One-pot Synthesis of Quinazoline Derivatives via [2+2+2] Cascade Annulation of Diaryliodonium Salts and Two Nitriles

Xiang Su,^{*a,b*} Chao Chen,^{*a*}, * Yong Wang,^{*a,c*} Junjie Chen,^{*a*} Zhenbang Lou,^{*a,c*} Ming Li,^{*c*}

^aKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry

of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

Tel: +86-10-62773684.

E-mail: chenchao01@mails.tsinghua.edu.cn.

^bCollege of Chemistry and Biological Engineering

Beijing University of Science and Technology

Beijing, 100083, China

^cCollege of Chemistry and Molecular Engineering

Qingdao University of Science and Technology

Qingdao, 266042, China

List of the contents:

1. General Comments	S3
2. Experimental Section	S4
3. Condition Optimization	S6
4. Spectra Data of Synthesized Quinazoline 3a	S8
5. Spectra Data of Synthesized Quinazoline 3b	S10
6. Spectra Data of Synthesized Quinazoline 3c	S12
7. Spectra Data of Synthesized Quinazoline 3d	S14
8. Spectra Data of Synthesized Quinazoline 3e	
9. Spectra Data of Synthesized Quinazoline 3f	S18
10. Spectra Data of Synthesized Quinazoline 3g	S20
11. Spectra Data of Synthesized Quinazoline 3h	S22
12. Spectra Data of Synthesized Quinazoline 3i	S24
13. Spectra Data of Synthesized Quinazoline 3j	S26
14. Spectra Data of Synthesized Quinazoline 4a	S28

15. Spectra Data of Synthesized Quinazoline 4b	530
16. Spectra Data of Synthesized Quinazoline 4cS	532
17. Spectra Data of Synthesized Quinazoline 4d	534
18. Spectra Data of Synthesized Quinazoline 4eS	536
19. Spectra Data of Synthesized Quinazoline 4f	538
20. Spectra Data of Synthesized Quinazoline 4gS	541
21. Spectra Data of Synthesized Quinazoline 4h	543
22. Spectra Data of Synthesized Quinazoline 4i	545
23. Spectra Data of Synthesized Quinazoline 4j	547
24. Spectra Data of Synthesized Quinazoline 5aS	549
25. Spectra Data of Synthesized Quinazoline 5b	552
26. Spectra Data of Synthesized Quinazoline 5cS	54
27. Spectra Data of Synthesized Quinazoline 5d	356
28. Spectra Data of Synthesized Quinazoline 5eS	58
29. Spectra Data of Synthesized Quinazoline 5fS	60
30. Spectra Data of Synthesized Quinazoline 5gS	562
31. Spectra Data of Synthesized Quinazoline 5h	564
32. Spectra Data of Synthesized Quinazoline 6aS	366
33. Spectra Data of Synthesized Quinazoline 6b	568
34. Spectra Data of Synthesized Quinazoline 6cS	570
35. Spectra Data of Synthesized Quinazoline 6d	572
35. Mechanistic experimentsS	574
36. ReferencesS	576

1. General Comments

All the reactions were carried out in pre-dried a screwcapped tube with a Teflon-lined septum under N₂ atmosphere. Ph₂IPF₆ was purchased from Alfa-aesar. Diaryliodonium reagents except Ph₂IPF₆ were prepared according to the literatues^[1]. All of the solvents were fresh distilled. Column chromatography was performed on silica gel (particle size 10-40 μ m, Ocean Chemical Factory of Qingdao, China). ¹H NMR and ¹³C NMR spectra were recorded on a JEOL AL-300MHz or AL-400MHz spectrometer at ambient temperature with CDCl₃ as the solvent. Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of CDCl₃ (7.26), to the carbon resonance of CDCl₃ (77.16). Coupling constants (*J*) were given in Hertz (Hz). The term m, dq, q, t, d, s referred to multiplet, doublet quartet, quartet, triplet, doublet, singlet. Mass spectra were obtained using Bruker Esquire ion trap mass spectrometer in positive mode. The reaction progress was monitored by GC-MS if applicable, using n-Dodecane as internal standard.

2 Experimental Section

Starting diaryliodonium salts

Diaryliodonium salts were synthesized according to the literature procedures except Ph_2IPF_6 (commercially available).¹

General procedure for the preparation of desired compound 3-4

A sealed tube was charged with the mixture of diaryliodonium salt **1** (1.0 mmol) and $Cu(OTf)_2$ (0.1 mmol, 36.1 mg). The tube was evacuated and recharged with N₂ for 3 times. Appropriate nitrile **2** (3.0 mmol) and dichloroethane (5.0 mL) were added, then the tube was sealed and the mixture was allowed to stir at 130 °C for 12h. After completion, the mixture was cooled to room temperature, K₂CO₃ solid (2 mmol, 276 mg) was added and the mixture was extracted with DCM, dried by anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by chromatography on silica gel (petroleum ether/diethyl ether/triethylamine: 50/5/1 to 1000/2/1) to afford the corresponding product as a white or yellow solid or yellow oil.

