{\mathrm{d}}\right), 110.47\left(\mathrm{C}_{\mathrm{d}^{\prime}}\right), 106.87\left(\mathrm{C}_{\mathrm{f}}\right), 106.71\left(\mathrm{C}_{\mathrm{f}^{\prime}}\right), 66.97\left(\mathrm{C}_{6}\right), 22.81(\mathrm{Me}) .[\alpha]_{\mathrm{D}}-631^{\circ}$ in CHCl_{3}.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \Lambda \mathrm{S}: \delta 8.11\left(1 \mathrm{H}, \mathrm{d}, J=2.7, \mathrm{H}_{\mathrm{e}^{\prime}}\right), 7.97\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7, \mathrm{H}_{\mathrm{e}}\right)$, $7.96\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{5}\right), 7.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.3, \mathrm{H}_{\mathrm{g}^{\prime}}\right), 7.36-7.22\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{8,8} 8^{\prime}, 9,9^{\prime}\right.$, $\left.{ }_{10}\right), 7.20\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,0.8, \mathrm{H}_{\mathrm{d}^{\prime}}\right), 7.18\left(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}_{\mathrm{g}}\right), 7.14-7.10$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}, \mathrm{~d}\right), 6.89\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.9, \mathrm{H}_{4}\right), 6.87-6.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{c}, \mathrm{c}^{\prime}}\right)$, $6.72-6.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}, \mathrm{b}^{\prime}}\right), 6.67\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.3, \mathrm{H}_{\mathrm{f}^{\prime}}\right), 6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$, $\left.\mathrm{H}_{1}\right), 6.42\left(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.6, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.38\left(1 \mathrm{H}, \mathrm{t}, J=2.3, \mathrm{H}_{\mathrm{f}}\right), 6.30(1 \mathrm{H}$, ddd, $\left.J=7.8,6.7,1.2, H_{3}\right), 6.22\left(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.6, \mathrm{H}_{\mathrm{a}}\right), 4.80(1 \mathrm{H}, \mathrm{q}, J=$

 7.0, H_{6}), $0.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR: $166.69\left(\mathrm{C}_{11}\right), 162.25\left(\mathrm{C}_{5}\right), 144.31\left(\mathrm{C}_{h^{\prime}}\right), 143.93\left(\mathrm{C}_{\mathrm{h}}\right), 142.04$ $\left(\mathrm{C}_{7}\right), 138.78\left(\mathrm{C}_{\mathrm{g}}\right), 138.27\left(\mathrm{C}_{\mathrm{g}^{\prime}}\right), 135.21\left(\mathrm{C}_{\mathrm{a}^{\prime}}\right), 134.88\left(\mathrm{C}_{4}\right), 134.27\left(\mathrm{C}_{\mathrm{i}}\right), 134.17\left(\mathrm{C}_{\mathrm{a}}\right), 133.58\left(\mathrm{C}_{2}\right), 132.03$ $\left(\mathrm{C}_{\mathrm{i}^{\prime}}\right), 128.60\left(\mathrm{C}_{9,9^{\prime}}\right), 127.97\left(\mathrm{C}_{8,8^{\prime}}\right), 127.56\left(\mathrm{C}_{10}\right), 125.93\left(\mathrm{C}_{\mathrm{e}}\right), 125.61\left(\mathrm{C}_{\mathrm{b}, \mathrm{b}^{\prime}}\right), 125.45\left(\mathrm{C}_{\mathrm{e}^{\prime}}\right), 123.66\left(\mathrm{C}_{1}\right)$, $121.97\left(\mathrm{C}_{12}\right), 121.72\left(\mathrm{C}_{\mathrm{c}}\right), 121.06\left(\mathrm{C}_{\mathrm{c}^{\prime}}\right), 112.76\left(\mathrm{C}_{3}\right), 110.66\left(\mathrm{C}_{\mathrm{d}^{\prime}}\right), 110.47\left(\mathrm{C}_{\mathrm{d}}\right), 107.16\left(\mathrm{C}_{\mathrm{f}^{\prime}}\right), 106.61\left(\mathrm{C}_{\mathrm{f}}\right)$, $64.93\left(\mathrm{C}_{6}\right), 20.33(\mathrm{Me}) .[\alpha]_{\mathrm{D}}+480^{\circ}$ (for $\left.\Delta \mathrm{S}: \wedge \mathrm{S} 1: 10\right)$ in $\mathrm{CHCl}_{3} . \mathrm{MS}(\mathrm{FAB}): m / z 703[\mathrm{M}]^{+}$.

