Supplementary information to:

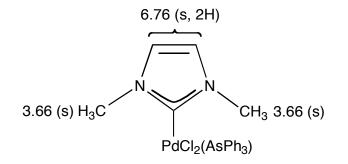
Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis

Juan delPozo, Juan A. Casares* and Pablo Espinet*

Química Inorgánica, I. U. CINQUIMA, Facultad de Ciencias. Universidad de Valladolid, 47071 Valladolid (Spain). E-mail: <u>casares@qi.uva.es</u>, <u>espinet@qi.uva.es</u>.

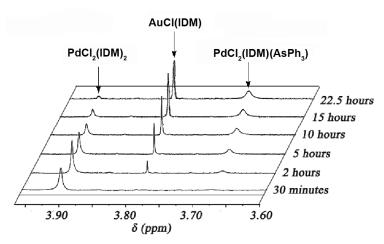
Table of Contents

1. General methods	S2
2. Preparation of complex 9 and NMR data	S2-3
3. General procedure for ligand exchange reactions between gold and palladium	
complexes	S3
4. Figure 1	S3
5. ¹ H, NMR spectra of the reactions in the Scheme 3 (main text)	S4-10
6. References	S11


Experimental section

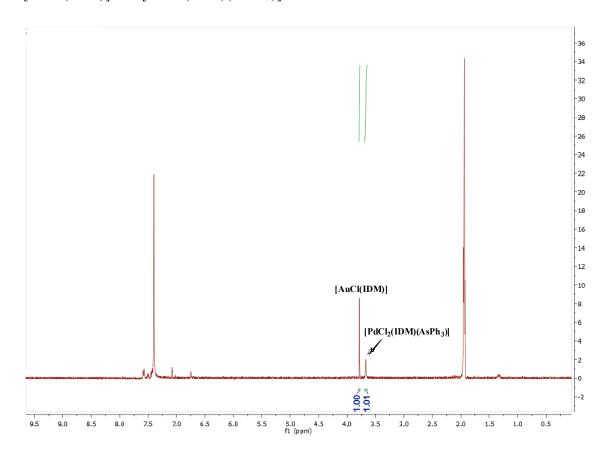
General methods. All reactions were carried out under N₂ or Ar. All solvents were dried using standard techniques. NMR spectra were recorded on a Bruker AV 400 instrument equipped with a VT-100 variable-temperature probe, a Varian 400-MR, or a Varian 500-MR. Chemical shifts are reported in ppm from tetramethylsilane (¹H), CCl₃F (¹⁹F), or 85% H₃PO₄ (³¹P), with positive shifts downfield, at ambient probe temperature unless otherwise stated. The temperature for the NMR probe was calibrated using ethylene glycol (T > 300K) and methanol (T < 300K) as temperature standards.¹ In the ¹⁹F and ³¹P spectra measured in non-deuterated solvents, a coaxial tube containing acetone-*d*₆ was used for the lock ²H signal. The Gas Chromatgraphy-Mass analyses were performed in a Thermo-Scientific DSQ II GC/MS Fows GL. Combustion CHN analyses were used from commercial sources and used without further purification. The compounds [AuCl(PPh₃)],² [AuCl(AsPh₃)],³ [AuCl(IDM)],⁴ [PdCl₂(AsPh₃)₂],⁵ [PdCl₂(PPh₃)₂],⁶ [PdCl₂(IDM)₂],⁷ and mesityltributyltin,⁸ were prepared by literature methods. The experimental procedure for the palladium/gold co-catalyzed Stille cross-coupling has been performed as reported.⁹

Synthesis of the complexes


[PdCl₂(IDM)(AsPh₃)]