General procedure for the preparation of desired compound 5-6

$$R \xrightarrow{[i]}{} R + R^{1} \xrightarrow{} N \xrightarrow$$

A sealed tube was charged with the mixture of diaryliodonium salt **1** (1.1 mmol) and $Cu(OTf)_2$ (0.2 mmol, 72.2 mg). The tube was evacuated and recharged with N₂ for 3 times. Appropriate nitrile **2a** (1.0 mmol) and dichloroethane (5.0 mL) were added, the tube was sealed and the mixture was allowed to stir at 120 °C for the indicated period of time (0.5 h-2 h). Then the mixture was cooled to room temperature, evacuated and recharged with N₂ for 3 times , appropriate nitrile **2b** (1.0 or 2.0 mmol) was added and further stirred for 12 h at 100 °C or 120 °C. After completion, the mixture was cooled to room temperature, then K₂CO₃ solid (2 mmol, 276 mg) was added and the mixture

was extracted with DCM, dried by anhydrous Na_2SO_4 . Evaporation of the solvent followed by purification on silica gel (petroleum ether/diethyl ether/triethylamine: 50/5/1 to 1000/5/1) provided the corresponding product as white or yellow solid.

3 Condition Optimization

entry	1:N1:	\mathbf{p}^1	Cu(OTf) ₂	Temp.1	Time	\mathbf{P}^2	Temp.2	Vialda
	N2	K	(eq.)	(°C)	(h)	K	(°C)	Yield
5	1:1:1.5	Ph	0.1	130	0.5	Bu	130	34%
6	1:1:1.5	Ph	0.2	120	0.5	Bu	130	49%
7	1.1:1:2	Ph	0.2	120	0.75	Bu	120	61%
8	1.1:1:2	2-thienyl	0.2	120	0.75	Bu	120	63%
9	1.1:1:2	4-CF ₃ -Ph	0.2	120	0.75	Bu	120	48%
10	1.1:1:2	4-CF ₃ -Ph	0.2	120	1.5	Bu	120	56%
11	1.1:1:1	4-OMe-Ph	0.2	120	0.5	Bu	120	69%
12	1.1:1:2	1-Naphthyl	0.2	120	0.75	Bu	120	trace
13	1.1:1:2	1-Naphthyl	0.2	120	2	Bu	120	60%
14	1.1:1:1	4-OMe-Ph	0.2	120	0.5	Ph	120	isomer
15	1.1:1:1	4-OMe-Ph	0.2	120	0.5	Ph	80	NP

16	1.1:1:1	4-OMe-Ph	0.2	120	0.5	Ph	100	isomer
17	1.1:1:1	4-OMe-Ph	0.2	120	0.5	4-CF ₃ -Ph	100	72%
18	1.1:1:2	4-OMe-Ph	0.2	120	0.5	Bn	120	50%
19	1.1:1:2	4-OMe-Ph	0.2	120	0.5	Cl-CH ₂	120	57%
20	1.1:1:2	4-OMe-Ph	0.2	120	0.5	Br-CH ₂	120	55%
21	1.1:1:2	4-OMe-Ph	0.2	120	0.5	Br	120	65%
22	1.1:1:2	4-OMe-Ph	0.2	120	0.5	Et ₂ -O ₂ C	120	60%
23	1.1:1:2	4-OMe-Ph	0.2	120	0.5	(EtO) ₂ PO	120	67%

^a Isolated yield.

2,4-diphenylquinazoline (3a)²: white solid, 237 mg, yield: 84%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.62 - 8.57 (m, 2H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.79 - 7.69 (m, 3H), 7.47 - 7.43 (m, 3H), 7.43 - 7.35 (m, 4H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 168.35, 160.29, 152.06, 138.30, 137.75,

133.60, 130.59, 130.28 (CH×2), 129.99, 129.23, 128.76 (CH×2), 128.61 (CH×4),

127.07 (CH×2), 121.74.

HRMS(ESI): m/z calcd for $C_{20}H_{14}N_2$ [M+H]⁺: 283.1230; found: 283.1233.

 1 H NMR (400 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

2, 4-bis(4-bromophenyl)quinazoline (3b): white solid, 258 mg, yield: 59%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.54 (d, *J* = 8.9Hz, 2H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.90 (t, *J* = 7.4 Hz, 1H), 7.74 (s, 4H), 7.64 (d, *J* = 8.9 Hz, 2H), 7.57 (t, *J* = 7.8 Hz, 1H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 167.32, 159.38, 152.07, 137.04, 136.46,

133.98, 131.95 (CH×2), 131.81 (CH×4), 130.31 (CH×2), 129.39, 127.56, 126.69,

125.52, 124.85, 121.58.

HRMS(ESI): m/z calcd for $C_{20}H_{12}Br_2N_2$ [M+H]⁺: 440.9421; found: 440.9420.

2,4-bis(4-(trifluoromethyl)phenyl)quinazoline (3c): white solid, 276 mg, yield: 66%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.76 (d, *J* = 7.0 Hz, 2H), 8.15 (d, *J* = 8.2 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 1H), 7.97 (d, *J* = 6.7 Hz, 2H), 7.95 - 7.90 (m, 1H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 6.8 Hz, 2H), 7.64 - 7.56 (m, 1H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.05, 158.73, 151.93, 141.17, 140.86,

134.18, 132.22 (q, *J* = 32.2 Hz), 132.06 (q, *J* = 32.7 Hz), 130.58 (CH×2), 129.55,

128.90 (CH×2), 128.09, 126.44, 125.66 (q, *J* = 3.4 Hz, CH×2), 125.50 (q, *J* = 3.5 Hz,

CH×2), 124.31(q, *J* = 272.5 Hz), 124.07 (q, *J* = 272.5 Hz), 121.69.