Crystal data for Δ-2a: $\mathrm{C}_{33} \mathrm{H}_{28} \operatorname{IrN} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{OH}, M=734.85$, orthorhombic, $a=8.794(4) \mathrm{A}, b=11.361(5) \AA$, $c=29.429(12) \AA, \alpha=90.00^{\circ}, B=90.00^{\circ}, V=90.00^{\circ}, V=2940(2) \AA^{3}, T=150(2) \mathrm{K}$, space group P2(1)2(1)2(1), $Z=4,23226$ reflections measured, 5780 independent reflections ($R_{\text {int }}=0.1160$). The
final R_{1} values were $0.0457(I>2 \sigma(/))$. The final $w R\left(F^{2}\right)$ values were $0.0660(1>2 \sigma(/))$. The final R_{1} values were 0.0602 (all data). The final $w R\left(F^{2}\right)$ values were 0.0696 (all data). Flack parameter $=0.005(10)$.

Synthesis of $\Delta \mathrm{S} / \Lambda \mathrm{S}-\mathbf{2 b}$

This was prepared from $\left[\mathrm{Ir}(\mathrm{ppy})_{2} \mathrm{Cl}\right]_{2} \mathbf{b}(70 \mathrm{mg}, 0.065 \mathrm{mmol}),(\mathrm{S})-\mathrm{HL}_{2}(35.1 \mathrm{mg}, 0.156 \mathrm{mmol})$, and $\mathrm{NaOMe}(8.4 \mathrm{mg}, 0.156 \mathrm{mmol})$ and after work up gave $\Delta \mathrm{S} / \Lambda \mathrm{S}$-2bas a yellow solid (combined yield $74 \mathrm{mg}, 79 \%)$. Both isomers crystallised out together in methanol but they could be separated by hand picking due to significant variation in colour and shape of the crystals. Anal.Calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{Ir} \mathrm{N}_{3} \mathrm{O}: \mathrm{C}, 61.27, \mathrm{H}, 4.17, \mathrm{~N}, 5.80$. Found ($\Lambda \mathrm{S}$): C, 61.37, H, 4.23, N, 5.83\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \Delta \mathrm{S}: \delta 8.90\left(1 \mathrm{H}, \mathrm{dt}, J=5.5,1.2, \mathrm{H}_{\mathrm{h}^{\prime}}\right), 8.53(1 \mathrm{H}, \mathrm{d}, J=$ $\left.5.5, H_{h}\right), 8.03\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{5}\right), 7.83\left(1 \mathrm{H}, \mathrm{d}, J=8.2, \mathrm{H}_{\mathrm{e}}\right), 7.65(1 \mathrm{H}, \mathrm{td}, J=$ $\left.7.4,1.6, H_{f}\right), 7.62-7.59\left(2 H, m, H_{e^{\prime}, f}\right), 7.53\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2, H_{d}\right)$, $7.39\left(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2, \mathrm{H}_{\mathrm{d}^{\prime}}, 7.12\left(1 \mathrm{H}, \mathrm{ddd}, J=8.2,7.1,1.2, \mathrm{H}_{2}\right)\right.$, $7.10\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.6,5.8,2.7, \mathrm{H}_{\mathrm{g}^{\prime}}\right), 7.02-6.91\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4,9,9}, 10, \mathrm{~g}\right)$, $6.81\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.4,1.2, \mathrm{H}_{\mathrm{c}}\right), 6.78\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.8,1.2, \mathrm{H}_{\mathrm{c}^{\prime}}\right), 6.72-$ $6.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}, \mathrm{b}}\right), 6.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8, \mathrm{H}_{1}\right), 6.42(1 \mathrm{H}, \mathrm{dd}, J=7.4,0.8$,
 $\left.\mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.35-6.31\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}, 8,8^{\prime}\right), 6.13\left(1 \mathrm{H}, \mathrm{dd}, J=7.4,0.8, \mathrm{H}_{\mathrm{a}}\right), 4.70\left(1 \mathrm{H}, \mathrm{q}, J=7.0, \mathrm{H}_{6}\right), 1.45(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 7.0, Me). ${ }^{13} \mathrm{C}$ NMR: $169.08\left(C_{k}\right), 168.34\left(C_{k}\right), 166.17\left(C_{11}\right), 161.13\left(C_{5}\right), 153.09\left(C_{i}\right), 150.93\left(C_{i}\right), 148.95$ $\left(C_{h}\right), 148.58\left(C_{h^{\prime}}\right), 144.73\left(C_{j}\right), 144.46\left(C_{j}\right), 142.12\left(C_{7}\right), 136.50\left(C_{f}\right), 136.46\left(C_{f}\right), 134.96\left(C_{4}\right), 133.56$ $\left.