Supporting Information for:

$\mathbf{1 , 1 , n , n - T e t r a m e t h y l}[\boldsymbol{n}](2,11)$ teropyrenophanes ($n=7-9$): A Series of Armchair SWCNT Segments

Bradley L. Merner, Kiran Sagar Unikela, Louise N. Dawe, David W. Thompson and Graham J. Bodwell* Chemistry Department, Memorial University, St. John's, NL, Canada AlB 3 X7

Contents

I. General Experimental Conditions, Procedures and Characterization Data S2-S16
II. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra \quad S16-S37
III. Additional Views of $\mathbf{2 9}$ in the Crystal and Structural Analysis of the Teropyrene System S38-S49
IV. DFT Calculations and Cartesian Co-ordinates for $1,1, n, n$-Tetramethyl $[n](2,11)$ teropyrenophanes ($n=6-9$)

I. General Experimental Conditions, Procedures and Characterization Data

All reactions were performed under an atmosphere of nitrogen unless otherwise indicated. Experiments involving moisture sensitive compounds were carried out using anhydrous solvents and oven-dried (120 ${ }^{\circ} \mathrm{C}$) glassware. Solvents for these reactions were dried and distilled according to standard procedures. All other solvents and chemicals were used as received. Solvents were removed under reduced pressure using a rotary evaporator. Chromatographic separations were achieved using Silicycle silica gel 60, particle size 40-63 $\mu \mathrm{m}$. Column dimensions are recorded as height \times diameter. Thin-layer chromatography (tlc) was performed using commercially precoated plastic-backed POLYGRAM® SIL G/UV254 silica gel plates, layer thickness $200 \mu \mathrm{~m}$. Compounds on tlc plates were visualized using a UV lamp (254 and 365 nm). Melting points were obtained using a Fisher-Johns apparatus. Infrared (IR) spectra were recorded using neat samples on a Bruker TENSOR 27 instrument. ${ }^{1} \mathrm{H}(500.133 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125.77 \mathrm{MHz})$ nuclear magnetic resonance (NMR) spectra were obtained from CDCl_{3} solutions using a Bruker Avance 500 MHz spectrometer. Chemical shifts (δ) are relative to internal standards: TMS (δ_{H} $=0.00 \mathrm{ppm})$ and $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}}=7.27 \mathrm{ppm} ; \delta_{\mathrm{C}}=77.23 \mathrm{ppm}\right)$, respectively. ${ }^{1} \mathrm{H}$ NMR data are presented as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{br} \mathrm{d}=$ broad doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants $(J, \mathrm{~Hz})$. Low-resolution and highresolution mass spectrometric (MS) data were obtained using an Agilent 1100 Series LC/MSD instrument and a Waters Micromass ${ }^{\circledR}$ GCT PremierTM instrument. MS data are presented as follows: ionization mode, m / z (relative intensity), assignment (when appropriate), calculated mass and found mass for the given formula.

2,8-Dichloro-2,8-dimethylnonane (7)

A solution of dimethyl pimelate (4) ($10.7 \mathrm{~g}, 56.7 \mathrm{mmol}$) in anhydrous THF (100 mL) was added dropwise over a period of 30 min to a stirred $0^{\circ} \mathrm{C}$ solution of methylmagnesium bromide ($3.0 \mathrm{M}, 85 \mathrm{~mL}, 0.26$ mol). After the addition was complete, the reaction mixture was heated at reflux for 12 h . The reaction mixture was cooled to room temperature and quenched by the addition of a saturated solution of ammonium chloride (100 mL). The layers were separated and the aqueous layer was extracted with ether $(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield a white solid, which was recrystallized from heptane to give 2,8-dimethyl-2,8nonanediol ($8.76 \mathrm{~g}, 82 \%$) as a white powder: m.p. $71-72{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.72(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 71.12$, 44.01, 30.79, 29.30, 24.41; LCMS (APCI negative) $m / z 187[M-H]^{+}$; HRMS (CI) calculated for $\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{O}_{2}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right)$189.1855, found 189.1849. A mixture of 2,8-dimethyl-2,8-nonanediol ($3.42 \mathrm{~g}, 18.2 \mathrm{mmol}$) and concentrated aqueous HCl solution (50 mL) was stirred at room temperature for 2 h . The reaction mixture was poured into a large excess of ice water $(200 \mathrm{~mL})$ and extracted with dichloromethane (3×40 $\mathrm{mL})$. The combined organic extracts were washed with a saturated solution of sodium bicarbonate ($2 \times$ 50 mL), washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to give 2,8 -dichloro-2,8-dimethylnonane (7) $(3.80 \mathrm{~g}, 93 \%)$ as a light yellow oil, which was used subsequently without purification. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.78-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 12 \mathrm{H})$, $1.53-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 71.30,46.20,32.61,29.96$, 25.21; LCMS (APCI-positive) m / z (rel. int.) $225[\mathrm{M}+\mathrm{H}]^{+}$; no HRMS data could be obtained for this compound.

2,10-Dichloro-2,10-dimethylundecane (9)

A solution of dimethyl azelate (6) (10.8 g, 49.9 mmol$)$ in anhydrous THF (100 mL) was added dropwise over a period of 30 min to a stirred $0^{\circ} \mathrm{C}$ solution of methylmagnesium bromide $(3.0 \mathrm{M}, 75 \mathrm{~mL}, 0.23$ mol). After the addition was complete, the reaction mixture was heated at reflux for 12 h . The reaction mixture was cooled to room temperature and quenched by the addition of a saturated solution of ammonium chloride $(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with ether $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield a white solid, which was recrystallized from heptane to give 2,10-dimethyl-2,10-undecanediol ($9.05 \mathrm{~g}, 84 \%$) as a white powder: m.p. $64-66{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.52$ (br s, 2H), 1.48-1.45 (m, 4H), 1.38-1.32 (m, 10H), $1.21(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}): δ $71.21,44.17,30.32,29.80,29.41,24.52$; IR (cm^{-1}, neat): 3366, 2964, 2930, 2860, 1472, 1362; LCMS (APCI negative) $m / z 216(25) 215[\mathrm{M}-\mathrm{H}]^{+}$; HRMS (CI) calculated for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 217.2168$, found 217.2160. A mixture of 2,10-dimethyl-2,10-undecanediol ($1.75 \mathrm{~g}, 8.10 \mathrm{mmol}$) and concentrated aqueous HCl solution (40 mL) was stirred at room temperature for 2 h . The reaction mixture was poured into a large excess of ice water $(100 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with a saturated solution of sodium bicarbonate ($2 \times 50 \mathrm{~mL}$), washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to give 2,10-dichloro-2,10-dimethylundecane (9) (1.88 g, 92\%) as a light yellow oil, which was used subsequently without purification. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.79-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~s}, 12 \mathrm{H})$, $1.48-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 71.42,46.32,32.45,29.90$,
29.74, 25.01; LCMS (APCI-positive) m / z (rel. int.) $253[\mathrm{M}+\mathrm{H}]^{+}$; no HRMS data could be obtained for this compound.

2,8-Bis(2-pyrenyl)-2,8-dimethylnonane (10)

Aluminum chloride $(1.64 \mathrm{~g}, 12.3 \mathrm{mmol})$ was added to a stirred $0{ }^{\circ} \mathrm{C}$ solution of pyrene $(6.21 \mathrm{~g}, 30.7$ mmol) and 2,8-dichloro-2,8-dimethylnonane (7) ($1.38 \mathrm{~g}, 6.14 \mathrm{mmol}$) in dichloromethane (100 mL). The resulting slurry was allowed to warm to room temperature and stirred for 4 h . The reaction was poured into ice water (200 mL) and the layers were separated. The aqueous layer was extracted with dichloromethane $(2 \times 100 \mathrm{~mL})$ and the combined organic extracts were washed with a saturated solution of sodium bicarbonate (50 mL), washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The yellow residue was subjected to column chromatography ($25 \times 6.5 \mathrm{~cm} ; 1: 9$ dichloromethane/hexanes) to yield 2,8-bis(2-pyrenyl)-2,8-dimethylnonane (10) as a white solid (1.40 g, 41%): $R_{f}=0.26$ (1:9 dichloromethane/hexanes); m.p. $207-209{ }^{\circ} \mathrm{C}$ (dichloromethane); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.16(\mathrm{~s}, 4 \mathrm{H}), 8.08-8.00(\mathrm{~m}, 10 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}$, $12 \mathrm{H}), 1.19-1.15(\mathrm{~m}, 2 \mathrm{H}) 1.07-1.02(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.09,131.41,131.32$, $128.04,127.56,125.82,125.08,124.99,123.25,123.18,45.54,38.54,31.35,29.89,25.21$; LCMS (APCIpositive) m / z (rel. int.) $559(12), 558(47), 557\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (EI) calculated for $\mathrm{C}_{43} \mathrm{H}_{40}\left([\mathrm{M}]^{+}\right)$ 556.3130, found 556.3128.