A two necked flask was charged with $[PdCl_2(AsPh_3)_2]$ (102 mg 0.129 mmol) and $[PdCl_2(IDM)_2]$ (369 mg 0.129 mmol) dissolved in 100 mL of CH₃CN. The solution was stirred at 80 °C for 30 hours. The resulting yellow solution was filtered through Celite and the solvent was removed under reduced pressure giving an brown oil. This residue was dissolved in 1 ml of CH₂Cl₂ and crystallized by the addition of 5ml of EtOH. The solid was filtered, washed with cold EtOH (3mL) and vacuum dried. Yield 69% (102 mg). Anal. Calcd for C₂₃H₂₃As₂Cl₂N₂Pd: C, 47.65; H, 4.00; N, 4.83. Found: C, 47.29; H 3.70; N, 5.29. ¹H NMR (500 MHz, CD₃CN) δ 7.57 (dd, *J* = 8.1, 1.2 Hz, 6H), 7.55 – 7.50 (m, 3H), 7.47 – 7.42 (m, 6H), 6.76 (s, 2H), 3.66 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 157.62, 133.17, 130.22, 129.09, 123.16, 37.64.

General procedure for ligand exchange reactions between gold and palladium complexes. A solution in CD₃CN (0.6 mL) of concentration $2.0 \cdot 10^{-3}$ M in the-gold catalyst, $2.0 \cdot 10^{-3}$ M in the palladium catalyst and $4.1 \cdot 10^{-3}$ M in AsPh₃ was prepared in a NMR tube under nitrogen atmosphere. The tube was sealed and heated in an oil bath at 80°C until completion of the reaction or specified time. All reactions were monitored by ¹H or ³¹P NMR spectroscopy.


Figure 1. Ligand exchange between $[PdCl_2(IDM)_2]$ and $[AuCl(AsPh_3)]$, at 80 °C in CD₃CN, monitored by ¹H NMR on the Me signals of IDM.

Reaction between [PdCl₂(IDM)₂] and [AuCl(AsPh₃)]

Corresponding to reaction "a" in Scheme 3 in the main text.

$$[PdCl_{2}(IDM)_{2}] + [AuCl(AsPh_{3})] \xrightarrow{CD_{3}CN} [PdCl_{2}(IDM)(AsPh_{3})] + [AuCl(IDM)]$$

The reaction between $[PdCl_2(IDM)_2]$ and $[AuCl(AsPh_3)]$ produces quantitatively [AuCl(IDM)] and $[PdCl_2(IDM)(AsPh_3)]$ in 24 hours.

Figure S1. Spectra of [PdCl₂(IDM)₂] and [AuCl(AsPh₃)] after 24 h in CD₃CN at 80C. The signals from the methyl IDM groups in both metals (marked with arrows) have been used for quantitative purposes.

Reaction between [PdCl₂(IDM)(AsPh₃)] and [AuCl(IDM)]

Corresponding to reaction "a" in Scheme 3 in the main text.

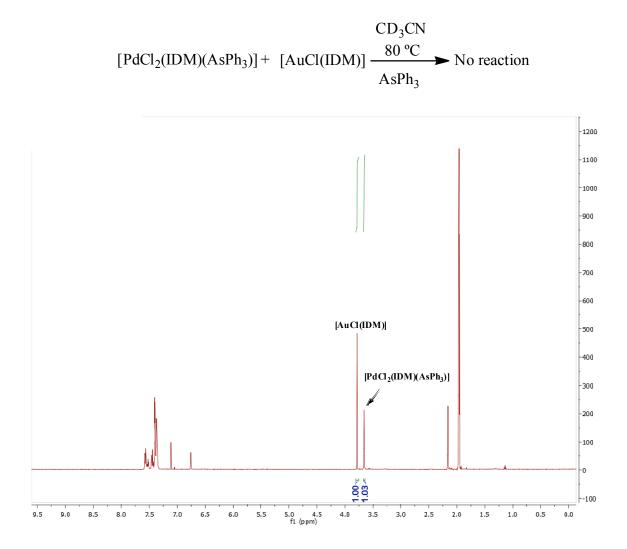


Figure S2. Spectra of [PdCl₂(IDM)(AsPh₃)] and [AuCl(IDM)] after 24 h in CD₃CN at 80C.