HRMS(ESI): m/z calcd for $C_{22}H_{12}F_6N_2[M+H]^+$: 419.0977; found: 419.0976.

 1 H NMR (400 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

2, 4-bis(4-methoxyphenyl)quinazoline (3d): white solid, 308 mg, yield: 90%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.70 - 8.64 (m, 2H), 8.13 (d, *J* = 8.3 Hz,

1H), 8.09 (d, *J* = 8.6 Hz, 1H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.83 (m, 1H), 7.49 (m, 1H),

7.14 - 7.08 (m, 2H), 7.07 - 7.01 (m, 2H), 3.91 (s, 3H), 3.89 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.62, 161.78, 161.25, 160.01, 152.21,

133.40, 131.94, 131.10, 130.35(CH×2, C×1), 128.99, 127.15, 126.48, 121.43,

114.07(CH×2), 113.91(CH×2), 55.57, 55.47.

HRMS(ESI): m/z calcd for $C_{22}H_{18}N_2O_2[M+H]^+$: 343.1441; found: 343.1440.

2,4-dip-tolylquinazoline (3e): white solid, 273 mg, yield: 88%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.73 (d, *J* = 8.1 Hz, 2H), 8.16 (dd, *J* = 11.0, 8.5 Hz, 2H), 7.82 (dd, *J* = 13.8, 7.9 Hz, 3H), 7.51 - 7.37 (m, 5H), 2.52 (s, 3H), 2.50 (s, 3H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 168.22, 160.40, 152.19, 140.76, 140.17,

135.83, 135.14, 133.45, 130.40 (CH×2), 129.45 (CH×2), 129.39 (CH×2), 129.20,

128.87 (CH×2), 127.16, 126.76, 121.75, 21.76, 21.65.

HRMS(ESI): m/z calcd for $C_{22}H_{18}N_2$ [M+H]⁺: 311.1543; found: 311.1544.

2,4-dio-tolylquinzaline (3f): white solid, 254 mg, yield: 82%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.19 (d, J = 8.3 Hz, 1H), 8.00 - 7.95 (m, 1H), 7.91 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.73 (dd, J = 4.4, 3.9 Hz, 1H), 7.54 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.43 - 7.32 (m, 7H), 2.67 (s, 3H), 2.24 (s, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 169.74, 163.59, 151.19, 139.00, 137.44, 136.96, 136.32, 133.95, 131.33, 130.84, 130.73, 129.62, 129.32 (CH×2), 129.09, 127.46, 127.16, 126.09, 125.79, 122.12, 21.33, 20.15. HRMS(ESI): m/z calcd for C₂₂H₁₈N₂ [M+H]⁺: 311.1543; found: 311.1543.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

2,4-di(naphthalene-1-yl)quinazoline (3g): yellow solid, 271 mg, yield: 71%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 8.99 (d, *J* = 8.4 Hz, 1H), 8.39 - 8.32 (m, 2H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.99 (dd, *J* = 12.7, 7.7 Hz, 4H), 7.77 - 7.71 (m, 3H), 7.69 - 7.61 (m, 3H), 7.60 - 7.54 (m, 2H), 7.50 - 7.44 (m, 2H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 169.38, 163.09, 151.42, 136.56, 134.94, 134.40, 134.32, 133.88, 131.85, 131.57, 130.55, 130.16, 129.98, 129.20, 128.68, 128.64, 128.13, 127.71, 127.51, 127.05, 126.95, 126.46, 126.29, 126.04, 125.87, 125.54, 125.33, 123.11.

HRMS(ESI): m/z calcd for $C_{28}H_{18}N_2$ [M+H]⁺: 383.1543; found: 383.1544.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

2,4-di(thiophen-2-yl)quinazoline (3h): yellow solid, 235 mg, yield: 80%. ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.41 (dd, *J* = 11.0, 3.1 Hz, 1H), 8.20 (dd, *J* = 3.7, 1.2 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.89 - 7.85 (m, 1H), 7.85 - 7.78 (m, 1H), 7.64 (dd, *J* = 5.0, 0.8 Hz, 1H), 7.55 - 7.49 (m, 2H), 7.24 (dd, *J* = 5.0, 3.7 Hz, 1H), 7.20 (dd, *J* = 5.0, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 160.43, 156.99, 152.33, 144.03, 141.51,

133.82, 131.36, 130.77, 129.97, 129.37, 129.02, 128.37, 128.27, 127.19, 126.19, 120.43.

HRMS(ESI): m/z calcd for $C_{16}H_{10}N_2S_2$ [M+H]⁺: 295.0358; found: 295.0357.

