Supporting information

Integrated and insulated boronate-based fluorescent probes for the detection of hydrogen peroxide

Xiaolong Sun,^a Suying Xu,^a Stephen E. Flower,^a John S. Fossey,^c Xuhong Qian^b and Tony D. James^{*a}

^a Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. Email: t.d.james@bath.ac.uk

^b Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. E-mail: xhqian@ecust.edu.cn

^c School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK.

Content

1. General Methods

2. Supplementary Spectral Data

3. References

1. General Methods:

2-Naphthylboronic acid (1), 2-naphthol, D-fructose and hydrogen peroxide were purchased from Sigma-Aldrich Chemical Co. and used as received. Probe **2** was prepared according to described methods.¹ The concentration of H_2O_2 was determined from the absorption at 240 nm with $\mathcal{E} = 43.6 \text{ M}^{-1}\text{cm}^{-1}$. The fluorescence titrations with H_2O_2 were carried out at 25 °C in a pH 7.20 buffer (52.1% methanol in water with KCl, 10 mM; KH₂PO₄, 2.752 mM; Na₂HPO₄, 2.757 mM)² and pH 9.70 buffer (10.0% methanol in water with Na₂CO₃, 50 mM; NaHCO₃, 50 mM). Photographs were taken using a Canon camera and imgers were processed with Bitmap Image. Spectral data were processed in OriginPro 8.1 and non-linear fitted for Figure S3, Figure S6, and Figure S7.

2. Supplementary Spectral Data:

Figure S1. Plots of F_T/F_0 for probe **1** (10 μ M) with input of D-fructose (100 mM) and $H_2O_2(1 \text{ mM})$. Pink – Blank; Black – (+ H_2O_2); Red – (+ D-fructose); Blue – (+ D-fructose + H_2O_2). The mixture was incubated in pH 7.20 PBS buffer at 25 °C. Fluorescence intensities at 340 nm were measured with excitation at 290 nm.

Figure S2. Column spectral and truth table with D-fructose (100 mM) and H_2O_2 (0.10 mM) as inputs. The mixture was incubated in pH 9.70 NaCO₃/NaHCO₃ buffer at 25 °C. Fluorescence intensities at 340 nm were measured with excitation at 290 nm.

Figure S3. Time curve of fluorescent spectral changes for probe 1 (10 μ M) in various concentrations of H₂O₂ (Red - 0.10 mM, Pink - 0.20 mM, Blue - 0.50 mM, Black - 1.00 mM). The mixture was incubated in pH 7.20 PBS buffer at 25 °C. Fluorescence intensities at 340 nm were measured with excitation at 290 nm.

Figure S4. Fluorescence spectral of 2-naphthol (10 μ M) with excitation at 290 nm. The mixture was incubated in pH 7.20 PBS buffer and pH 9.70 NaCO₃/NaHCO₃ buffer at 25 °C.

Figure S5. (a) Fluorescent spectral changes for probe 2 (10 μ M) – black line and 2-D-fructose complex – red line; (b) Time curve of fluorescent spectral changes for 2-D-fructose complex with addition of H₂O₂ (0.50 mM, 0, 1, 6, 12, 18, 30, 42, 54, 84, 114, 144, 174 min). The mixture was incubated in pH 7.20 PBS buffer at 25 °C with excitation at 370 nm.

Figure S6. (a) Time curve of fluorescent spectral changes for probe 2 ($10 \ \mu$ M) upon adding H₂O₂($0.50 \ m$ M, 0, 1, 6, 12, 18, 30, 42, 54, 84, 114, 144, 174 min); (b) Plots of F_T/F₀ upon addition of H₂O₂ (Red - 0.05 mM, Black - 0.10 mM, Blue - 0.50 mM). The mixture was incubated in pH 7.20 PBS buffer at 25 °C. Fluorescence intensities at 410 nm were measured with excitation at 370 nm.

Figure S7. Time curve of fluorescent spectral changes for **2**-D-fructose complex in various concentrations of H_2O_2 (Black - 0.05 mM, Red - 0.50 mM). The mixture was incubated in pH 7.20 PBS buffer at 25 °C. Fluorescence intensities at 410 nm were measured with excitation at 370 nm.

Figure S8. Time curve of fluorescent spectral changes for probe 2 (10 μ M) with addition of H₂O₂ (0.05 mM, 0, 0.5, 1, 6, 10 min). The mixture was incubated in pH 9.70 NaCO₃/NaHCO₃ buffer at 25 °C with excitation at 370 nm.

Figure S9. (a) Fluorescent spectral changes for probe 2 (10 μ M) – black line and 2-D-fructose complex – blue line; (b) Time curve of fluorescent spectral changes for 2-D-fructose complex with addition of H₂O₂ (0.05 mM, 0, 1, 6, 12, 18, 30, 42, 54, 84, 114, 144, 174 min). The mixture was incubated in pH 9.70 NaCO₃/NaHCO₃ buffer at 25 °C with excitation at 370 nm.

Figure S10. Time curve of fluorescence intensity changes with probe **2** (10 μ M) and D-fructose (100 mM) in aqueous H₂O₂ (0.05 mM). (Black circle – H₂O₂ in pH 9.70 buffer that was left for 1 min before adding probe **2**, Red circle – H₂O₂ in pH 9.70 buffer that was left for 1 h before adding probe **2**, Pink circle – H₂O₂ in pH 9.70 buffer that was left for 2 h before adding probe **2**). The mixture was incubated in pH 9.70 NaCO₃/NaHCO₃ buffer at 25 °C. Fluorescence intensities at 418 nm were measured with excitation at 370 nm.

3. References

- 1. T. D. James, K. R. A. S. Sandanayake, R. Iguchi and S. Shinkai, J. Am. Chem. Soc., 1995, 117, 8982-8987.
- 2. D. D. Perrin and B. Dempsey, Chapman and Hall: London, 1974.