Reaction between [PdCl₂(IDM)(AsPh₃)] and [AuCl(AsPh₃)]

Corresponding to reaction "b" in Scheme 3 in the main text.

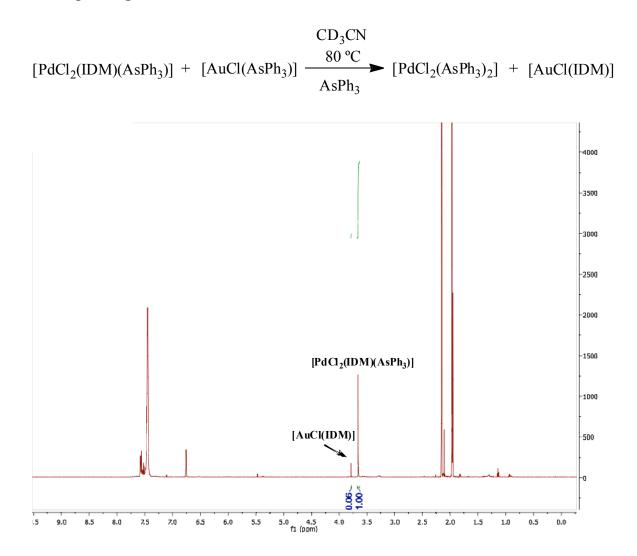


Figure S3. Spectra of [PdCl₂(IDM)(AsPh₃)] and [AuCl(AsPh₃)] after 24 h in CD₃CN at 80C.

Reaction between [AuCl(IDM)] and [PdCl₂(AsPh₃)]

Corresponding to reaction "b" in Scheme 3 in the main text.

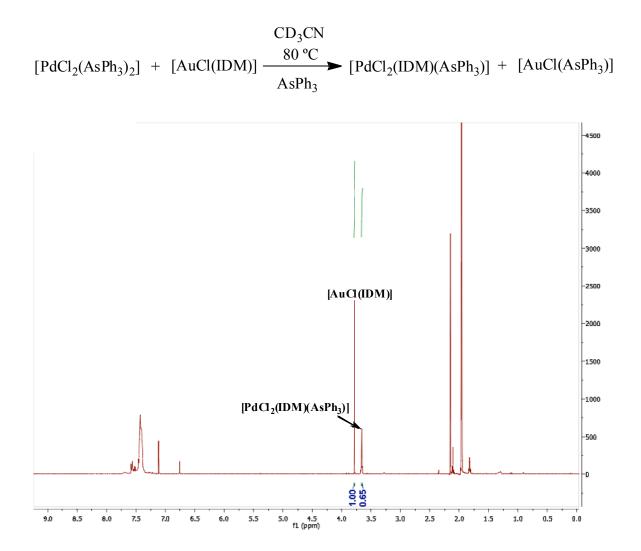


Figure S4. Spectra of [AuCl(IDM)] and [PdCl₂(AsPh₃)] after 24 h in CD₃CN at 80C.

Reaction between [PdCl₂(PPh₃)₂] and [AuCl(AsPh₃)]:

Corresponding to reaction "c" in Scheme 3 in the main text.

a) In CD₃CN

$$[PdCl_{2}(PPh_{3})_{2}] + [AuCl(AsPh_{3})] \xrightarrow{CD_{3}CN} [AuCl(PPh_{3})] \\ \xrightarrow{80 \ ^{\circ}C} [AuCl(PPh_{3})] \\ \xrightarrow{+} [PdCl_{2}(PPh_{3})_{2}] \xrightarrow{-} [PdCl_{2}(AsPh)_{3}(PPh_{3})] \xrightarrow{-} [PdCl_{2}(AsPh_{3})_{2}]$$