2,10-Bis(2-pyrenyl)-2,10-dimethylundecnane (12)

Aluminum chloride $(1.78 \mathrm{~g}, 13.4 \mathrm{mmol})$ was added to a stirred $0{ }^{\circ} \mathrm{C}$ solution of pyrene $(6.73 \mathrm{~g}, 33.3$ mmol) and 2,10-dichloro-2,10-dimethylundecane (9) ($1.68 \mathrm{~g}, 6.67 \mathrm{mmol}$) in dichloromethane (100 mL). The resulting slurry was allowed to warm to room temperature and stirred for 4 h . The reaction was poured into ice water $(300 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with dichloromethane $(2 \times 100 \mathrm{~mL})$ and the combined organic extracts were washed with a saturated solution of sodium bicarbonate (50 mL), washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The oily orange residue was subjected to column chromatography ($25 \times 6.5 \mathrm{~cm}$; 1:9 dichloromethane/hexanes) to yield 2,10-bis(2-pyrenyl)-2,10-dimethylundecane (12) as an orange oil
$(1.67 \mathrm{~g}, 43 \%): R_{f}=0.28$ (1:9 dichloromethane/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.05(\mathrm{~m}$, 8H), 7.98-7.95 (m, 8H), 7.91-7.87 (m 2H) 1.74-1.71 (m, 4H), 1.47 (s, 12H), 1.08-1.02 (m, 6H) 1.01$0.93(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.88,131.14,131.08,127.80,127.34,125.64,124.88$, 124.81, 123.05, 122.97, 45.31, 38.40, 30.45, 29.72, 29.51, 24.91; LCMS (APCI-positive) m / z (rel. int.) 587 (13), 586 (49), $585\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 385(7), 384(18), 383\left(\mathrm{M}-\mathrm{C}_{16} \mathrm{H}_{10}, 42\right)$; HRMS (EI) calculated for $\mathrm{C}_{45} \mathrm{H}_{44}\left([\mathrm{M}]^{+}\right) 584.3443$, found 584.3441.

2,8-Bis(6-formylpyren-2-yl)-2,8-dimethylnonane (13)

Titanium(IV) chloride ($0.453 \mathrm{~g}, 2.39 \mathrm{mmol}$) was added to a stirred $0^{\circ} \mathrm{C}$ solution of 2,8 -bis(2-pyrenyl)-2,8-dimethylnonane (10) ($0.531 \mathrm{~g}, 0.953 \mathrm{mmol})$ and dichloromethyl methyl ether ($0.274 \mathrm{~g}, 2.39 \mathrm{mmol}$) in dichloromethane (25 mL). The cooling bath was removed and the resulting mixture was stirred at room temperature for 2 h . The reaction mixture was poured into ice water (100 mL) and the layers were separated. The aqueous layer was extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$ and the combined organic extracts were washed with a saturated solution of sodium bicarbonate $(40 \mathrm{~mL})$, washed with brine (40 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The solid brown residue was subjected to column chromatography ($30 \times 3 \mathrm{~cm}$; dichloromethane) to yield 2,8-bis(6-formylpyren-2-yl)-2,8-dimethylnonane (13) as a bright yellow solid ($0.488 \mathrm{~g}, 84 \%$): $R_{f}=0.26$ (dichloromethane); m.p. 165$168{ }^{\circ} \mathrm{C}$ (dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.62(\mathrm{~s}, 2 \mathrm{H}), 9.27(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.16$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.13-8.10(\mathrm{~m}, 4 \mathrm{H}), 8.08(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) 1.77-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 12 \mathrm{H}), 1.14-1.11(\mathrm{~m}, 2 \mathrm{H}) 0.99-0.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, CDCl_{3}) δ 193.34, 148.82, 135.77, 132.28, 131.49, 131.45, 131.30, 131.19, 131.11, $130.66,127.60,127.32,125.29,124.85,124.62,123.14,122.62,45.41,38.72,30.37,29.80,25.10$; LCMS (APCI-positive) m / z (rel. int.) 615 (11), 614 (49), 613 ([M+H] ${ }^{+}, 100$); HRMS (EI) calculated for $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right) 612.3028$, found 612.3020.

2,10-Bis(6-formylpyren-2-yl)-2,10-dimethylundecane (15)

Titanium(IV) chloride ($0.67 \mathrm{~g}, 3.5 \mathrm{mmol}$) was added to a stirred $0^{\circ} \mathrm{C}$ solution of 2,10-bis(2-pyrenyl)-2,10-dimethylundecnane (12) ($0.82 \mathrm{~g}, 1.4 \mathrm{mmol}$) and dichloromethyl methyl ether ($0.40 \mathrm{~g}, 3.5 \mathrm{mmol}$) in dichloromethane $(30 \mathrm{~mL})$. The cooling bath was removed and the resulting mixture was stirred at room temperature for 2 h . The reaction mixture was poured into ice water (100 mL) and the layers were separated. The aqueous layer was extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$ and the combined organic
extracts were washed with washed with a saturated solution of sodium bicarbonate (40 mL), washed with brine (40 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The solid brown residue was subjected to column chromatography ($20 \times 3.5 \mathrm{~cm}$; dichloromethane) to yield 2,10-bis(6-formylpyren-2-yl)-2,10-dimethylundecane (15) as a light brown oil ($0.77 \mathrm{~g}, 88 \%$): $R_{f}=0.26$ (dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.73(\mathrm{~s}, 2 \mathrm{H}), 9.32(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.20-8.14(\mathrm{~m}, 6 \mathrm{H}) 8.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-$ $1.72(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 12 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 6 \mathrm{H}) 0.98-0.93(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $193.52,148.94,135.75,132.22,131.54,131.51,131.33,131.25,131.15,130.63,127.67,127.36,125.33$, 124.96, 124.70, 123.26, 122.63, 45.36, 38.69, 30.41, 29.84, 29.61 25.12; LCMS (APCI-positive) m / z (rel. int.) 643 (14), $642(54), 641\left([M+H]^{+}, 100\right), 613$ (16); HRMS (EI) calculated for $\mathrm{C}_{47} \mathrm{H}_{44} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right)$ 640.3341, found 640.3335.

2,8-Bis(6-(bromomethyl)pyren-2-yl)-2,8-dimethylnonane (16)

Sodium borohydride ($0.082 \mathrm{~g}, 2.2 \mathrm{mmol}$) was added to a stirred $0^{\circ} \mathrm{C}$ solution of 2,8-bis(6-formylpyren-2-
 slowly warm to room temperature over a 16 h period. THF was evaporated under reduced pressure and the solid residue was taken up into dichloromethane (30 mL). This solution was cooled to $0{ }^{\circ} \mathrm{C}$ and an aqueous 1 M HCl solution was added until the solution was at acidic pH . The layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with a saturated solution of sodium bicarbonate (30 mL), washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield 2,8-bis(6-(hydroxymethyl)pyren-2-yl)-2,8-dimethylnonane as a light yellow oil $(0.359 \mathrm{~g}, 93 \%)$. Purification of this compound was not necessary and the crude material was used in subsequent experiments: $R_{f}=0.18$ (1:9 EtOAc/dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23$ (d, J=9.2 Hz, 2H), 8.07 ($\mathrm{s}, 4 \mathrm{H}$), 8.04 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}) 7.97-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.93$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) 5.27$ (s, 4H) 1.99 (br s, $2 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 12 \mathrm{H}), 1.00-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz , CDCl_{3}) $\delta 148.22,133.98,131.50,131.42,130.96,128.99,128.53,128.10,127.56,126.07,125.30$, $124.87,123.57,123.48,123.35,123.18,64.25,45.44,38.61,30.47,29.51,25.31$; LCMS (APCI-positive) m / z (rel. int.) 597 (12), 596 (51), 595 ($100,[\mathrm{M}-\mathrm{OH}]^{+}$); HRMS (EI) calculated for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{O}_{2}$ ([M] ${ }^{+}$) 616.3341, found 616.3334. Phosphorus tribromide ($0.090 \mathrm{~g}, 0.33 \mathrm{mmol}$) was added to a stirred $0^{\circ} \mathrm{C}$ solution of 2,8-bis(6-(hydroxymethyl)pyren-2-yl)-2,8-dimethylnonane ($0.273 \mathrm{~g}, 0.443 \mathrm{mmol}$) in dichloromethane $(15 \mathrm{~mL})$. After 4 h , water $(15 \mathrm{~mL})$ was added. The layers were separated and the
aqueous layer was extracted with dichloromethane $(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield 2,8-bis(6-(bromomethyl)pyren-2-yl)-2,8-dimethylnonane (16) as a light yellow solid ($0.292 \mathrm{~g}, 89 \%$). Purification of 16 was not necessary and the crude material was used in subsequent experiments: $R_{f}=$ 0.24 (15% dichloromethane/hexanes); m.p. $103-106{ }^{\circ} \mathrm{C}$ (dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.16-8.11(\mathrm{~m}, 6 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.00-7.94(\mathrm{~m}, 6 \mathrm{H}), 5.26(\mathrm{~s}, 4 \mathrm{H})$, $1.78-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 12 \mathrm{H}), 1.12-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.96(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.55,133.22,131.40,130.96,130.77,129.32,128.88,128.69,127.76,127.52,125.49$, 125.03, 123.91, 123.88, 123.24, 123.07, 45.45, 38.63, 32.73, 30.46, 29.87, 25.15; LCMS (APCI-positive) m / z (rel. int.) 667 (12), $666(53), 665\left(98,\left[M\left({ }^{81} \mathrm{Br}\right)-\mathrm{Br}\right]^{+}\right), 664(52) 663\left(100,\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{Br}\right]^{+}\right)$; No HRMS data could be obtained for this compound.

