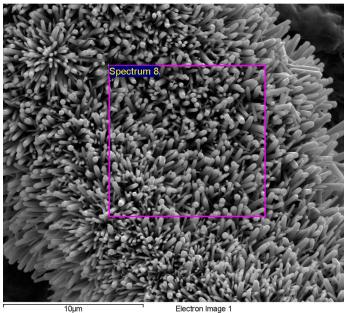
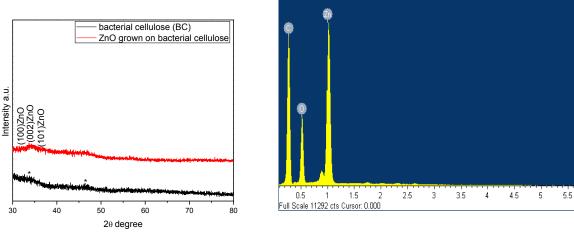

Supporting Information


ZnO grown on photographic paper.

ZnO grown on chromatographic paper.



EDS- Spectrum 8 – approximate weight percentage - 18, 81% oxygen and 81,19% zinc

Electron Image 1

ZnO grown on bacterial cellulose.

Spec

7.5

8 keV

6 6.5

Table 1: Root mean square roughness (RMS) values in different surface areas

Photographic paper - PP	Chromatographic paper - CP	Bacterial cellulose - BC	
Area 50x50 μm			
1.556 μm	>5µm	0.381 μm	
Area 3x3µm			
0.538 μm	80.1 nm	0.445 μm	

Table 2: Root mean square roughness (RMS) values for the substrates, before and after seed layer deposition

Substrate	Before	After
РР	538nm	1507nm
СР	80.1nm	241nm
BC	445nm	153nm

Table 3: Concentration of Zn²⁺ just after deposition of the seed layer solution, obtained through EDX analysis.

Substrate		Standard deviation
РР	~1.2%	0.50
СР	~0.21%	0.07
BC	~1.12%	0.91

AFM images were also obtained ($3 \times 3 \mu m$) just after the deposition of the seed layer solution to verify the swelling of the substrates. The RMS values for the substrates are shown in the ESI⁺ (Table S2). The roughness of the CP substrate slightly increased (from 80 to 241 nm), suggesting that the fast deposition of the seed layer does not have a strong impact on the swelling of this substrate. In contrast, for the PP substrate, the RMS value increased to a great extent (from 0.538 to 1.507 μm), probably because of the swelling of the voids/cracks, turning the paper rougher. Comparing the three substrates, this paper is the less homogeneous one.

Interestingly, the water uptake by the BC substrate led to a smoother surface, as the RMS value decreased from 0.445 to 0.153 μ m. For this substrate, well known for its water holding capacity, contrary to plant cellulose, water uptake was beneficial in terms of its roughness.