Supporting Information

Efficient Ruthenium-catalysed S-S, S-Si and S-B bond forming reactions

José A. Fernández-Salas, Simone Manzini and Steven P. Nolan*

Contents

General Considerations	S2		
Optimization tables	S2-S3		
Solvent optimization table of thiol coupling	S2		
Catalyst loading optimization table of dehydrogenative			
coupling reaction of thiols with silanes	S 3		
Experimental Procedures and Characterizations	S4-S9		
General procedure for the disulfide synthesis			
General procedure and characterizations for the synthesis of			
thiosilanes (5)			
General procedure and characterizations for the synthesis of			
thioboranes (7)	S7-S9		
NMR spectra of novel compounds	S10-S42		

GENERAL CONSIDERATIONS:

Complex **1** was synthesized according to the reported procedure.¹ Thiols (**2**), silanes (**4**) and boranes (**6**) were purchased from Sigma Aldrich and used as received. Toluene, dichloromethane, acetone, *i*-propanol and methanol were dispensed from a solvent purification system from Innovative Technology ¹H, ¹¹B, ²⁹Si and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Avance 300 or Bruker Avance II 400 Ultrashield NMR spectrometers. Mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre at Swansea University, Grove building, Singleton Park, Swansea, SA2 8PP, Wales, UK.

OPTIMIZATION TABLES:

		1 (5 mol%) KOH	12 0400	2014
	2a	Solvent T ^a t	3a	J. J
Entry	Solvent	Temperature	<i>t</i> (h)	Conversion
		(°C)		(%) ^[b]
1	DCM	r.t.	3	60
2	DCM	r.t.	16	>99 (50) ^[c]
3	Acetone	60	24	60
4	Toluene	60	24	40
5	<i>i</i> PrOH	60	24	0
6	H_2O	60	24	0
7	MeOH	60	1.5	>99 (79) ^[c]

Solvent optimization table of thiol coupling.

[a] Reactions conditions: CySH (0.25 mmol), 1 (5 mol %), KOH (0.25 mmol), dissolved in toluene (0.5 mL).
[b] Conversion determined by ¹H NMR. [c] Determined by GC using *n*-tetradecane as internal standard.

¹ S. Manzini, C. A. Urbina-Blanco, A. Poater, A. M. Z. Slawin, L. Cavallo, S. P. Nolan, *Angew. Chem., Int. Ed.* **2012**, *51*, 1042-1045.

Catalyst loading optimization table of dehydrogenative coupling reaction of thiols with silanes.

CUCU	+ Et.SiH -	1 (x mol%)	► CvS-SiFt。	
2a	+ Ei33III 4a	Toluene 80°C 16h	5a	
Entry	Cat. loading (mol %)		Conversion ^[a]	
			(%)	
1	С	0		
2	2.	5	>99	
3	1	>99		
4	0.	>99		
5	0.2	69		

[b] Determined by ¹H NMR spectroscopy.

EXPERIMENTAL PROCEDURES AND CHARACTERIZATIONS:

General procedure for the disulfide synthesis.

In a vial fitted with a screw cap, in the glove box, **1** (0.00625 mmol) and KOH (0.25 mmol) were dissolved in MeOH (0.5 mL). Then, outside of the glovebox, the corresponding thiol (**2**) (0.25 mmol) and *n*-tetradecane (10 μ L) were added and the resulting mixture was stirred at 60°C. The reaction progress was monitored by GC. After the indicated time (Table 2) the solvent was removed under vacuum and the crude reaction was analyzed by GC.

Dehydrogenative coupling reaction of thiols with silanes catalyzed by 1.

In a vial fitted with a screw cap, in the glovebox, 1 (0.00125 mmol) and the silane 4 (0.55 mmol) were dissolved in toluene (0.5 mL). Then, outside of the glovebox, the thiol 2 (0.25 mmol) was added and the resulting mixture was stirred at 110°C for 16h. After this time, the solvent was removed under vacuum. The residue was dissolved in pentane and filtered through a pad of celite to remove the catalyst (1). The volatile materials were removed under vacuum to afford the desired silylthioethers.