\left(C_{2}\right), 133.13\left(C_{a^{\prime}}\right), 131.91\left(C_{a}\right), 129.27\left(C_{b, b^{\prime}}\right), 127.90\left(C_{9}, 9^{\prime}\right), 126.79\left(C_{8,8}\right)^{\prime}\right), 126.63\left(C_{10}\right), 124.40\left(C_{1}\right)$, $124.16\left(C_{d^{\prime}}\right)^{\prime}, 123.63\left(C_{d}\right), 121.50\left(C_{12}\right), 121.45\left(C_{g^{\prime}}\right), 121.33\left(C_{g}\right), 121.14\left(C_{c}\right), 120.12\left(C_{c^{\prime}}\right), 118.87\left(C_{e}\right)$, $118.25\left(C_{e^{\prime}}\right), 112.83\left(C_{3}\right), 65.84\left(C_{6}\right), 22.15(\mathrm{Me}) .[\alpha]_{\mathrm{D}}-535^{\circ}$ in DCM.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \Lambda \mathrm{S}: \delta 9.02\left(1 \mathrm{H}, \mathrm{ddd}, J=5.8,1.4,0.8, \mathrm{H}_{\mathrm{h}^{\prime}}\right), 8.19$ (1H, ddd, J = 5.8, 1.4, 0.8, H_{h}) $8.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{5}\right), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$, $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 7.80-7.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{e}, \mathrm{f}}\right), 7.63\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6,1.2, \mathrm{H}_{\mathrm{d}^{\prime}}\right), 7.60-$ $7.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{d}, \mathrm{f}}\right), 7.35-7.27\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{g}, 9,10}\right), 7.22-7.11(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2,8,8}, \mathrm{~g}^{\prime}\right), 6.92\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.8, \mathrm{H}_{4}\right), 6.86-6.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{c}, \mathrm{c}^{\prime}}\right)$, $6.78-6.69\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}, \mathrm{b}^{\prime}, \mathrm{g}}\right), 6.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5, \mathrm{H}_{1}\right), 6.47(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=7.6,1.2, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 6.30\left(1 \mathrm{H}, \mathrm{ddd}, J=8.2,6.7,0.8, \mathrm{H}_{3}\right), 6.22(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.7.6,1.2, \mathrm{H}_{\mathrm{a}}\right), 4.73\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0, \mathrm{H}_{6}\right), 0.73(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0, \mathrm{Me}) .{ }^{13} \mathrm{C}$
 NMR: $169.79\left(C_{k, k^{\prime}}\right), 167.13\left(C_{11}\right), 163.03\left(C_{5}\right), 154.10\left(C_{i}\right), 152.97\left(C_{i}\right), 151.35\left(C_{h}\right), 150.09\left(C_{h^{\prime}}\right)$, $146.45,146.35\left(C_{j, ~}{ }^{\prime}\right), 143.22\left(C_{7}\right), 138.58\left(C_{f}\right), 138.11\left(C_{f}\right), 136.56\left(C_{4}\right), 135.02\left(C_{2}\right), 134.77\left(C_{a^{\prime}}\right)$, $133.29\left(C_{a}\right), 131.01\left(C_{b^{\prime}}\right), 130.18\left(C_{b}\right), 129.91\left(C_{9}, 9^{\prime}\right), 129.43\left(C_{8,8}\right), 129.08\left(C_{10}\right), 125.90\left(C_{d^{\prime}}\right), 125.14$
$\left(\mathrm{C}_{\mathrm{d}}\right), 124.69\left(\mathrm{C}_{1}\right), 123.40\left(\mathrm{C}_{\mathrm{g}^{\prime}}\right), 123.18\left(\mathrm{C}_{12}\right), 122.77\left(\mathrm{C}_{\mathrm{g}}\right), 122.56,121.90\left(\mathrm{C}_{\mathrm{c}, \mathrm{c}^{\prime}}\right), 120.27\left(\mathrm{C}_{\mathrm{e}}\right), 119.82\left(\mathrm{C}_{\mathrm{e}^{\prime}}\right)$, $114.18\left(C_{3}\right), 65.71\left(C_{6}\right), 22.49(\mathrm{Me}) .[\alpha]_{D}+654^{\circ}$ in DCM. MS (FAB): $m / z 725[M]^{+}$.