 1 H NMR (400 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

2,4-dibenzylquinazoline (3i): yellow oil, 161 mg, yield: 52%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.97 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.5 Hz, 1H), 7.71 - 7.64 (m, 1H), 7.41 - 7.33 (m, 3H), 7.23 - 7.15 (m, 4H), 7.14 - 7.07 (m, 4H), 4.47 (s, 2H), 4.35 (s, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 168.46, 164.23, 149.76, 137.66, 136.70, 132.30, 128.20(CH×2), 127.72(CH×3), 127.49(CH×2), 127.23(CH×2), 125.82,

125.52, 125.26, 123.91, 120.88, 45.24, 40.22.

HRMS(ESI): m/z calcd for $C_{22}H_{18}N_2$ [M+H]⁺: 311.1543; found: 311.1544.

2,4-dibutylquinazoline (3j): yellow oil, 131 mg, yield: 54%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.99 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.48 - 7.41 (m, 1H), 3.15 (t, *J* = 7.8 Hz, 2H), 2.99 (d, *J* = 7.9 Hz, 3H), 1.86 - 1.69 (m, 4H), 1.43 - 1.34 (m, 4H), 0.93 - 0.85 (m, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 170.58, 166.07, 149.32, 132.13, 127.56, 125.29, 123.58, 120.78, 38.85, 33.53, 30.49, 30.20, 21.87, 21.71, 12.98, 12.90. HRMS(ESI): m/z calcd for C16H22N2 [M+H]⁺: 243.1856; found: 243.1849.

 1 H NMR (301 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

6-bromo-2,4-diphenylquinazoline (4a) $^{2(a,b)}$: white solid, 259 mg, yield: 72%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.68 (dd, *J* = 7.2, 2.3 Hz, 2H), 8.26 (d, *J*

= 1.9 Hz, 1H), 8.02 (d, *J* = 9.0 Hz, 1H), 7.94 (dd, *J* = 8.9, 2.0 Hz, 1H), 7.90 - 7.84 (m,

2H), 7.65 - 7.60 (m, 3H), 7.55 - 7.50 (m, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.51, 160.57, 150.78, 137.85,

137.15(CH×1, C×1), 131.05, 130.91, 130.35, 130.18(CH×2), 129.20, 128.87(CH×2), 128.79(CH×2), 128.71(CH×2), 122.77, 120.76.

HRMS(ESI): m/z calcd for $C_{20}H_{13}BrN_2 [M+H]^+$: 361.0335; found: 361.0330.

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (101MHz, CDCl_3) (down)

2,4-diphenyl-6-(trifluoromethyl)quinazoline (4b): white solid, 245 mg, yield: 70%. ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.71 (dd, *J* = 5.5, 2.3 Hz, 2H), 8.42 (s, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.91 - 7.86 (m, 2H), 7.67 -7.60 (m, 3H), 7.57 - 7.51 (m, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 169.36, 161.92, 153.38, 137.57, 136.92, 131.30, 130.62, 130.60, 130.30 (CH×2), 129.23 (q, *J* = 2.6 Hz), 129.05 (CH×2), 128.97 (CH×2),128.73 (CH×2), 128.67 (q, *J* = 32.9 Hz), 125.19 (q, *J* = 3.8 Hz), 123.94 (q, *J* = 272.4 Hz), 120.78.

HRMS(ESI): m/z calcd for $C_{21}H_{13}F_3N_2[M+H]^+$: 351.1104; found: 351.1100.

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (101 MHz, CDCl_3) (down)

6,8-dimethyl-2,4-diphenylquinazoline (4c): white solid, 211 mg, yield: 68%. ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.78 - 8.74 (m, 2H), 7.90 - 7.86 (m, 2H), 7.71 (s, 1H), 7.62 - 7.58 (m, 3H), 7.57 - 7.54 (m, 2H), 7.54 - 7.48 (m, 2H), 2.90 (s, 3H), 2.47 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.67, 158.45, 149.67, 138.80, 138.39,

137.16, 136.51, 135.73, 130.27 (CH×3), 129.66, 128.59, 128.54 (CH×4), 123.41, 121.68, 22.03, 17.57.

HRMS(ESI): m/z calcd for $C_{22}H_{18}N_2$ [M+H]⁺: 311.1543; found: 311.1540.

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (101 MHz, CDCl_3) (down)

5,8-dimethyl-2,4-diphenylquinazoline (4d): white solid, 260 mg, yield: 84%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.75 (dd, *J* = 8.0, 1.4 Hz, 2H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.59 - 7.56 (m, 2H), 7.55 - 7.47 (m, 6H), 7.21 (d, *J* = 7.2 Hz, 1H), 2.91 (s, 3H), 2.05 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 168.63, 157.49, 152.02, 142.50, 138.36,

135.31, 133.48, 133.12, 130.37, 129.67, 129.16 (CH×2), 129.06, 128.72 (CH×2),

128.55 (CH×2), 128.30 (CH×2), 122.09, 23.91, 17.88.

HRMS(ESI): m/z calcd for $C_{22}H_{18}N_2$ [M+H]⁺: 311.1543; found: 311.1543.