The silulthioethers $CySSiEt_3^2$ (**5a**), $BnSSiEt_3^2$ (**5d**), $PhSSiEt_3^2$ (**5e**), $CySSiPh_3^3$ (**5h**) and $PhSSiPh_3^3$ (**5p**) produced were identified by the comparison of the NMR spectra of the authentic compounds prepared according to the literature method.

Triethyl(pentylthio)silane (5b).

 $\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \end{array} \\ \begin{array} \\ & \begin{array}{c} & \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\$

(Cyclopentylthio)triethylsilane (5c).

Compound 5c was obtained from cyclopentanethiol (2i) and $-S_{SiEt_3}$ triethylsilane (4a). Yield: 94% (colorless oil). ¹H NMR (400 MHz, CD_2Cl_2): δ 3.00-2.92 (m, 1H), 1.99 – 1.89 (m, 2H), 1.74 – 1.63 (m,

² K. Fukumoto, M. Kasa, T. Oya, M. Itazaki, H. Nakazawa, Organometallics, **2011**, 30, 3461–3463.

³ C. Behloul, D. Guijarro, M. Yus, *Tetrahedron*, **2005**, *61*, 6908-6915.

2H), 1.53 - 1.43 (m, 4H), 0.94 (t, J = 7.9 Hz, 9H), 0.69 (dt, J = 12.1, 7.8 Hz, 6H).¹³C NMR (100 MHz, CD₂Cl₃): δ 39.6, 37.9, 24.6, 7.3, 5.7.²⁹Si (79.3 MHz, CD₂Cl₂): δ 21.5. HRMS (EI+): m/z calcd for C₁₁H₂₄SSi: 216.1368, found 216.1369

(Cyclohexylthio)dimethyl(phenyl)silane (5f).

Compound **5f** was obtained from cyclohexanethiol (**2a**) and dimethylphenyl silane (**4b**). Yield: 97% (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.57 (m, 2H), 7.34-7.31 (m, 3H), 2.65-2.58 (m, 1H), 1.81-1.74 (m, 2H), 1.66-1.58 (m, 2H), 1.48-1.42 (m, 1H), 1.36-1.27 (m, 2H), 1.18-1.11 (m, 3H), 0.50 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 138.8, 134.8, 134.0, 130.6, 128.9, 128.7, 42.0, 38.7, 27.3, 26.5, 0.90. ²⁹Si (79.3 MHz, CD₂Cl₂): δ 7.6. HRMS (EI+): *m/z* calcd for C₁₄H₂₂SSi: 250.1206, found 250.1207.

(Cyclohexylthio)(methyl)diphenylsilane (5g).

S-SiPh₂Me Compound **5g** was obtained from cyclohexanethiol (**2a**) and diphenylmethylsilane (**4c**). Yield: 96% (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.57 (m, 4H), 7.35-7.31 (m, 6H), 2.69-

2.60 (m, 1H), 1.78-1.73 (m, 2H), 1.62-1.58 (m, 2H), 1.43-1.25 (m, 3H), 1.14-1.06 (m, 3H), 0.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 137.2, 136.1, 136.0, 131.2, 129.3, 129.3, 42.8, 38.9, 27.6, 26.8, -0.0. ²⁹Si (79.3 MHz, CD₂Cl₂): δ 4.1. HRMS (EI+): *m/z* calcd for C₁₉H₂₄SSi: 312.1362, found 312.1365.

S-Cyclohexyl 0,0,0-triethyl orthosilicothioate (5i).

Compound **5i** was obtained from cyclohexanethiol (**2a**) and triethoxysilane (**4e**). Yield: 99% (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 3.79 (q, *J* = 7.0 Hz, 6H), 2.92-285 (m, 1H), 1.96-1.89 (m, 2H), 1.71-1.62 (m, 2H), 1.54-1.45 (m, 1H), 1.42-1.31 (m, 2H), 1.31-1.19 (m, 3H), 1.15 (t, *J* = 7.0 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 59.3, 40.8, 37.4, 26.5, 25.6, 17.9. ²⁹Si (79.3 MHz, CD₂Cl₂): δ -56.2. HRMS (EI+): *m/z* calcd for C₁₂H₂₆O₃SSi: 278.1288, found 278.1284.