2,9-Bis(6-(bromomethyl)pyren-2-yl)-2,9-dimethyldecane (17)

Sodium borohydride ($0.356 \mathrm{~g}, 9.57 \mathrm{mmol}$) was added to a stirred $0^{\circ} \mathrm{C}$ solution of 2,9-bis(6-formylpyren-2-yl)-2,9-dimethyldecane (14) ($1.50 \mathrm{~g}, 2.39 \mathrm{mmol}$) in THF (30 mL). The resulting slurry was allowed to slowly warm to room temperature over a 12 h period. The solvent was evaporated under reduced pressure and the solid residue was taken up in dichloromethane (30 mL). This solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ and an aqueous 1 M HCl solution was added until the solution was at acidic pH . The layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with a saturated solution of sodium bicarbonate $(50 \mathrm{~mL})$, washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield 2,9-bis(6-(hydroxymethyl)pyren-2-yl)-2,9-dimethyldecane as a clear straw-colored oil (1.43 g, 95\%). This compound was used in further experiments without purification: $R_{f}=0.35$ (1:9 EtOAc/dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 4 \mathrm{H}), 8.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=9.2$ Hz, 2H) 7.96-7.94 (m, 4H), 7.93 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.27 (s, 4H) 1.99 (br s, 2H), 1.76-1.73 (m, 4H), 1.46 $(\mathrm{s}, 12 \mathrm{H}), 1.08-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.22,133.98$, $131.50,131.42,130.96,128.99,128.53,128.10,127.56,126.07,125.30,124.87,123.57,123.48,123.35$, 123.18, 64.25, 45.44, 38.61, 30.47, 29.51, 25.31; LCMS (APCI-positive) m / z (rel. int.) 615 (15), 614 (50), 613 (100, ([M-OH $\left.]^{+}\right)$; HRMS (EI) calculated for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{O}_{2}$ ([M] ${ }^{+}$) 630.3498, found 630.3496. Phosphorus tribromide $(0.398 \mathrm{~g}, 1.48 \mathrm{mmol})$ was added to a stirred solution of 2,9-bis(6-(hydroxymethyl)pyren-2-yl)-2,9-dimethyldecane $(1.24 \mathrm{~g}, 1.97 \mathrm{mmol})$ in dichloromethane (25 mL) at 0 ${ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and stirred for 1 h . Water (25 mL)
was added and the layers were separated. The aqueous layer was extracted with dichloromethane $(2 \times 30$ mL). The combined organic extracts were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield 2,9-bis(6-(bromomethyl)pyren-2-yl)-2,9-dimethyldecane (17) as a light yellow solid ($1.38 \mathrm{~g}, 92 \%$). This material was used in further experiments without purification: $R_{f}=0.22$ (15% dichloromethane/hexanes); m.p. $193-194{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.14-8.12(\mathrm{~m}, 6 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) 7.94$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 4 \mathrm{H}), 1.75-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 12 \mathrm{H}), 1.10-1.08(\mathrm{~m}$, $4 \mathrm{H}), 0.99-0.94(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.55,133.21,131.41,130.97,130.76$, $129.31,128.88,128.69,127.76,127.52,125.47,125.03,123.91,123.88,123.24,123.07,45.45,38.64$, 32.74, 30.49, 29.88, 25.17; LCMS (APCI-positive) m / z (rel. int.) 679 (12), 678 (41), $677\left(100,\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\right.\right.$ $\left.\mathrm{Br}^{+}\right), 676(42), 675\left(92,\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{Br}\right]^{+}\right)$; HRMS (EI) calculated for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{Br}_{2}\left([\mathrm{M}]^{+}\right) 754.1810$, found 754.1804 .

2,10-Bis(6-(bromomethyl)pyren-2-yl)-2,10-dimethylundecane (18)

Sodium borohydride ($0.124 \mathrm{~g}, 3.28 \mathrm{mmol}$) was added to a stirred $0{ }^{\circ} \mathrm{C}$ solution of 2,10-bis(6-formylpyren-2-yl)-2,10-dimethylundecane (15) $(0.610 \mathrm{~g}, 0.952 \mathrm{mmol})$ in THF (30 mL). The resulting slurry was allowed to slowly warm to room temperature over a 12 h period. THF was evaporated under reduced pressure and the solid residue was taken up into dichloromethane (30 mL). This solution was cooled to $0{ }^{\circ} \mathrm{C}$ and an aqueous 1 M HCl solution was added until the solution was at acidic pH . The layers were separated and the aqueous layer extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with a saturated solution of sodium bicarbonate $(30 \mathrm{~mL})$, washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield 2,10-bis(6-(hydroxymethyl)pyren-2-yl)-2,10-dimethylundecane as a clear straw-colored oil ($0.581 \mathrm{~g}, 94 \%$). Purification of this compound was not necessary and the crude material was used in subsequent experiments: $R_{f}=0.13$ (1:9 EtOAc/dichloromethane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.21-8.17(\mathrm{~m}, 6 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) 8.01-7.98(\mathrm{~m}, 4 \mathrm{H}), 5.24(\mathrm{~s}, 4 \mathrm{H})$ $1.93(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 12 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 6 \mathrm{H}), 1.02-0.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.06,133.77,131.31,131.22,130.75,128.80,128.34,127.91,127.35,125.87$, 125.10, 124.67, 123.39, 123.28, 123.15, 122.98, 64.05, 45.26, 38.61, 30.35, 29.68, 29.42, 25.41; LCMS (APCI-positive) m / z (rel. int.) 629 (12), 628 (51), 627 (100, [M-OH] $]^{+}$; HRMS (EI) calculated for $\mathrm{C}_{47} \mathrm{H}_{48} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right) 644.3654$, found 644.3643 . Phosphorus tribromide $(0.160 \mathrm{~g}, 0.591 \mathrm{mmol})$ was added to a stirred $0{ }^{\circ} \mathrm{C}$ solution of 2,10-bis(6-(hydroxymethyl)pyren-2-yl)-2,10-dimethylundecane ($0.510 \mathrm{~g}, 0.791$
$\mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$. The reaction was allowed to warm to room temperature and after 1 h , water (20 mL) was added. The layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water $(50 \mathrm{~mL})$, washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield 2,10-bis(6-(bromomethyl)pyren-2-yl)-2,10-dimethylundecane (18) as a light yellow solid ($0.542 \mathrm{~g}, 89 \%$). Purification of $\mathbf{1 8}$ was not necessary and the crude material was used in subsequent experiments: $R_{f}=$ 0.22 (15% dichloromethane/hexanes); m.p. $182-183{ }^{\circ} \mathrm{C}$ (dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36$ (d, J=9.3 Hz, 2H), 8.22-8.16 (m, 6H), 8.10-8.04 (m, 4H), 8.02-7.98 (m, 4H), 5.31 (s, 4H), 1.77$1.74(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 12 \mathrm{H}), 1.14-1.11(\mathrm{~m}, 6 \mathrm{H}), 1.03-0.99(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $148.37,132.00,131.19,130.75,130.54,129.79,128.67,128.48,127.53,127.30,125.26,124.80,123.70$, $123.67,123.02,122.84,45.91,38.88,32.45,30.40,29.88,25.01$ (only 22 of 23 signals observed); LCMS (APCI-positive) m / z (rel. int.) 693 (12), 692 (44), $691\left(100,\left[M\left({ }^{81} \mathrm{Br}\right)-\mathrm{Br}\right]^{+}\right), 690(46), 689\left(92,\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\right.\right.$ $\mathrm{Br}]^{+}$); HRMS (EI) calculated for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{Br}_{2}\left([\mathrm{M}]^{+}\right) 768.1966$, found 768.1961.

1,1,7,7-Tetramethyl[7.2](7,1)pyrenophane (19)

A solution of n-butyllithium $(0.50 \mathrm{M}, 0.31 \mathrm{~mL}, 0.16 \mathrm{mmol})$ in hexanes was added to a stirred $-15{ }^{\circ} \mathrm{C}$ solution of 2,8-bis(6-(bromomethyl)pyren-2-yl)-2,8-dimethylnonane (16) ($0.179 \mathrm{~g}, 0.241 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$. After 10 min , water (20 mL) was added to the reaction mixture. THF was evaporated under reduced pressure and the resulting aqueous solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with a saturated solution of sodium bicarbonate (30 mL), washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was preadsorbed on silica gel and purified by column chromatography ($30 \times 2 \mathrm{~cm} ; 15 \%$ dichloromethane/hexanes) to yield 1,1,7,7-tetramethyl[7.2](7,1)pyrenophane (19) as a clear, colorless oil $(0.080 \mathrm{~g}, 57 \%): R_{f}=0.38\left(15 \%\right.$ dichloromethane/hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31-8.26(\mathrm{~m}$, $2 \mathrm{H}), 8.16-8.03(\mathrm{~m}, 6 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 2 \mathrm{H}) 6.59-6.48(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, $4 \mathrm{H}) 1.60-1.28(\mathrm{~m}, 16 \mathrm{H}), 1.05-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.65-0.55(\mathrm{~m}, 2 \mathrm{H}), 0.39-0.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.13,130.93,130.06,130.00,129.83,127.67,127.13,127.09,125.27,125.10,124.70$, $123.02,122.52,122.28,122.21,46.01,38.38,36.82,30.39,29.5125 .71$ (only 21 of 23 signals observed); LCMS (APCI-positive) m / z (rel. int.) 585 (14), 584 (51), $583\left(100,[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (EI) calculated for $\mathrm{C}_{45} \mathrm{H}_{42}\left([\mathrm{M}]^{+}\right)$582.3287, found 582.3280.