8-methyl-2,4-diphenylquinazoline (4e): white solid, 260 mg, yield: 88%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.87 (dd, J = 7.3, 1.0 Hz, 2H), 7.99 - 7.85 (m, 3H), 7.72 - 7.49 (m, 7H), 7.44 - 7.34 (m, 1H), 2.97 (s, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 168.48, 159.12, 151.10, 138.78, 138.26, 137.57, 133.45, 130.54, 130.42 (CH×2), 129.87, 128.84 (CH×2), 128.64 (CH×2), 128.60 (CH×2), 126.58, 124.82, 121.69, 17.77. HRMS(ESI): m/z calcd for C₂₁H₁₆N₂ [M+H]⁺: 297.1386; found: 297.1386.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

6-methyl-2,4-diphenylquinazoline (4f)³: white solid, 263 mg, yield: 89%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.72 (d, *J* = 6.8 Hz, 2H), 8.07 (d, *J* = 8.6 Hz, 1H), 7.92 - 7.86 (m, 3H), 7.71 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.65 - 7.59 (m, 3H), 7.58 - 7.48 (m, 3H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.60, 159.67, 150.65, 138.45, 137.98,

137.26, 135.88, 130.42, 130.26(CH×2), 129.89, 128.96, 128.64(CH×6), 125.71,

121.72, 22.02.

HRMS(ESI): m/z calcd for $C_{21}H_{16}N_2$ [M+H]⁺: 297.1386; found: 297.1384.

X-ray crystal structure analysis of compound 4f: Single crystals suitable for X-ray analysis were obtained by slow evaporation of its solution in Et₂O. Formula: $C_{21}H_{16}N_2$, M = 296.3, colourless crystal, 0.30 x 0.40 x 0.40 mm, a = 7.4635(11), b = 10.487(3), c = 11.065(2) Å, $\alpha = 71.601(18)^{\circ}$, $\beta = 88.482(15)^{\circ}$, $\gamma = 72.077(13)^{\circ}$, V = 779.5(3) Å³, $\rho_{calc} = 1.263$ gcm⁻³, $\mu = 0.075$ mm⁻¹, Z = 2, triclinic, space group $P\bar{1}$ (No. 2), $\lambda = 0.71073$ Å, T = 295 K. Theta (max) = 25.1°, R (reflections) = 0.0571(1809), wR2 (reflections) = 0.1211(2725).

8-fluoro-2,4-diphenylquinazoline (4g): white solid, 282 mg, yield: 94%
¹H NMR (301 MHz, CHLOROFORM-D) δ 8.64 - 8.52 (m, 2H), 7.76 - 7.66 (m, 3H), 7.46 - 7.31 (m, 7H), 7.29 - 7.21 (m, 1H).
¹³C NMR (76 MHz, CHLOROFORM-D) δ 168.28, 160.38, 157.86 (d, *J* = 258.5 Hz), 142.68 (d, *J* = 12.1 Hz), 137.88, 137.52, 130.99, 130.30 (CH×3), 129.00 (CH×2), 128.71 (CH×2), 128.68 (CH×2), 126.44 (d, *J* = 7.5 Hz), 123.10, 122.83 (d, *J* = 4.8 Hz), 117.52 (d, *J* = 18.3 Hz).

HRMS(ESI): m/z calcd for C₂₀H₁₃FN₂ [M+H]⁺: 301.1136; found: 301.1136.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

2,4-diphenylbenzo[h]quinazoline (4h)⁴: white solid, 219 mg, yield: 66%. ¹H NMR (400 MHz, CHLOROFORM-D) δ 9.56 - 9.50 (m, 1H), 8.92 - 8.86 (m, 2H), 7.94 - 7.90 (m, 3H), 7.88 - 7.84 (m, 1H), 7.80 - 7.75 (m, 2H), 7.73 - 7.69 (m, 1H), 7.64 - 7.54 (m, 6H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 166.76, 160.16, 151.97, 138.61, 138.18, 135.14, 130.83, 130.63, 130.47 (CH×2), 130.12, 129.79, 128.85 (CH×2), 128.66

(CH×4), 127.92, 127.85, 127.40, 125.43, 122.88, 119.32.

HRMS(ESI): m/z calcd for $C_{24}H_{16}N_2$ [M+H]⁺: 333.1386; found: 333.1386.

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

8-fluoro-2,4-diphenylquinazoline (41): white solid, 270 mg, yield: 90%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.69 (m, 2H), 8.16 (dd, *J* = 9.2, 5.3 Hz, 1H), 7.91 - 7.86 (m, 2H), 7.75 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.68 - 7.64 (m, 1H), 7.64 - 7.60 (m, 3H), 7.57 - 7.51 (m, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ167.87 (d, *J* = 5.5 Hz), 161.70, 159.98,

159.22, 149.25, 137.68 (d, *J* = 63.3 Hz), 131.89 (d, *J* = 8.5 Hz), 130.70, 130.26,

130.06(CH×2), 128.83(CH×2), 128.68(CH×2), 128.65(CH×2), 123.97 (d, *J* = 25.8 Hz), 122.16 (d, *J* = 9.2 Hz), 110.48 (d, *J* = 23.1 Hz).

HRMS(ESI): m/z calcd for $C_{20}H_{13}FN_2[M+H]^+$: 301.1136; found: 301.1130.