(Benzylthio)dimethyl(phenyl)silane (5j).

Compound **5j** was obtained from benzylmercaptan (**2d**) and $S-SiPhMe_2$ dimethylphenylsilane (**4b**). Yield: 92% (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.53 (m, 2H), 7.36-7.29 (m, 3H), 7.16-7.07 (m, 5H), 3.51 (s, 2H), 0.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 142.3, 138.3, 135.6, 134.7, 131.5,

130.2, 130.1, 129.7, 129.4, 128.5, 32.6, 0.9. ²⁹Si (79.3 MHz, CD₂Cl₂): δ 9.6. HRMS (EI+): *m*/*z* calcd for C₁₅H₁₈SSi: 258.0893, found 258.0892.

(Benzylthio)(methyl)diphenylsilane (5k).

Compound **5k** was obtained from benzylmercaptan (**2d**) and $S-SiPh_2Me$ diphenylmethylsilane (**4c**). Yield: 97% (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.53 (m, 2H), 7.34-7.27 (m, 7H), 7.15-7.09 (m, 2H), 7.09-7.03 (m, 2H), 3.51 (s, 2H), 0.68 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 140.3, 134.8, 134.8, 134.7, 133.9, 133.9, 130.1, 129.8, 129.6, 129.5, 128.5, 128.4, 128.1, 128.0, 127.9, 127.7, 126.8, 31.3, -2.01. ²⁹Si (79.3 MHz, CD₂Cl₂): δ 3.6. HRMS (EI+): *m/z* calcd for C₂₀H₂₀SSi: 320.1049, found 320.1052.

(Benzylthio)triphenylsilane (51).

Compound **51** was obtained from benzylmercaptan (**2d**) and triphenylsilane (**4d**). **5d** could not be separated from the triphenylsilane (**4d**). ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.62 (m, 6H), 7.44-7.39 (m, 3H), 7.39-7.33 (m, 6H), 7.19-7.15 (m, 3H), 7.08-7.03 (m, 2H), 3.57 (s, 2H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 140.0, 135.7, 133.0, 130.2, 128.5, 128.4, 128.1, 126.7, 31.6. ²⁹Si (79.3 MHz, CD₂Cl₂): δ -1.98 . HRMS (EI+): *m/z* calcd for C₂₅H₂₂SSi: 382.1206, found 382.1207.

S-benzyl 0,0,0-triethyl orthosilicothioate (5m).

Compound **5m** was obtained from benzylmercaptan (**2d**) and triethoxysilane (**4c**). Yield: 99% (colorless oil). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.29-7.11 (m, 5H), 3.81-3.74 (m, 8H), 1.15 (t, *J* = 7.0 Hz, 9H), 0.69 (dt, *J*= 12.1, 7.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 129.0, 128.9, 127.5, 77.9, 77.4, 77.0, 59.8, 30.6, 18.4. ²⁹Si (79.3 MHz, CD₂Cl₂): δ -53.9. HRMS (EI+): *m/z* calcd for C₁₃H₂₂O₃SSi: 286.1053, found 286.1053.

Dimethyl(phenyl)(phenylthio)silane (5n).

S-SiPhMe₂ Compound **5n** was obtained from thiophenol (**2e**) and dimethylphenylsilane (**4b**). Yield: 95% (colorless oil). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.51-7.46 (m, 2H), 7.34-7.29 (m, 3H), 7.23-7.19 (m, 3H), 7.14-7.09 (m, 2H), 0.47 (s, 3H), 0.28 (s, 3H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 138.4, 136.9, 135.6, 134.9, 132.9, 131.7, 130.5, 129.7, 129.5, 128.7, 0.9. ²⁹Si (79.3 MHz, CD₂Cl₂): δ 9.9. HRMS (EI+): *m/z* calcd for C₁₄H₁₆SSi: 244.0736, found 244.0739.