1,1,8,8-Tetramethyl $[8.2](7,1)$ pyrenophane (20)

A solution of n-butyllithium $(1.0 \mathrm{M}, 0.40 \mathrm{~mL}, 0.40 \mathrm{mmol})$ in hexanes was added to a stirred $-15{ }^{\circ} \mathrm{C}$ solution of 2,9-bis(6-(bromomethyl)pyren-2-yl)-2,9-dimethyldecane (17) ($0.401 \mathrm{~g}, 0.529 \mathrm{mmol}$) in THF $(45 \mathrm{~mL})$. After 10 min , water $(15 \mathrm{~mL})$ was added to the reaction mixture. THF was evaporated under reduced pressure and the resulting aqueous solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with an aqueous 1 M HCl solution (30 mL), washed with a saturated solution of sodium bicarbonate (30 mL), washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resulting residue was preadsorbed on silica gel and purified by column chromatography ($25 \times 3 \mathrm{~cm} ; 15 \%$ dichloromethane/hexanes) to yield 1,1,8,8tetramethyl $[8.2](7,1)$ pyrenophane (20) as a clear, colorless oil $(0.186 \mathrm{~g}, 59 \%): R_{f}=0.32(15 \%$ dichloromethane/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22$ (br d, 2 H), 8.15 (br d, 2 H), 8.02 (d, $J=9.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}) 6.68-6.50(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 4 \mathrm{H}) 1.66-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.28$ $(\mathrm{m}, 12 \mathrm{H}), 1.12-1.06(\mathrm{~m}, 4 \mathrm{H}), 0.57-0.43(\mathrm{~m}, 2 \mathrm{H}), 0.30-0.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $146.10,131.05,129.98,129.91,129.80,127.62,127.16,127.00,125.54,125.04,125.02,124.67,122.85$, $122.53,122.36,122.05,46.44,38.11,36.47,31.45,30.48,24.22$; LCMS (APCI-positive) m / z (rel. int.) 599 (12), 598 (53), 597 (100 [M+H] $)$; HRMS (EI) calculated for $\mathrm{C}_{46} \mathrm{H}_{44}\left([\mathrm{M}]^{+}\right) 596.3443$, found 596.3436.

1,1,9,9-Tetramethyl[9.2](7,1)pyrenophane (21)

A solution of n-butyllithium $(0.50 \mathrm{M}, 0.61 \mathrm{~mL}, 0.31 \mathrm{mmol})$ in hexanes was added to a stirred $-15{ }^{\circ} \mathrm{C}$ solution of 2,10-bis(6-(bromomethyl)pyren-2-yl)-2,10-dimethylundecane (18) ($0.420 \mathrm{~g}, 0.548 \mathrm{mmol}$) in THF (30 mL). After 10 min , water (25 mL) was added to the reaction mixture. THF was evaporated under reduced pressure and the resulting aqueous solution was extracted with dichloromethane (3×25 $\mathrm{mL})$. The combined organic extracts were washed with an aqueous solution of $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$, washed with a saturated solution of sodium bicarbonate (30 mL), washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The resulting residue was preadsorbed on silica gel and purified by column chromatography ($25 \times 2.5 \mathrm{~cm} ; 15 \%$ dichloromethane/hexanes) to yield 1,1,9,9tetramethyl $[9.2](7,1)$ pyrenophane (21) as a clear, colorless oil $(0.177 \mathrm{~g}, 53 \%): R_{f}=0.31(15 \%$ dichloromethane/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$, 8.00 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 4 \mathrm{H}), 7.69$ (br s, 2H), 7.24 (br d, 2H) 7.12 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02$ (s, 4H) 1.71-1.67 (m, 4H), $1.50(\mathrm{~s}, 12 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 6 \mathrm{H}), 0.78-0.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz , CDCl_{3}) $146.62,136.18,130.95,130.34,129.67,129.62,127.73,127.26,126.89,126.34,124.81,124.78$,
$123.24,122.91,122.53,122.43,45.58,38.31,35.65,30.64,29.67,29.35,25.05$; LCMS (APCI-positive) m / z (rel. int.) 613 (13), $612(54), 611\left([\mathrm{M}+\mathrm{H}]^{+} 100\right), 598(11), 597$ (22); HRMS (EI) calculated for $\mathrm{C}_{47} \mathrm{H}_{46}$ $\left([\mathrm{M}]^{+}\right) 610.3600$, found 610.3600 .

12,22-Diformyl-1,1,7,7-tetramethyl[7.2](7,1)pyrenophane (22)

A solution of titanium(IV) chloride $(1.0 \mathrm{M}, 0.28 \mathrm{~mL}, 0.28 \mathrm{mmol})$ in dichloromethane was added to a stirred $0{ }^{\circ} \mathrm{C}$ solution of 1,1,7,7-tetramethyl[7.2](7,1)pyrenophane (19) ($0.064 \mathrm{~g}, 0.11 \mathrm{mmol}$) and dichloromethyl methyl ether $(0.032 \mathrm{~g}, 0.28 \mathrm{mmol})$ in dichloromethane $(12 \mathrm{~mL})$. The cooling bath was removed and after 2 h the reaction was poured into ice water $(30 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The solid brown residue was subjected to column chromatography ($25 \times 2 \mathrm{~cm}$; dichloromethane) to yield 12,22-diformyl-1,1,7,7-tetramethyl[7.2](7,1)pyrenophane (22) as a bright yellow solid ($0.052 \mathrm{~g}, 74 \%$): R_{f} $=0.42$ (dichloromethane); m.p. $292{ }^{\circ} \mathrm{C}$ (dec.) (dichloromethane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.93$ (s, $2 \mathrm{H}), 9.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.53(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}) 7.37(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 6.47$ (br s, 2H), 3.92 (br s, 4H), 1.42-1.40 (m, 12H), 1.29-1.21 (m, 4H), 0.82-0.77 (m, 2H), 0.55$0.48(\mathrm{~m}, 2 \mathrm{H}), 0.28-0.19(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.27, 147.20, 135.99, 134.82, $134.43,132.74,130.59,130.08,129.85,129.64,128.75,127.44,124.72,124.42,124.37,122.46,122.33$, 121.80, 45.57, 38.46, 38.30, 30.18, 25.59; LCMS (APCI-positive) m / z (rel. int.) 641 (10), 640 (49), 639 (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (EI) calculated for $\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right) 638.3185$, found 638.3181 .

13,23-Diformyl-1,1,8,8-tetramethyl[8.2](7,1)pyrenophane (23)

A solution of titanium(IV) chloride ($1.0 \mathrm{M}, 0.50 \mathrm{~mL}, 0.50 \mathrm{mmol}$) in dichloromethane was added to a stirred $0{ }^{\circ} \mathrm{C}$ solution of $1,1,8,8$-tetramethyl[8.2](7,1)pyrenophane (20) ($0.120 \mathrm{~g}, 0.201 \mathrm{mmol}$) and dichloromethyl methyl ether $(0.058 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$. The cooling bath was removed and after 3 h the reaction was poured into ice water $(50 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with a saturated solution of sodium bicarbonate (20 mL), washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The solid brown residue was subjected to column chromatography $(30 \times 2.5 \mathrm{~cm}$; dichloromethane) to yield 13,23-diformyl-1,1,8,8tetramethyl[8.2](7,1)pyrenophane (23) as a bright yellow solid (0.102 g, 77\%): $R_{f}=0.28$
(dichloromethane); m.p. $296-297{ }^{\circ} \mathrm{C}$ (dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, T=-25^{\circ} \mathrm{C}$) δ $10.95(\mathrm{~s}, 2 \mathrm{H}), 9.36(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.62(\mathrm{~s}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 2 \mathrm{H}) 7.44(\mathrm{~s}, 2 \mathrm{H}), 6.78$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.45(\mathrm{~m}$, $2 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}) 1.01-0.96(\mathrm{~m}, 2 \mathrm{H}) 0.58-0.51(\mathrm{~m}, 2 \mathrm{H}) 0.15-0.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\mathrm{CDCl}_{3} T=-25{ }^{\circ} \mathrm{C}$) δ 193.60, 147.41, 135.98, 134.70, 132.87, 130.74, 130.46, 130.18, $129.70,129.26,127.59,124.86,124.70,124.42,122.48,122.38,121.98,46.09,38.40,36.43,32.16$, 30.13, 28.09, 24.02; LCMS (APCI-positive) m / z (rel. int.) 655 (12), 654 (53), 653 ([M+H] ${ }^{+}, 100$); HRMS (EI) calculated for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{O}_{2}$ ([M] $]^{+}$) 652.3341, found 652.3328 .