 1 H NMR (400 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

6-chloro-2,4-diphenylquinazoline $(4j)^5$: white solid, 240 mg, yield: 76%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.66 (dd, *J* = 5.5, 2.5 Hz, 2H), 8.07 (dd, *J* = 5.5, 3.2 Hz, 2H), 7.85 (dd, *J* = 6.4, 2.9 Hz, 2H), 7.78 (dd, *J* = 9.0, 2.2 Hz, 1H), 7.64 - 7.57 (m, 3H), 7.48 - 7.55 (m, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.61, 160.53, 150.58, 137.86, 137.19,

134.58, 132.68, 130.97, 130.87, 130.33, 130.17 (CH×2), 128.85 (CH×2), 128.77

(CH×2), 128.69 (CH×2), 125.88, 122.26.

HRMS(ESI): m/z calcd for $C_{20}H_{13}ClN_2$ [M+H]⁺: 317.0840; found: 317.0837.

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (101 MHz, CDCl_3) (down)

4-butyl-2-(4-methoxyphenyl)quinazoline (5a): white solid, 202 mg, yield: 69%. ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.61 (d, *J* = 8.9 Hz, 2H), 8.08 (d, *J* = 8.2 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.83 - 7.78 (m, 1H), 7.54 - 7.48 (m, 1H), 7.04 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H),3.30 (t, *J* = 7.6 Hz, 2H), 2.00 - 1.91 (m, 2H), 1.60 - 1.47 (m, 2H), 1.03 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 171.39, 161.72, 159.97, 150.88, 133.26,
131.32, 130.28 (CH×2), 129.26, 126.33, 124.71, 122.34, 113.94 (CH×2), 55.47, 34.39,
30.74, 22.92, 14.13.

HRMS(ESI): m/z calcd for $C_{19}H_{20}N_2O[M+H]^+$: 293.1648; found: 293.1645.

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

X-ray crystal structure analysis of compound 5a: Single crystals suitable for X-ray analysis were obtained by slow evaporation of its solution in Et₂O. Formula: $C_{19}H_{20}N_2O$, M = 292.37, colourless crystal, 0.20 x 0.40 x 0.60 mm, a = 7.482(2), b = 9.231(3), c = 12.345(3) Å, $\alpha = 71.15(3)^{\circ}$, $\beta = 75.16(2)^{\circ}$, $\gamma = 86.82(3)^{\circ}$, V = 779.7(4)Å³, $\rho_{calc} = 1.245$ gcm⁻³, $\mu = 0.078$ mm⁻¹, Z = 2, triclinic, space group $P\bar{1}$ (No. 2), $\lambda = 0.71073$ Å, T = 295 K. Theta (max) = 25.5°, R (reflections) = 0.0599(1462), wR2 (reflections) = 0.1339(2871).

4-benzyl-2-(4-methoxyphenyl)quinazoline (5b): white solid, 162 mg, yield: 50%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 8.63 (d, *J* = 8.9 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.83 - 7.75 (m, 1H), 7.50 - 7.43 (m, 1H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 2H), 7.23 (d, *J* = 7.1 Hz, 1H), 7.05 (d, *J* = 8.9 Hz, 2H), 4.67 (s, 2H), 3.90 (s, 3H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 169.15, 161.84, 160.10, 151.40, 138.13, 133.44, 131.10, 130.35(CH×2), 129.29, 129.03(CH×2), 128.71(CH×2), 126.72, 126.61, 125.19, 122.30, 113.99(CH×2), 55.49, 41.60.

HRMS(ESI): m/z calcd for C₂₂H₁₈N₂O [M+H]⁺: 327.1492; found: 327.1490.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

2-(4-methoxyphenyl)-4-(4-(trifluoromethyl)phenyl)quinazoline (5c): white solid, 270 mg, yield: 72%.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.65 - 8.59 (m, 2H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 3H), 7.86 (t, *J* = 9.1 Hz, 3H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.05 - 6.99 (m, 2H), 3.88 (s, 3H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 166.79, 162.02, 160.16, 152.21, 141.32,

133.87, 131.82 (q, J = 32.8 Hz), 130.67, 130.56(CH×2), 130.40 (CH×2), 129.26,

127.01, 126.44, 125.59 (q, *J* = 3.6 Hz, CH×2), 124.12 (q, *J* = 272.3 Hz), 121.24,

114.02 (CH×2), 55.48.

HRMS(ESI): m/z calcd for C₂₂H₁₅F₃N₂O [M+H]⁺: 381.1209; found: 381.1210.

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

4-(bromomethyl)-2-(4-methoxyphenyl)quinazoline (5d): yellow solid, 179 mg,

yield: 55%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.53 - 8.47 (m, 2H), 8.08 (d, *J* = 8.3 Hz,

1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.81 - 7.74 (m, 1H), 7.55 - 7.48 (m, 1H), 6.97 - 6.92 (m, 2H), 4.88 (s, 2H), 3.82 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.79, 161.99, 160.19, 151.83, 134.08,

130.43, 130.36 (CH×2), 129.45, 126.95, 124.63, 120.98, 114.02 (CH×2), 55.49, 29.84.

HRMS(ESI): m/z calcd for $C_{16}H_{13}BrN_2O[M+H]^+$: 329.0284; found: 329.0288.