Synthesis of $\Delta \Delta-3 a$

TFA ($162 \mathrm{mg}, 109.7 \mu \mathrm{~L}, 1.423 \mathrm{mmol}$) was added to a solution of $\Delta \mathrm{S}$-2a ($50 \mathrm{mg}, 0.071 \mathrm{mmol}$) in DCM (2 ml). $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was added to this reaction mixture after stirring it for an hour. The deep yellow colour changed successively to pale yellow and colourless after stirring for 48 hrs at room temperature. After this time, the aqueous
 layer was separated and the organic layer was passed through celite. The filtrate was reduced in volume and hexane was added slowly to induce precipitation. The precipitate was isolated, washed with hexane and dried in vacuo to give $\boldsymbol{\Delta} \boldsymbol{\Delta}$-3a as a grey solid ($34 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 8.10$ $\left(4 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}_{\mathrm{e}}\right), 7.88\left(4 \mathrm{H}, \mathrm{d}, J=2.0, \mathrm{H}_{\mathrm{g}}\right), 7.13\left(4 \mathrm{H}, \mathrm{dd}, J=7.8,1.2, \mathrm{H}_{\mathrm{d}}\right), 6.85\left(4 \mathrm{H}, \mathrm{td}, J=7.4,1.2, \mathrm{H}_{\mathrm{c}}\right)$, $6.75\left(4 \mathrm{H}, \mathrm{t}, J=2.7, \mathrm{H}_{\mathrm{f}}\right), 6.63\left(4 \mathrm{H}, \mathrm{td}, J=7.4,1.2, \mathrm{H}_{\mathrm{b}}\right), 6.10\left(4 \mathrm{H}, \mathrm{dd}, J=7.8,1.2, \mathrm{H}_{\mathrm{a}}\right) . \mathrm{MS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z} 1071$ $\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}\right]^{+}$. MS (ES): $\mathrm{m} / \mathrm{z} 561\left[\operatorname{Ir}(\mathrm{ppz})_{2}(\mathrm{MeCN})_{2}\right]^{+}$.