14,24-Diformyl-1,1,9,9-tetramethyl[9.2](7,1)pyrenophane (24)

A solution of titanium(IV) chloride ($1.0 \mathrm{M}, 0.35 \mathrm{~mL}, 0.35 \mathrm{mmol}$) in dichloromethane was added to a stirred $0{ }^{\circ} \mathrm{C}$ solution of $1,1,9,9$-tetramethyl $[9.2](1,7)$ pyrenophane (21) ($0.085 \mathrm{~g}, 0.14 \mathrm{mmol}$) and dichloromethyl methyl ether $(0.040 \mathrm{~g}, 0.35 \mathrm{mmol})$ in dichloromethane $(15 \mathrm{~mL})$. The cooling bath was removed and after 2 h the reaction was poured into ice water (50 mL). The layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with a saturated solution of sodium bicarbonate (30 mL), washed with brine (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The yellow residue was subjected to column chromatography $(25 \times 2.5 \mathrm{~cm}$; dichloromethane) to yield 14,24-diformyl-1,1,9,9tetramethyl[9.2](7,1)pyrenophane (24) as a bright yellow oil ($0.075 \mathrm{~g}, 81 \%$): $R_{f}=0.24$ (dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.83(\mathrm{~s}, 2 \mathrm{H}), 9.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.43(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, 8.00 (s, 2H) 7.69 (s, 2H), 7.14 (br s, 4H), 3.99 (s, 4H), 1.58-1.55 (m, 4H), $1.40(\mathrm{~s}, 12 \mathrm{H}), 0.87-0.84(\mathrm{~m}$, $6 \mathrm{H}), 0.66-0.63(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.16, 147.69, 135.33, 134.16, 132.76, $130.42,130.24,129.95,129.79,129.72,127.17,124.84,124.73,124.51,122.61,122.45,122.20,45.43$, 38.38, 35.29, 29.91, 29.83, 29.57, 24.90; LCMS (APCI-positive) m / z (rel. int.) 669 (14), 668 (55), 667 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (EI) calculated for $\mathrm{C}_{49} \mathrm{H}_{46} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right)$666.3498, found 666.3494 .

1,1,7,7-Tetramethyl[7.2.2](7,1,3)pyrenophane-18-monoene (25)

Titanium(IV) chloride $(0.174 \mathrm{~g}, 0.917 \mathrm{mmol})$ was added to a $0{ }^{\circ} \mathrm{C}$ slurry of zinc dust $(0.120 \mathrm{~g}, 1.83$ $\mathrm{mmol})$ and THF $(10 \mathrm{~mL})$. After the addition was complete, the reaction was heated to reflux for 1 h , at which point a dark black color persisted, indicative of the low-valent titanium species. Pyridine (0.1 mL) was added to the mixture and stirring at reflux was continued for 10 min . A solution of 12,22-diformyl-1,1,7,7-tetramethyl[7.2](7,1)pyrenophane (22) $(0.076 \mathrm{~g}, 0.12 \mathrm{mmol})$ in THF (10 mL) was then added.

The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 4 h , after which it was poured, without significant cooling, into chloroform $(20 \mathrm{~mL})$. The resulting solution was concentrated under reduced pressure and adsorbed on silica gel in preparation for column chromatography. Aqueous work-up for this reaction is not recommended as layer separation can be quite difficult and the yields are lower. The preadsorbed sample was subjected to column chromatography ($25 \times 2.5 \mathrm{~cm} ; 15 \%$ dichloromethane/hexanes) to yield $1,1,7,7-$ tetramethyl[7.2.2](7,1,3)pyrenophane-18-monoene (25) ($0.026 \mathrm{~g}, 36 \%$): $R_{f}=0.60$ (1:9 EtOAc/hexanes); $\mathrm{mp}>300{ }^{\circ} \mathrm{C}(\mathrm{dec}).\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.52(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H) 4.29-4.25 (m, 2H), 3.74-3.70 (m, 2H) 1.42-1.37 (m, 4H) $1.34(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H})$ 0.76-0.70 (m, $2 \mathrm{H}), 0.28-0.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.64,137.69,136.14,130.14,130.04$, $130.01,128.28,128.04,126.29,125.76,123.99,123.64,122.42,122.27,122.21,122.02,46.13,38.45$, 31.02, 30.47, 28.77, 28.69, 26.54 (only 23 of 24 signals observed); LCMS (APCI-positive) m / z (rel. int.) 609 (16), $608(56), 607\left([M+H]^{+}, 100\right)$; HRMS (EI) calculated for $\mathrm{C}_{47} \mathrm{H}_{42}$ ([M] ${ }^{+}$) 606.3287, found 606.3277.

1,1,8,8-Tetramethyl[8.2.2](7,1,3)pyrenophane-19-monoene (26)

Titanium(IV) chloride ($0.047 \mathrm{~g}, 0.25 \mathrm{mmol}$) was added to a $0{ }^{\circ} \mathrm{C}$ slurry of zinc dust $(0.032 \mathrm{~g}, 0.50 \mathrm{mmol})$ and THF $(5 \mathrm{~mL})$. After the addition was complete, the reaction was heated to reflux for 1 h , at which point a dark black color persisted, indicative of the low-valent titanium species. Pyridine (0.05 mL) was added to the mixture and stirring at reflux was continued for 10 min . A solution of 13,23-diformyl-1,1,8,8-tetramethyl $[8.2](7,1)$ pyrenophane (23) $(0.020 \mathrm{~g}, 0.031 \mathrm{mmol})$ in THF (5 mL) was then added. The mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 4 h , after which it was poured, without significant cooling, into chloroform (15 mL). The resulting solution was concentrated under reduced pressure and adsorbed on silica gel in preparation for column chromatography. Aqueous work-up for this reaction is not recommended as layer separation can be quite difficult and the yields are lower. The preadsorbed sample was subjected to column chromatography ($25 \times 2 \mathrm{~cm} ; 1: 5$ dichloromethane/heaxanes) to afford $1,1,8,8-$ tetramethyl[8.2.2](7,1,3)pyrenophane-19-monoene (26) as a pale-green oil ($0.010 \mathrm{~g}, 52 \%$): $R_{f}=0.61(1: 9$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~s}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}) 7.66-7.64(\mathrm{~m}, 4 \mathrm{H})$, $7.56(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.26$ (m, 2H), 3.76-3.71 (m, 2H), 1.54-1.50 (m, 4H), $1.33(\mathrm{~s}, 6 \mathrm{H}) 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.05-1.02(\mathrm{~m}, 4 \mathrm{H}), 0.34-0.30$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.37,138.21,135.82,130.01,128.58,128.56,126.12$, $125.33,124.02,123.99,123.01,122.98,122.96,122.36,122.16,46.72,38.33,30.78,29.65,24.74$;

LCMS (APCI-positive) m / z (rel. int.) 623 (11), 622 (54), $621\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, HRMS (EI) calculated for $\mathrm{C}_{48} \mathrm{H}_{44}\left([\mathrm{M}]^{+}\right) 620.3443$, found 620.3438 .

1,1,9,9-Tetramethyl[9.2.2](7,1,3)pyrenophane-20-monoene (27)

Titanium(IV) chloride $(0.103 \mathrm{~g}, 0.544 \mathrm{mmol})$ was added to a $0{ }^{\circ} \mathrm{C}$ slurry of zinc dust $(0.142 \mathrm{~g}, 1.09$ $\mathrm{mmol})$ in THF (15 mL). After the addition was complete, the reaction was heated to reflux for 1 h , at which point a dark black color persisted, indicative of the low-valent titanium species. Pyridine $(0.15$ mL) was added to the mixture and stirring at reflux was continued for 10 min . A solution of 14,24-diformyl-1,1,9,9-tetramethyl[9.2](7,1)pyrenophane (24) ($0.069 \mathrm{~g}, 0.10 \mathrm{mmol}$) in THF (10 mL) was then added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 4 h , after which it was poured, without significant cooling, into chloroform $(40 \mathrm{~mL})$. The resulting solution was concentrated under reduced pressure and adsorbed on silica gel in preparation for column chromatography. Aqueous work-up for this reaction is not recommended as layer separation can be quite difficult and the yields are lower. The preadsorbed sample was subjected to column chromatography $(30 \times 2 \mathrm{~cm} ; 1: 5$ dichloromethane/hexanes) to give $1,1,9,9-$ tetramethyl[9.2.2](7,1,3)pyrenophane-20-monoene (27) as a light green oil ($0.033 \mathrm{~g}, 51 \%$): $R_{f}=0.64(1: 9$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ (s, 2H), 7.84 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (s, 2H), 7.68 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (br s, 2H), 7.61 (br s, 2H), 7.55 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-$ $4.24(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 4 \mathrm{H}) 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 6 \mathrm{H}), 0.63-$ $0.58(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.05,137.38,135.73,130.18,130.16,129.38,129.32$, 128.24, 127.81, 126.47, 126.00, 123.74, 123.59, 122.65, 122.30, 122.16, 122.13, 45.92, 38.14, 30.64, 30.15, 29.36, 29.25, 28.67, 24.95; LCMS (APCI-positive) m / z (rel. int.) 637 (15), 636 (54), $635\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100); HRMS (EI) calculated for $\mathrm{C}_{49} \mathrm{H}_{46}\left([\mathrm{M}]^{+}\right) 634.3600$, found 634.3602 .