 1 H NMR (301 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

4-bromo-2-(4-methoxyphenyl)quinazoline (5e): white solid, 203 mg, yield: 65%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 8.47 - 8.42 (m, 2H), 8.04 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.90 (d, *J* = 8.7 Hz, 1H), 7.81 - 7.74 (m, 1H), 7.53 - 7.47 (m, 1H), 6.92 (dd, *J* = 9.4, 2.4 Hz, 2H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 162.33, 159.97, 157.06, 151.45, 134.75, 130.59 (CH×2), 128.78, 128.23, 127.94, 125.90, 124.49, 114.07 (CH×2), 55.50.
HRMS(ESI): m/z calcd for C₁₅H₁₁BrN₂O [M+H]⁺: 315.0128; found: 315.0127.

 1 H NMR (301 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

4-(chloromethyl)-2-(4-methoxyphenyl)quinazoline (5f): yellow solid, 162 mg, yield: 57%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.50 - 8.45 (m, 2H), 8.03 (d, *J* = 8.3Hz,

1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.77 - 7.70 (m, 1H), 7.48 - 7.41 (m, 1H), 6.95 - 6.89 (m, 2H), 4.97 (s, 2H), 3.78 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 164.37, 162.01, 160.11, 151.78, 134.02,

130.41, 130.37 (CH×2), 129.42, 127.06, 124.59, 121.04, 114.02 (CH×2), 55.48, 43.95.

HRMS(ESI): m/z calcd for C₁₆H₁₃ClN₂O [M+H]⁺: 285.0789; found: 285.0792.

 1 H NMR (301 MHz, CDCl₃) (up) and 13 C NMR (101 MHz, CDCl₃) (down)

Ethyl 2-(4-methoxyphenyl)quinazoline-4-carboxylate (5g): white solid, 185 mg, yield: 60%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.52 (d, *J* = 8.8 Hz, 2H), 8.33 (d, *J* = 8.4 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 2H), 4.54 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 165.43, 162.16, 160.13, 157.71, 152.55, 134.38, 130.50 (CH×2), 130.18, 129.08, 127.76, 125.91, 120.14, 114.07 (CH×2), 62.61, 55.49, 14.41.

HRMS(ESI): m/z calcd for $C_{18}H_{16}N_2O_3[M+H]^+$: 309.1234; found: 309.1235.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

OMe

2-(4-methoxyphenyl)quinazoline $(5h)^6$: yellow solid, 161 mg, yield: 67%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 8.05 - 7.99 (m, 2H), 7.41 - 7.34 (m, 2H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.10 - 1.05 (m, 2H), 6.96 - 6.92 (m, 2H), 3.82 (s, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 163.56, 149.52, 139.26, 130.27 (CH×2), 129.34 (CH×2), 126.96, 126.71, 120.47 (CH×2), 114.54 (CH×2), 111.09, 55.73. HRMS(ESI): m/z calcd for C₁₅H₁₂N₂O [M+H]⁺: 237.1022; found: 237.1015.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

4-butyl-2-phenylquinazoline $(6a)^{2(a,b,c),7}$: white solid, 160 mg, yield: 61%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.59 - 8.49 (m, 2H), 8.04 - 7.95 (m, 2H),

7.77 - 7.70 (m, 1H), 7.50 - 7.38 (m, 4H), 3.24 (t, *J* = 7.8 Hz, 2H), 1.94 - 1.82 (m, 2H),

1.52 - 1.37 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H)

¹³C NMR (76 MHz, CHLOROFORM-D) δ 171.62, 160.20, 150.82, 138.61, 133.35,

130.42, 129.50, 128.67 (CH×2), 128.61 (CH×2), 126.80, 124.72, 122.64, 34.43, 30.79, 22.92, 14.12.

HRMS(ESI): m/z calcd for C₁₈H₁₈N₂ [M+H]⁺: 263.1543; found: 263.1525.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

4-butyl-2-(thiophen-2-yl)quinazoline (6b): white solid, 169 mg, yield: 63%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 8.15 (dd, *J* = 3.7, 1.2 Hz, 1H), 8.06 (dd, *J* = 8.2, 0.6 Hz, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.81 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.55 - 7.47 (m, 2H), 7.18 (dd, *J* = 5.0, 3.7 Hz, 1H), 3.28 (t, *J* = 7.8 Hz, 2H), 1.99 - 1.88 (m, 2H), 1.59 - 1.46 (m, 2H), 1.02 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 171.76, 157.16, 150.65, 144.59, 133.53,

129.67, 129.05 (CH×2), 128.28, 126.53, 124.80, 122.48, 34.19, 30.61, 22.86, 14.09. HRMS(ESI): m/z calcd for $C_{16}H_{16}N_2S$ [M+H]⁺: 269.1107; found: 269.1104.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

4-butyl-2-(naphthalen-1-yl)quinazoline (6c): white solid, 187 mg, yield: 60%. ¹H NMR (301 MHz, CHLOROFORM-D) δ 8.75 - 8.64 (m, 1H), 8.19 (dd, J = 10.7, 6.7 Hz, 3H), 8.01 - 7.87 (m, 3H), 7.64 (t, J = 7.7 Hz, 2H), 7.58 - 7.48 (m, 2H), 3.40 (t, J = 7.8 Hz, 2H), 2.05 - 1.87 (m, 2H), 1.64 - 1.48 (m, 2H), 1.04 (t, J = 7.3 Hz, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 171.93, 162.86, 150.68, 136.91, 134.35, 133.66, 131.46, 130.20, 129.55, 129.51, 128.53, 127.34, 126.73, 126.27, 125.90, 125.46, 124.82, 122.16, 34.72, 31.40, 23.08, 14.12. HRMS(ESI): m/z calcd for C₂₂H₂₀N₂ [M+H]⁺: 313.1699; found: 313.1696.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