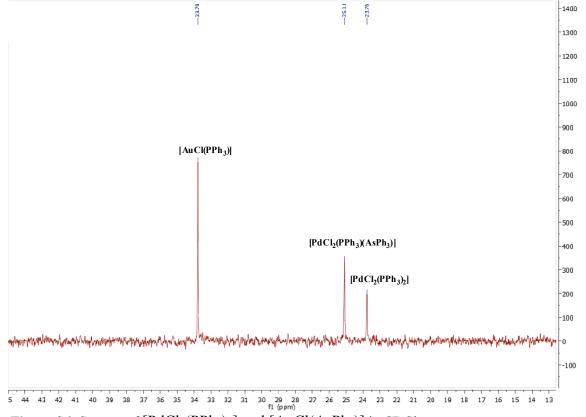



Figure S5. Spectra of [PdCl₂(PPh₃)₂] and [AuCl(AsPh₃)] in CD₃CN at 80°C after 5 minutes.

b) After evaporating the CD₃CN and dissolving the residue in CDCl₃.

Figure S6. Spectra of [PdCl₂(PPh₃)₂] and [AuCl(AsPh₃)] in CDCl₃.

Reaction between [PdCl₂(AsPh₃)₂] and [AuCl(PPh₃)]

Corresponding to reaction "c" in Scheme 3 in the main text.

$$[PdCl_2(AsPh_3)_2] + [AuCl(PPh_3)] \xrightarrow{CD_3CN} No reaction$$

The reaction between $[PdCl_2(AsPh_3)_2]$ and $[AuCl(PPh_3)]$ in the reported conditions provided only $[AuCl(PPh_3)]$ after 5 minutes in the ³¹P spectra, either in CD₃CN or CDCl₃.

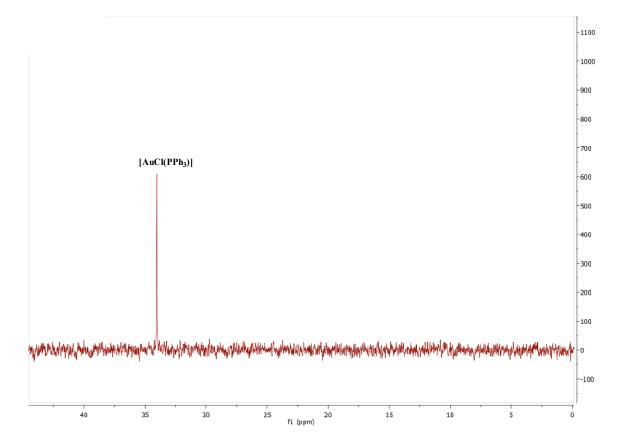


Figure S7. Spectra of [PdCl₂(AsPh₃)₂] and [AuCl(PPh₃)] in CD₃CN after 5 minutes at 80°C.

References

- ¹ C. Amman, P. Meier and A. E. Merbach, J. Magn. Reson. 1982, 46, 319-321
- ² P.Sinha, A. K. Wilson, and M.A.Omary, J. Am. Chem. Soc., **2005**, 127 (36), 12488–12489.
- ³ C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179.
- ⁴ H. M. J. Wang, C. Sekhar Vasam, T. Y. R. Tsai, S. Chen, A. H. H. Chang, I. J. B. Lin, *Organometallics*, **2005**, *24* (4), 486-493.
- ⁵ A. H. Norbury, A. L. P. Sinha, J. Inorg. Nucl. Chem. 1973, 35, 1211-1218.
- ⁶ N. Miyaura, A. Suzuki, Org. Synth. Coll. 1993, Vol. 8, 532, (note 8).
- ⁷ E. Lee, D. V. Yandulov, *J. Organometallic Chem.* **2011**, 696, 4095-4103.
- ⁸ A. F. Littke, L.Schwarz, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 6343–6348.
- ⁹ J. delPozo, D. Carrasco, M. H. Pérez-Temprano, M. García-Melchor, R. Álvarez, J. A.
- Casares, P. Espinet, Angew. Chem. Int. Ed. 2013, 52, 2189-2193.