1,1,7,7-Tetramethyl[7](2,11)teropyrenophane (28)

A solution of 1,1,7,7-tetramethyl[7.2.2](7,1,3)pyrenophane-18-monoene (25) ($65.0 \mathrm{mg}, 0.107 \mathrm{mmol}$) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ($487 \mathrm{mg}, 2.15 \mathrm{mmol}$), which was added in equal portions over 1 h intervals, in m-xylene (5 mL) was heated at $130^{\circ} \mathrm{C}$ for 14 h . The hot solvent was evaporated under a stream of nitrogen gas. The residue was taken up into EtOAc and adsorbed on silica gel in preparation for column chromatography. The preadsorbed sample was subjected to column chromatography ($39 \times 1.5 \mathrm{~cm} ; 5 \% \mathrm{EtOAc} /$ hexanes) to yield 1,1,7,7-tetramethyl[7](2,11)teropyrenophane (28) ($22 \mathrm{mg}, 36 \%$, (50% borsm)), which exhibits yellow fluorescence at 365 nm , and $25(20 \mathrm{mg}, 31 \%$ recovery). $R_{f}=0.27$ (1:9 EtOAc/hexanes); m.p. $>300{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46$ (s,
$4 \mathrm{H}), 8.26(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}) 7.29(\mathrm{~s}, 4 \mathrm{H}), 1.35$ ($\mathrm{s}, 12 \mathrm{H}), 0.78-0.74(\mathrm{~m}, 4 \mathrm{H}), 0.08-$ $0.01(\mathrm{~m}, 2 \mathrm{H}),-1.12$ to $-1.18(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.50,128.75,127.89,126.97,126.03,125.44$, $124.89,124.18,123.54,123.18,77.65,47.74,38.23,31.18,28.42,24.27$; LCMS (APCI-positive) m / z (rel. int.) 605 (14), $604(43), 603\left(82,[M+H]^{+}\right)$; HRMS (EI) calculated for $\mathrm{C}_{47} \mathrm{H}_{38}\left([\mathrm{M}]^{+}\right) 602.2974$, found 602.2974 .

1,1,8,8-Tetramethyl $[8](2,11)$ teropyrenophane (1)

A solution of 1,1,8,8-tetramethyl[8.2.2](7,1,3)pyrenophane-19-monoene (26) (0.022 g, 0.036 mmol) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ($0.032 \mathrm{~g}, 0.14 \mathrm{mmol}$) in m-xylene $(5 \mathrm{~mL})$ was heated at 145 ${ }^{\circ} \mathrm{C}$ for 48 h . The hot solvent was evaporated under a stream of nitrogen gas. The residue was taken up into dichloromethane and adsorbed on silica gel in preparation for column chromatography. The preadsorbed sample was subjected to column chromatography ($30 \times 2.0 \mathrm{~cm} ; 5 \% \mathrm{EtOAc} /$ hexanes) to yield $1,1,8,8$-tetramethyl $[8](2,11)$ teropyrenophane (1) as an orange solid $(0.020 \mathrm{~g}, 90 \%)$, which exhibits yellow fluorescence at $365 \mathrm{~nm}: R_{f}=0.33$ (1:9 EtOAc/hexanes); m.p. $>300{ }^{\circ} \mathrm{C}$ (dec.) (EtOH); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 4 \mathrm{H}), 8.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~s}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H})$, $0.74-0.70(\mathrm{~m}, 4 \mathrm{H}),-0.24$ to $-0.27(\mathrm{~m}, 4 \mathrm{H}),-0.65$ to $-0.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.77 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 145.34, 128.57, 127.75, 127.45, 127.36, 125.92, 125.15, 124.56, 123.68, 123.30, 77.68, 47.77, 38.53, 30.12, 29.78, 27.16, 23.96; LCMS (APCI-positive) m / z (rel. int.) 619 (13), $618(52), 617\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (CI) calculated for $\mathrm{C}_{48} \mathrm{H}_{41}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$617.3208, found 617.3211.

1,1,9,9-Tetramethyl[9](2,11)teropyrenophane (29)

A solution of 1,1,9,9-tetramethyl[9.2.2](7,1,3)pyrenophane-20-monoene (27) ($0.025 \mathrm{~g}, 0.039 \mathrm{mmol}$) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ($0.039 \mathrm{~g}, 0.17 \mathrm{mmol}$) in m-xylene (6 mL) was heated at 145 ${ }^{\circ} \mathrm{C}$ for 36 h . The hot solvent was evaporated under a stream of nitrogen gas. The residue was taken up into dichloromethane and adsorbed on silica gel in preparation for column chromatography. The preadsorbed sample was subjected to column chromatography ($30 \times 2.0 \mathrm{~cm} ; 5 \% \mathrm{EtOAc} /$ hexanes $)$ to yield 1,1,9,9-tetramethyl[9](2,11)teropyrenophane (29) as an orange solid ($0.023 \mathrm{~g}, 95 \%$), which exhibits yellow fluorescence at $365 \mathrm{~nm} . R_{f}=0.40(1: 9 \mathrm{EtOAc} /$ hexanes $) ;$ m.p. $>300{ }^{\circ} \mathrm{C}($ dec. $)\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77(\mathrm{~s}, 4 \mathrm{H}), 8.52(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.80(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}) 7.50(\mathrm{~s}, 4 \mathrm{H}), 1.37(\mathrm{~s}$, 12 H), $0.81-0.78(\mathrm{~m}, 4 \mathrm{H}),-0.51$ to $-0.55(\mathrm{~m}, 4 \mathrm{H}),-0.99$ to $-1.03(\mathrm{~m}, 6 \mathrm{H})$; (APCI-positive) m / z (rel. int.) 633 (16), 632 (54) $631\left([M+H]^{+}, 100\right)$; HRMS (EI) calculated for $\mathrm{C}_{49} \mathrm{H}_{42}\left([\mathrm{M}]^{+}\right) 630.3287$, found 630.3282 .

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

(21)

25

III. Additional Views of 29 in the Crystal and Structural Analysis of the Teropyrene System

Figure SI 1: Ball-and-stick model of 29, with minor disorder components of the ethanol molecule omitted for clarity

Figure SI 2: 50\% probability displacement ellipsoids, with crystallographic numbering scheme. Ethanol molecule omitted for clarity.

Scheme SI 1: Technical numbering scheme as reported in: Merner, B. L.; Dawe, L. N.; Bodwell, G. J. Angew. Chem. Int. Ed. 2009, 48, 5847-5891.

Table 1: Plane Definitions (Technical Numbering)

Plane	Atoms
1	C9-C10-C26
2	C10-C10a-C25a-C26
3	C10a-C25b-C25a
4	C11-C12-C25b-C25c-C24-C25
5	C11a-C25c-C23b
6	C11a-C11b-C23a-C23b
7	C11b-C23c-C23a
8	C12-C14-C23c-C23d-C22-C23
9	C14a-C23d-C21b
10	C14a-C14b-C21a-21b
11	C14b-C21c-C21a
12	C15-C16-C21c-C21d-C20-C21
13	C16a-C21d-C19a
14	C17-C16a-C19-C19a
15	C17-C18-C19

Table 2: Angle Calculations (Technical Numbering Scheme; ${ }^{\circ}$)

$\mathrm{C} 1-1\left(\beta_{1}\right)$	$5.9(6)$
$1-2$	$6.41(13)$

$2-3$	$7.67(13)$
$3-4$	$8.56(12)$
$4-5$	$9.63(12)$
$5-6$	$15.02(14)$
$6-7$	$16.54(14)$
$7-8$	$14.29(13)$
$8-9$	$14.11(13)$
$9-10$	$16.66(15)$
$10-11$	$13.60(15)$
$11-12$	$8.76(14)$
$12-13$	$7.93(14)$
$13-14$	$7.40(15)$
$14-15$	$7.73(15)$
$\mathrm{C} 1-1\left(\beta_{2}\right)$	$5.9(5)$
$1-7\left(\theta_{1}\right)$	63.82
$5-11\left(\theta_{2}\right)$	90.23
$9-15\left(\theta_{3}\right)$	62.06
$1-15\left(\theta_{\text {tot }}\right)$	154.3
$\theta_{\text {tot }}+\beta_{1}+\beta_{2}$	166.1

Table 3: Numbering Scheme Conversion

Techni		Crystallographic	Technical	Crystallographic
C1	=	C47	C10a $=$	C3
C8	=	C37	C11a =	C9
C9	=	C1	C11b $=$	C14
C10	=	C2	C14a $=$	C19
C11	$=$	C7	$\mathrm{C} 14 \mathrm{~b}=$	C24
C12	=	C8	C16a $=$	C29
C13	$=$	C17	C19a $=$	C31
C14	$=$	C18	C21a =	C26
C15	=	C27	$\mathrm{C} 21 \mathrm{~b}=$	C21
C16	$=$	C28	C23a $=$	C16
C17	$=$	C34	C23b $=$	C11
C18	=	C35	C25a $=$	C5
C19	$=$	C36	$\mathrm{C} 25 \mathrm{~b}=$	C4
C20	$=$	C32	$\mathrm{C} 25 \mathrm{c}=$	C10
C21	$=$	C33	$\mathrm{C} 23 \mathrm{c}=$	C15
C22	$=$	C22	C23d $=$	C20
C23	$=$	C23	$\mathrm{C} 21 \mathrm{c}=$	C25
C24	$=$	C12	C21d =	C30
C25	$=$	C13		
C26	$=$	C6		

Supplemental: Full Calculations

| Atoms Defining Plane | Distance | esd | |
| :---: | ---: | ---: | ---: | ---: |
| C2 | $[1 ; 0 ; 0 ; 0]$ | -0.0030 | 0.0042 |
| C3 | $[1 ; 0 ; 0 ; 0]$ | 0.0030 | 0.0042 |
| C5 | $[1 ; 0 ; 0 ; 0]$ | -0.0027 | 0.0040 |
| C6 | $[1 ; 0 ; 0 ; 0]$ | 0.0030 | 0.0042 |

$$
\begin{aligned}
& \text { Least-squares plane } \\
& 30.22967 x+7.08813 y+2.00030 z=11.73439 \\
& (0.03207)(0.02824)(0.02544) \quad(0.02602)
\end{aligned}
$$

| Atoms Defining Plane | Distance | esd | |
| ---: | ---: | ---: | ---: | ---: |
| C3 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |
| C4 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |
| C5 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |

Least-squares plane
$31.73673 x+5.65939 y+0.67450 z=10.22225$
$(0.00000)(0.00000)(0.00000) \quad(0.00000)$

Mean deviation from plane is 0.0000 angstrom
Weight scheem: Sigma Weights

Electronic Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2013

$$
\begin{aligned}
& \text { Least-squares plane } \\
& 32.77021 x+3.90644 y-0.77925 z=8.47208 \\
& (0.01040)(0.02599)(0.02140)(0.02484)
\end{aligned}
$$

Mean deviation from plane is 0.0224 angstrom
Weight scheem: Sigma Weights
Chi-squared: 301.893
------------- Plane number 5 ----------------

Least-squares plane
$33.15106 x+1.68404 y-2.24002 z=6.52990$
$(0.00000)(0.00000)(0.00000)(0.00000)$

Mean deviation from plane is 0.0000 angstrom	
Weight scheem: Sigma Weights	
Chi-squared:	0.000

| Atoms Defining Plane | Distance | esd | |
| :---: | ---: | ---: | ---: | ---: |
| C9 | $[1 ; 0 ; 0 ; 0]$ | 0.0084 | 0.0045 |
| C14 | $[1 ; 0 ; 0 ; 0]$ | -0.0084 | 0.0045 |
| C11 | $[1 ; 0 ; 0 ; 0]$ | -0.0092 | 0.0047 |
| C16 | $[1 ; 0 ; 0 ; 0]$ | 0.0101 | 0.0049 |

Least-squares plane

$31.77448 \mathrm{x}-1.67152 \mathrm{y}-4.56739 \mathrm{z}=$	3.29527	
$(0.02572)(0.03453)$	(0.02635)	(0.03173)

Electronic Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2013

| Atoms Defining Plane | Distance | esd | |
| :---: | ---: | ---: | ---: | ---: |
| C14 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |
| C15 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |
| C16 | $[1 ; 0 ; 0 ; 0]$ | -0.0000 | 0.0000 |

Least-squares plane
$-27.75476 x+5.22979 y+6.76036 z=0.11877$
$(0.00000)(0.00000)(0.00000)(0.00000)$
Mean deviation from plane is 0.0000 angstrom
Weight scheem: Sigma Weights
Chi-squared: $\quad 0.000$
-_------------ Plane number 8 -------------------

$$
\begin{aligned}
& \text { Least-squares plane } \\
& -22.45085 x+8.02227 y+8.15167 z=2.79361 \\
& (0.05600)(0.02408)(0.01443)(0.02386)
\end{aligned}
$$

```
Mean deviation from plane is 0.0572 angstrom
Weight scheem: Sigma Weights
Chi-squared: 1418.333
```


| Atoms Defining Plane | Distance | esd | |
| :---: | :---: | :---: | :---: | :---: |
| C19 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |
| C20 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |
| C21 | $[1 ; 0 ; 0 ; 0]$ | 0.0000 | 0.0000 |

```
Least-squares plane
    -15.80703x + 10.22449y + 9.09896z = 5.09995
    (0.00000) (0.00000) (0.00000) (0.00000)
```


Electronic Supplementary Material (ESI) for Chemical Communications

Mean deviation from plane is Weight scheem: Sigma Weights			
Chi-squared: 0.000			
-------------- Plane number 10 ------------------			
Atoms Defining Plane		Distance	esd
C19	9 [1; 0; 0; 0]	-0.0055	0.0045
C2 4	4 [1; 0; 0; 0]	0.0055	0.0045
C21	1 [1; 0; 0; 0]	0.0079	0.0053
C26	6 [1; 0; 0; 0]	-0.0079	0.0053

> Least-squares plane
> $-6.75073 x+11.97990 y+9.54800 z=7.13790$
> $(0.08576)(0.01998)(0.01598)(0.01618)$

> Least-squares plane
> $1.09735 \mathrm{x}+12.68032 \mathrm{y}+9.31169 \mathrm{z}=8.03029$
> $(0.00000)(0.00000)(0.00000)(0.00000)$

| Atoms Defining Plane | Distance | esd | |
| :---: | ---: | ---: | ---: | ---: |
| C27 | $[1 ; 0 ; 0 ; 0]$ | -0.0138 | 0.0047 |
| C28 | $[1 ; 0 ; 0 ; 0]$ | -0.0234 | 0.0047 |
| C25 | $[1 ; 0 ; 0 ; 0]$ | 0.0365 | 0.0044 |
| C30 | $[1 ; 0 ; 0 ; 0]$ | 0.0375 | 0.0044 |
| C32 | $[1 ; 0 ; 0 ; 0]$ | -0.0205 | 0.0058 |
| C33 | $[1 ; 0 ; 0 ; 0]$ | -0.0391 | 0.0058 |

Least-squares plane
$6.17427 x+12.70036 y+8.93382 z=8.24917$

Electronic Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2013$(0.07781) \quad(0.00967) \quad(0.01199) \quad(0.00469)$

Mean deviation from plane is 0.0000 angstrom
Weight scheem: Sigma Weights
Chi-squared: $\quad 0.000$

Least-squares plane
$14.65462 x+11.97889 y+7.82605 z=7.82096$
(0.08127) (0.02108) (0.02191) (0.01314)

Least-squares plane
$18.56536 x+11.30235 y+7.03444 z=7.12821$
(0.00000)(0.00000)(0.00000)(0.00000)

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2013
Mean deviation from plane is 0.0000 angstrom
Weight scheem: Sigma Weights
Chi-squared: $\quad 0.000$

Dihedral angles between least-squares planes

plane	plane	angle	esd
1	2	6.419	0.131
1	3	14.098	0.000
1	4	22.658	0.118
1	5	32.252	0.000
1	6	47.276	0.143
1	7	116.177	0.000
1	8	101.891	0.130
1	9	87.778	0.000
1	10	71.124	0.150
1	11	57.522	0.000
1	12	48.771	0.136
1	13	40.873	0.000
1	14	33.499	0.153
1	15	25.806	0.000
2	3	7.679	0.131
2	4	16.241	0.176
2	5	25.842	0.131
2	6	40.866	0.193
2	7	122.586	0.131
2	8	108.298	0.184
2	9	94.186	0.131
2	10	77.533	0.199
2	11	63.933	0.131
2	12	55.184	0.188
2	13	47.290	0.131
2	14	39.917	0.201
2	15	32.224	0.130
3	4	8.563	0.118
3	5	18.177	0.000
3	6	33.197	0.143
3	7	130.256	0.000
3	8	115.967	0.130
3	9	101.856	0.000
3	10	85.205	0.150
3	11	71.607	0.000
3	12	62.861	0.136
3	13	54.969	0.000
3	14	47.596	0.153
3	15	39.901	0.000

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2013

9	15	62.055	0.000
10	11	13.603	0.150
10	12	22.362	0.202
10	13	30.282	0.150
10	14	37.677	0.215
10	15	45.404	0.150
11	12	8.763	0.136
11	13	16.688	0.000
11	14	24.083	0.154
11	15	31.810	0.000
12	13	7.927	0.136
12	14	15.322	0.205
12	15	23.048	0.136
13	14	7.395	0.154
13	15	15.122	0.000
14	15	7.727	0.154

IV. DFT Calculations and Cartesian Co-ordinates for $1,1, n, n$-Tetramethyl $[n](2,11)$ teropyrenophanes ($n=6-9$)

All calculations were performed using the Gaussian 09 package. The structures for all compounds were constructed by modifying the existing crystal structure of N9. All three structures were optimized using density functional theory, with the B3LYP exchange-correlation functional and the cc-pVTZ basis set.

Becke, A. D. J. Chem. Phys., 1993, 98, 5648
Kendall, R. A., Dunning, T. H. Harrison, R. J. J. Chem. Phys. 1992, 96, 6796
1,1,6,6-Tetramethyl[6](2,11)teropyrenophane $(E=-1775.1837652$ Hartree):

	3.604348	2.181072	-0.032186
C	3.709889	1.443523	1.152644
C	3.746586	1.953282	2.105840
H	3.746780		
C	3.648760	0.050180	1.167636
C	3.466896	-0.644614	-0.055860
C	3.590397	0.074207	-1.270397
C	3.655046	1.473498	-1.233234
H	3.653571	2.000177	-2.176682
C	3.588672	-0.710161	2.383559
H	3.884834	-0.237479	3.311532
C	3.066825	-1.960260	2.389914
H	2.939832	-2.476977	3.330321
C	2.541246	-2.545600	1.186522
C	2.918746	-1.959965	-0.053822
C	2.482482	-2.525493	-1.283726
C	2.943238	-1.913771	-2.499338
H	2.763902	-2.408578	-3.443009
C	3.464316	-0.661685	-2.494759
H	3.707570	-0.170023	-3.428283
C	1.418104	-3.402804	1.202585
C	0.717892	-3.609665	-0.014842
C	1.365364	-3.392669	-1.259003
C	0.725912	-3.748935	2.416785
H	1.280173	-3.895684	3.332905
C	-0.626930	-3.741208	2.444523
H	-1.145184	-3.882004	3.382510
C	-1.365523	-3.392606	1.259003
C	-0.718061	-3.609633	0.014841
C	-1.418264	-3.402739	-1.202585
C	-0.726088	-3.748905	-2.416784
H	-1.280355	-3.895632	-3.332904
C	0.626755	-3.741236	-2.444523
H	1.145002	-3.882058	-3.382510
C	-2.482601	-2.525379	1.283725
C	-2.918838	-1.959830	0.053822
C	-2.541365	-2.545483	-1.186522
C	-2.943328	-1.913635	2.499338