Methyldiphenyl(phenylthio)silane (50).

S-SiPh₂Me Compound 50 was obtained from thiophenol (2e) and diphenylmethyl silane (4c). Yield: 96% (colorless oil). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.55-7.49 (m, 4H), 7.35-7.25 (m, 6H), 7.18-7.13 (m, 2H), 7.10-6.98 (m, 3H), 0.65 (s, 1H).¹³C NMR (100 MHz, CD₂Cl₂) δ 137.7, 134.9, 134.8, 134.7, 133.9, 130.7, 130.1, 129.8, 129.6, 129.5, 129.2, 129.1, 128.7, 128.0, 127.9, 127.8, 126.9, 125.5, -2.3. ²⁹Si (79.3 MHz, CD₂Cl₂): δ 3.2. HRMS (EI+): *m/z* calcd for C₁₉H₁₈ SSi: 306.0893, found 306.0899.

0,0,0-Triethyl S-phenyl orthosilicothioate (5q).

S-Si(OEt)₃ Compound **5q** was obtained from thiophenol (**2e**) and triethoxysilane silane (**4e**). Yield: 99% (colorless oil). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.47-7.39 (m, 2H), 7.21-7.12 (m, 3H), 3.79 (q, *J* = 7.0 Hz, 6H), 1.11 (t, *J* = 7.0 Hz, 9H).¹³C NMR (100 MHz, CD₂Cl₂) δ 134.2, 129.5, 129.3, 127.1, 60.1, 18.3. ²⁹Si (79.3 MHz, CD₂Cl₂): δ -58.2. HRMS (EI+): *m/z* calcd for C₁₂H₂₀O₃SSi: 272.0902, found 272.0903.

Dehydrogenative coupling reactions of thiols with pinacolborane catalyzed by 1.

In a vial fitted with a screw cap, in the glove box, 1 (0.00125 mmol) and pinacolborane 6a (0.55 mmol) were dissolved in toluene (0.5 mL). Then, outside of the glovebox, the thiol (2) (0.25 mmol) was added and the resulting mixture was stirred at 60°C for 16h. After this time, the solvent and the pinacolborane were removed under vacuum. The compounds were so hygroscopic that the correct elemental analysis or HRMS data could not be obtained, though satisfactory spectroscopic data were obtained.

2-(Cyclohexylthio)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7a).

Compound **7a** was obtained from cyclohexanethiol (**2a**). ¹H NMR (400 MHz, CD₂Cl₂): δ 3.05-2.92 (m, 1H), 1.93-1.83 (m, 2H), 1.68-1.58 (m, 2H), 1.49-1.45 (m, 1H), 1.29 (m, 5H), 1.2 (s, 12H). ¹³C

NMR (100 MHz, CD_2Cl_2) δ 85.2, 41.3, 37.2, 27.0, 26.3, 25.1, 25.0. ¹¹B NMR (128 MHz, CD_2Cl_2) 33.5.

4,4,5,5-Tetramethyl-2-(pentylthio)-1,3,2-dioxaborolane (7b).

Compound **7b** was obtained from pentane-1-thiol (**2b**).¹H NMR (400 MHz, CD₂Cl₂): δ 2.58 (t, *J* = 7.3 Hz, 2H), 1.57-1.46 (m, 2H), 1.31-1.23 (m, 4H), 1.21 (s, 12H), 0.85-0.78 (m,

3H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 85.0, 32.5, 31.0, 27.0, 24.9, 22.6, 14.3. ¹¹B NMR (128 MHz, CD₂Cl₂) δ 33.7.

2-(Benzylthio)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7c).

Compound **7c** was obtained from benzyl mercaptan (2d).¹H NMR (400 MHz, CD₂Cl₂): δ 7.27-7.07 (m, 4H), 3.78 (s, 2H), 1.19 (s, 12H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 141.6, 129.3,

129.2, 127.6, 85.9, 31.3, 25.1. ¹¹B NMR (128 MHz, CD₂Cl₂) δ 33.5.