Synthesis of $\Delta-4 a$

TFA ($40.5 \mathrm{mg}, 27.4 \mu \mathrm{~L}, 0.356 \mathrm{mmol}$) was added to a solution of $\Delta \mathrm{S}$ 2a ($50 \mathrm{mg}, 0.071 \mathrm{mmol}$) and bipy ($12.2 \mathrm{mg}, 0.078 \mathrm{mmol}$) in DCM (2 ml). The reaction mixture was stirred for an hour and after that the reaction mixture was washed with water $(3 \times 5 \mathrm{ml})$. The organic layer was separated and washed and dried with anhydrous MgSO_{4}. The volume of
 filtrate was reduced and hexane was added slowly to induce precipitation. The precipitate was isolated, washed with hexane and dried in vacuo to give $\Delta-4 \mathrm{a}$ as a yellow solid ($38 \mathrm{mg}, 72 \%$). Using a similar procedure $\Lambda-4 \mathrm{a}$ was synthesised from $\wedge \mathrm{S}-1 \mathrm{a}$ via $\Lambda \Lambda-3 \mathrm{a}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 9.23(2 \mathrm{H}, \mathrm{d}, J=$ 8.2, $\left.\mathrm{H}_{4}\right), 8.23\left(2 \mathrm{H}, \mathrm{td}, J=8.2,0.8, \mathrm{H}_{3}\right), 8.11\left(2 \mathrm{H}, \mathrm{d}, J=2.7, \mathrm{H}_{\mathrm{e}}\right), 8.07\left(2 \mathrm{H}, \mathrm{dd}, J=5.4,1.2, \mathrm{H}_{1}\right), 7.40(2 \mathrm{H}$, $\left.\mathrm{dd}, \mathrm{J}=7.0,5.8, \mathrm{H}_{2}\right), 7.29\left(2 \mathrm{H}, \mathrm{dd}, J=7.8,0.8, \mathrm{H}_{\mathrm{d}}\right), 7.05\left(2 \mathrm{H}, \mathrm{td}, J=7.8,1.2, \mathrm{H}_{\mathrm{c}}\right), 6.87(2 \mathrm{H}, \mathrm{td}, J=7.4$, 1.2, $\left.\mathrm{H}_{\mathrm{b}}\right), 6.84\left(2 \mathrm{H}, \mathrm{d}, J=2.0, \mathrm{H}_{\mathrm{g}}\right), 6.54\left(2 \mathrm{H}, \mathrm{t}, J=2.7, \mathrm{H}_{\mathrm{f}}\right), 6.31\left(2 \mathrm{H}, \mathrm{dd}, J=7.4,1.2, \mathrm{H}_{\mathrm{a}}\right) .[\alpha]_{\mathrm{D}}-471^{\circ}$ for $\Delta-$ 4a and $+473^{\circ}$ for $\Lambda-4$ a in DCM. MS (FAB): $m / z 635[M]^{+}$. rotation, -471° in DCM.

Measurement of enantiopurity by ${ }^{1} \mathrm{H}$ NMR

A sample of 4a ($3.74 \mathrm{mg}, 5 \times 10^{-3} \mathrm{mmol}$) was dissolved in 0.5 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. 1 equiv. of Δ $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\right.$ trisphat] ($5.06 \mathrm{mg}, 5 \times 10^{-3} \mathrm{mmol}$) was then added [in small portions].

a

b

Fig. S1:Wireframe crystal structures showing key NOEs of \wedge S-1a (left) and $\Delta \mathrm{S}-1 \mathrm{a}$ (right). Phenyl ring with primes is trans to O while with non-primes is trans to imine N for both the isomers.

Fig.S2: X-ray crystal structure of \wedge S-1b. Selected bond lengths (Á) and bond angles (${ }^{\circ}$): $\operatorname{Ir}(1) — \mathrm{~N}(1)$, 2.033(4); $\operatorname{Ir}(1)-\mathrm{N}(2), 2.042(5) ; \operatorname{Ir}(1)-\mathrm{N}(3), 2.142(5) ; \operatorname{Ir}(1)-\mathrm{O}(1), 2.123(4) ; \operatorname{Ir}(1)-\mathrm{C}(11), 1.994(5)$; $\operatorname{lr}(1)-\mathrm{C}(22), \quad 2.002(5) ; \quad \mathrm{N}(1)-\operatorname{Tr}(1)-\mathrm{N}(2), \quad 172.84(18) ; \quad \mathrm{N}(1)-\operatorname{lr}(1)-\mathrm{C}(11), \quad 80.4(2)$; $\mathrm{N}(2)-\operatorname{Tr}(1)-\mathrm{C}(22), 80.5(2) ; \mathrm{N}(3)-\operatorname{lr}(1)-\mathrm{O}(1), 85.98(17)$.