4-butyl-2-(4-(trifluoromethyl)phenyl)quinazoline (6d): white solid, 185 mg, yield: 56%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.67 (d, *J* = 8.0 Hz, 2H), 8.07 - 7.96 (m, 2H), 7.78 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.52 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 3.25 (t, *J* = 7.8 Hz, 2H), 1.94 - 1.82 (m, 2H), 1.52 - 1.39 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 171.93, 158.74, 150.66, 141.89, 133.61,

131.93 (q, *J* = 32.1 Hz), 129.60, 128.90(CH×2), 127.40, 125.47 (q, *J* = 3.7 Hz, CH×2),

124.76, 124.39 (q, *J* = 272.2 Hz), 122.87, 34.39, 30.74, 22.89, 14.09.

HRMS(ESI): m/z calcd for C₁₉H₁₇N₂F₃ [M+H]⁺: 331.1417; found: 331.1420.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

230.0964, Found: 230.0983.

A sealed tube was charged with the mixture of $Cu(OTf)_2$ (0.2 mmol, 72.2 mg) and diphenyliodonium hexafluorophosphate (1.0 mmol, 426.1mg). The tube was evacuated and recharged with N₂ for 3 times. Before1-cyanonaphthalene (1.0 mmol, 153.2 mg), and dichloroethane (5.0 mL) were added, the tube was sealed and the mixture was allowed to stir at 120 °C for 2 h. After completion, the mixture was cooled to room temperature, then H₂O (5 mL) was added and the mixture was allowed to stir at room temperature for 1h., extracted with DCM, dried by anhydrous Na₂SO₄. Evaporation of the solvent followed by purification on silica gel (petroleum ether/ ethyl acetate: 10/1) provided **8** as a white solid.

In the preparation of quinazoline **6c**, compound **8** was found in the reaction mixture by GC-MS, around 10% yield.

N-phenyl-1-naphthamide 8^8 : white solid, 217 mg, yield: 88%.

¹H NMR (301 MHz, CHLOROFORM-D) δ 8.33 - 8.21 (m, 1H), 7.96 (s, 1H), 7.84 (dd, *J* = 11.1, 6.8 Hz, 2H), 7.60 (dd, *J* = 10.9, 7.7 Hz, 3H), 7.49 (dd, *J* = 9.0, 4.9 Hz, 2H), 7.33 (dd, *J* = 16.5, 8.3 Hz, 3H), 7.13 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 167.78, 138.20, 134.48, 133.80, 131.04,

130.15, 129.19 (CH×2), 128.50, 127.38, 126.64, 125.38, 125.22, 124.77, 124.72, 120.18 (CH×2).

GC-MS: m/z calcd for C₁₇H₁₃NO: 247.1; found: 247.

 ^1H NMR (301 MHz, CDCl_3) (up) and ^{13}C NMR (76 MHz, CDCl_3) (down)

Reference:

- 1 (a) Skucas, E.; MacMillan, D. W. C J. Am. Chem. Soc. 2012, 134, 9090. (b)
- Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
- 2 (a) Han, B.; Wang, C.; Han, R.; Yu, W.; Duan, X.; Fang, R.; Yang, X. Chem.
- Commun. 2011, 47, 7818. (b) Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513. (c)
- Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
- 3 Kumar, V.; Mohan C.; Gupta, M.; Mahajan, M. P. Tetrahedron 2005, 61, 3533.
- 4 Herrera, A.; Martı'nez-Alvarez, R.; Chioua, M.; Chatt, R.; Chioua, R.; Sa'nchez, A.; Almy, J. *Tetrahedron* **2006**, *62*, 2799.
- 5 Zhang, Z.; Zhang, X.; Mo, L.; Li, Y.; Ma, F. Green Chem. 2012, 14, 1502.
- 6(a) Han, B.; Yang, X.; Wang, C.; Bai, Y.; Pan, T.; Chen, X.; Yu, W. J. Org. Chem.
- 2012, 77, 1136. (b) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. Chem. Commun.
- 2008, 2935. (c) Maheswari, C. U.; Kumar, G. S.; Venkateshwar, M.; Kumar, R. A.;
- Kantam, M. L.; Reddy, K. R. Adv. Synth. Catal. 2010, 352, 341.
- 7 Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Chem. Commun. 2010, 46, 5244.
- 8 (a) Wang Y.; Zhu D.; Tang L.; Wang S.; Wang Z. Angew. Chem. Int. Ed. 2011, 123,
- 9079. (b) Xiao F.; Liu Y; Tang C.; Deng G. Org. Lett. 2012, 14, 984. (c) Card P. J.;
- Friedli F. E.; Shechter H. J. Am. Chem. Soc. 1983, 105, 6104.