4,4,5,5-Tetramethyl-2-(phenylthio)-1,3,2-dioxaborolane (7d).

Compound **7c** was obtained from thiophenol (**2e**). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.51-7.48 (m, 2H), 7.32-7.26 (m, 3H), 1.31 (s, 12H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 133.3, 129.6, 128.7, 126.9,

85.4, 24.3. ¹¹B NMR (128 MHz, CD₂Cl₂) δ 32.8.

Dehydrogenative coupling reactions of thiols with catecholborane catalyzed by 1.

In a vial fitted with a screw cap, in the glove box, 1 (0.00125 mmol) and catecholborane **6b** (0.55 mmol) were dissolved in toluene (0.5 mL). Then, outside of the glovebox, the thiol (2) (0.25 mmol) was added and the resulting mixture was stirred at 60°C for 16h. After this time, the solvent was removed under vacuum. Due to the obtained partial conversion and the instability of these compounds, they could not be isolated as pure compounds. Thus, the correct characterization could not be completely carried out.

2-(Cyclohexylthio)benzo[d][1,3,2]dioxaborole (7e).

Compound **7e** was obtained from cyclohexanethiol (**2a**). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.15-7.13 (m, 1H), 7.11-7.09 (m, 1H), 7.03-7.01 (m, 1H), 6.99-6.96 (m, 1H), 3.4-3.32 (m, 1), 2.04-1.98

(m, 2H), 1.73-1.67 (m, 2H), 1.52-1.42 (m, 3H), 1.37-1.29 (m, 3H).

2-(Benzylthio)benzo[d][1,3,2]dioxaborole (7f).

Compound **7c** was obtained from benzyl mercaptan (**2d**). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.34-7.31 (m, 1H), 7.27-7.19 (m, 3H), 7.16-7.08 (m, 3H), 7.02-6.95 (m, 2H), 3.98 (s, 2H).

2-(Phenylthio)benzo[d][1,3,2]dioxaborole (7g).

Compound **7c** was obtained from thiophenol (**2e**). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.51-7.47 (m, 1H), 7.40-7.34 (m, 2H), 7.28-7.22 (m, 6H).

NMR-Spectra of all compounds

¹H-NMR of **5a**.

¹H-NMR of **5b**.

¹³C-NMR of **5b**.

²⁹Si-NMR of **5b**.

¹H-NMR of **5c**.

¹³C-NMR of **5c**.

²⁹Si-NMR of **5c**.

¹H-NMR of **5d**.

¹H-NMR of **5e**.

¹H-NMR of **5f**.

¹³C-NMR of **5f**.

²⁹Si-NMR of **5f**..

¹H-NMR of **5**g.

¹³C-NMR of **5g**.

²⁹Si-NMR of **5f**.

¹H-NMR of **5h**.

¹H-NMR of **5i**.

¹³C-NMR of **5i**.

²⁹Si-NMR of **5i**.

¹H-NMR of **5**j.

¹³C-NMR of **5j**.

¹³C-NMR of **5**j.

¹H-NMR of **5**k.

¹³C-NMR of **5**k.

²⁹Si-NMR of **5k**.

¹H-NMR of **5**l.

¹³C-NMR of **5**l.

²⁹Si-NMR of **5**l.

¹H-NMR of **5m**.

¹³C-NMR of **5m**.

²⁹Si-NMR of **5m**.

¹H-NMR of **5n**.

¹³C-NMR of **5n**.

²⁹Si-NMR of **5n**.

¹H-NMR of **50**.

¹³C-NMR of **50**.

²⁹Si-NMR of **50**.

¹H-NMR of **5**p.

¹H-NMR of **5**q.

¹³C-NMR of **5**q.

²⁹Si-NMR of **5q**.

¹H-NMR of **7a**.

¹³C-NMR of **7a**.

¹H-NMR of **7b**.

¹³C-NMR of **7b**.

¹H-NMR of **7c**.

¹³C-NMR of **7c**.

¹H-NMR of **7d**.

¹³C-NMR of **7d**.