Fig.S3: X-ray crystal structure of ΔS-2a. Selected bond lengths ((\hat{A}) and bond angles $\left({ }^{\circ}\right): \operatorname{lr}(1)-N(1)$, $1.997(6) ; \operatorname{lr}(1)-\mathrm{N}(3), 2.012(6) ; \operatorname{lr}(1)-\mathrm{N}(5), 2.139(7) ; \operatorname{lr}(1)-\mathrm{O}(1), 2.120(5) ; \operatorname{lr}(1)-\mathrm{C}(9), 2.000(8)$; $\operatorname{Ir}(1)-\mathrm{C}(18), 2.001(8) ; \mathrm{N}(1)-\operatorname{Ir}(1)-\mathrm{N}(3), 173.5(3) ; \mathrm{N}(1)-\operatorname{rr}(1)-\mathrm{C}(9), 80.4(3) ; \mathrm{N}(3)-\operatorname{rr}(1)-\mathrm{C}(18)$, 79.8(3); $\mathrm{N}(5)-\operatorname{lr}(1)-\mathrm{O}(1), 88.6(3)$.

Fig $S 4 C D$ spectra of $\Delta S-\mathbf{2 b}$ and $\Lambda S-\mathbf{2 b}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Figure S5

Lambda

delta

Fig S6 CD spectra of ΔS and ΛS-4a

CHIRALPAK ${ }_{\text {® }}$ AD-H ($250 \mathrm{mmL} \times 4.6$ ID) / $5 \mu \mathrm{~m}$
Eluent: n-Heptane / EtOH / TEA / TFA 90:10:0.3:0.1
Flow Rate: $1.0 \mathrm{~mL} / \mathrm{min}$
Temperature: $25^{\circ} \mathrm{C}$
Detection: UV 250 nm

Fig S7a

1: $250 \mathrm{~nm}, 4$
nm Results

Pk \#	RT (min)	Area	Area \%
1	36,313	769357	0,80
2	43,373	95051098	99,20

Fig S7b

As mentioned in the paper to check the enantiopurity of $\Delta \Delta$-3a it was reacted separately with L1 and L2. In each case this gave only 1 diastereomer. Relevant parts of the NMR spectra are shown below.

Figure S8: (a) Selected part of the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\Delta \Delta$-3a with (S)$\mathrm{Na}(\mathrm{L} 1) . \Delta \mathrm{S}-1 \mathrm{a}: \wedge \mathrm{S}-1 \mathrm{a}$ ratio is 53:1; (b) Selected part of the crude NMR spectrum of the 50:50 mixture of $\Delta S-1 \mathbf{a}: \wedge S$-1a formed from the reaction of racemic $\left[\operatorname{Ir}(\mathrm{ppz})_{2} \mathrm{Cl}\right]_{2}$ with $(\mathrm{S})-\mathrm{Na}(\mathrm{L} 1)$.
(a)

(b)

Figure S9: (a) Selected part of the crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\Delta \Delta-3$ a with (S)$\mathrm{Na}(\mathrm{L2})$. Only $\Delta \mathrm{S}$-2a is observed ; (b) Selected part of the crude NMR spectrum of the 50:50 mixture of $\Delta \mathrm{S}-1 \mathrm{a}: \wedge \mathrm{S}-1 \mathbf{1 a}$ formed from the reaction of racemic $\left[\operatorname{Ir}(\mathrm{ppz})_{2} \mathrm{Cl}\right]_{2}$ with $(\mathrm{S})-\mathrm{Na}(\mathrm{L} 2)$.