H	-2.764016	-2.408452	3.443008
C	-3.464347	-0.661526	2.494759
H	-3.707579	-0.169852	3.428283
C	-3.590392	0.074373	1.270396
C	-3.466927	-0.644455	0.055860
C	-3.648759	0.050348	-1.167636
C	-3.588708	-0.709997	-2.383559
H	-3.884850	-0.237302	-3.311531
C	-3.066919	-1.960120	-2.389914
H	-2.939951	-2.476843	-3.330321
C	-3.654971	1.473666	1.233233
H	-3.653470	2.000346	2.176681
C	-3.604240	2.181239	0.032185
C	-3.709820	1.443694	-1.152645
H	-3.746493	1.953453	-2.105841
C	-3.322174	3.692569	-0.033263
C	-4.298194	4.373375	-1.016301
H	-4.159900	4.030826	-2.041183
H	-4.142660	5.453400	-1.011874
H	-5.333904	4.179268	-0.734157
C	-3.489448	4.381453	1.329152
H	-4.512044	4.281841	1.696867
H	-3.275360	5.446964	1.231304
H	-2.818491	3.983505	2.088156
C	-1.866464	3.918184	-0.576090
H	-1.753903	3.322633	-1.485261
H	-1.796337	4.964564	-0.890735
C	-0.682181	3.628672	0.363347
H	-0.817926	2.666581	0.863786
H	-0.661432	4.383850	1.153568
C	0.682354	3.628668	-0.363376
H	0.818070	2.666597	-0.863864
H	0.661635	4.383886	-1.153559
C	1.866643	3.918090	0.576081
H	1.754044	3.322517	1.485233
H	1.796568	4.964464	0.890758
C	3.322348	3.692415	0.033265
C	4.298383	4.373172	1.016321
H	4.160058	4.030622	2.041199
H	4.142892	5.453204	1.011900
H	5.334089	4.179024	0.734191
C	3.489665	4.381306	-1.329140
H	4.512263	4.281660	-1.696842
H	3.275614	5.446824	-1.231283
H	2.818704	3.983395	-2.088160

1,1,7,7-Tetramethyl[7](2,11)teropyrenophane (28) ($\mathrm{E}=-\mathbf{1 8 9 3 . 2 1 2 1 8 9 4}$ Hartree):

	-4.092265	2.015914	0.047603
C	-4.087157	1.306394	-1.158285
H	-4.146630	1.837090	-2.099309
C	-3.884788	-0.073599	-1.204291
C	-3.672307	-0.780134	0.007873
C	-3.902262	-0.110525	1.234516
C	-4.107597	1.274916	1.228459
H	-4.185499	1.773016	2.183856
C	-3.717087	-0.792137	-2.434558
H	-4.021444	-0.321164	-3.360741
C	-3.092282	-1.994436	-2.453161
H	-2.894079	-2.472176	-3.401689
C	-2.561119	-2.571111	-1.248799
C	-3.010649	-2.042084	-0.006963
C	-2.567253	-2.602636	1.222584
C	-3.107128	-2.059547	2.436957
H	-2.910869	-2.559038	3.374639
C	-3.740423	-0.860174	2.445007
H	-4.052282	-0.415256	3.381537
C	-1.397365	-3.372783	-1.252557
C	-0.717332	-3.576144	-0.022333
C	-1.398508	-3.401062	1.210409
C	-0.676779	-3.690162	-2.455544
H	-1.210868	-3.820233	-3.385931
C	0.676779	-3.690162	-2.455544
H	1.210868	-3.820233	-3.385931
C	1.397365	-3.372783	-1.252557
C	0.717332	-3.576144	-0.022333
C	1.398508	-3.401062	1.210409
C	0.677202	-3.738874	2.406284
H	1.210100	-3.882528	3.335325
C	-0.677202	-3.738874	2.406284
H	-1.210100	-3.882528	3.335325
C	2.561119	-2.571111	-1.248799
C	3.010649	-2.042084	-0.006963
C	2.567253	-2.602636	1.222584
C	3.092282	-1.994436	-2.453161
H	2.894079	-2.472176	-3.401689
C	3.717087	-0.792137	-2.434558
H	4.021443	-0.321163	-3.360741
C	3.884788	-0.073599	-1.204291
C	3.672307	-0.780134	0.007873
C	3.902262	-0.110525	1.234516
C	3.740423	-0.860174	2.445007
H	4.052282	-0.415256	3.381537
C	3.107128	-2.059547	2.436957
H	2.910870	-2.559038	3.374638

C	4.087157	1.306395	-1.158285
H	4.146630	1.837091	-2.099309
C	4.092265	2.015914	0.047603
C	4.107597	1.274916	1.228459
H	4.185499	1.773017	2.183856
C	3.956072	3.546944	0.034370
C	4.112196	4.163200	1.433079
H	3.364502	3.802982	2.137793
H	4.005442	5.246988	1.367698
H	5.097955	3.952891	1.850784
C	5.039235	4.172131	-0.868796
H	6.037333	3.921209	-0.506863
H	4.945342	5.259542	-0.875269
H	4.962559	3.831272	-1.900675
C	2.557805	3.934951	-0.555711
H	2.516910	3.577306	-1.587953
H	2.527939	5.028020	-0.615689
C	1.296205	3.448164	0.176321
H	1.315370	2.358890	0.262000
H	1.283527	3.836492	1.198224
C	0.000000	3.879496	-0.532305
H	0.000000	3.476401	-1.550240
H	0.000000	4.969571	-0.640960
C	-1.296205	3.448164	0.176321
H	-1.315371	2.358890	0.262000
H	-1.283527	3.836492	1.198224
C	-2.557805	3.934951	-0.555711
H	-2.516911	3.577306	-1.587953
H	-2.527940	5.028020	-0.615689
C	-3.956072	3.546943	0.034370
C	-5.039235	4.172130	-0.868796
H	-4.962559	3.831271	-1.900675
H	-4.945343	5.259542	-0.875269
H	-6.037333	3.921208	-0.506863
C	-4.112197	4.163200	1.433079
H	-5.097955	3.952891	1.850784
H	-4.005442	5.246988	1.367698
H	-3.364502	3.802981	2.137793

1,1,8,8-Tetramethyl[8](2,11)teropyrenophane (1) ($\mathrm{E}=-1932.5495958$ Hartree):

	C	4.580085	1.823593
C	4.514468	1.096410	1.024586
H	4.635209	1.600908	2.117747
C	4.171680	-0.255633	1.194969
C	3.875204	-0.915452	-0.025291
C	4.158564	-0.250827	-1.243593
C	4.505962	1.106192	-1.217868
H	4.623640	1.610504	-2.166069
C	3.946044	-0.972509	2.415851
H	4.301896	-0.546580	3.345493
C	3.211768	-2.111494	2.423317
H	2.981224	-2.583782	3.367109
C	2.624003	-2.623076	1.217027
C	3.099884	-2.110641	-0.021689
C	2.604644	-2.617305	-1.254855
C	3.171769	-2.097452	-2.466329
H	2.922394	-2.560498	-3.409935
C	3.909661	-0.959216	-2.463501
H	4.248265	-0.527763	-3.397071
C	1.413116	-3.354098	1.221557
C	0.716749	-3.518905	-0.005615
C	1.394231	-3.351442	-1.242406
C	0.695355	-3.659339	2.426160
H	1.232580	-3.789166	3.354509
C	-0.659300	-3.657080	2.436298
H	-1.183172	-3.785282	3.372528
C	-1.394234	-3.351441	1.242407
C	-0.716752	-3.518904	0.005615
C	-1.413120	-3.354098	-1.221556
C	-0.695359	-3.659339	-2.426160
H	-1.232584	-3.789166	-3.354508
C	0.659296	-3.657081	-2.436297
H	1.183168	-3.785284	-3.372527
C	-2.604647	-2.617303	1.254855
C	-3.099887	-2.110639	0.021690
C	-2.624006	-2.623074	-1.217026
C	-3.171772	-2.097450	2.466329
H	-2.922398	-2.560496	3.409935
C	-3.909663	-0.959213	2.463501
H	-4.248266	-0.527760	3.397071
C	-4.158565	-0.250824	1.243594
C	-3.875206	-0.915449	0.025292
C	-4.171680	-0.255629	-1.194968
C	-3.946045	-0.972506	-2.415850
H	-4.301896	-0.546576	-3.345493
C	-3.211771	-2.111492	-2.423316
	-2.981226	-2.583779	-3.367109

C	-4.505962	1.106196	1.217868
H	-4.623639	1.610508	2.166070
C	-4.580083	1.823597	0.024587
C	-4.514467	1.096413	-1.168674
H	-4.635207	1.600912	-2.117747
C	-4.578955	3.360182	-0.021238
C	-5.665056	3.872388	-0.989036
H	-5.495589	3.541583	-2.013147
H	-5.677603	4.963570	-0.997488
H	-6.653120	3.525115	-0.683574
C	-4.847724	3.992653	1.352397
H	-5.827059	3.702277	1.736420
H	-4.836358	5.080129	1.263439
H	-4.100131	3.719683	2.095139
C	-3.186782	3.832607	-0.562628
H	-3.034642	3.363351	-1.537863
H	-3.254278	4.908607	-0.753036
C	-1.950855	3.564414	0.313022
H	-2.000644	2.555535	0.729963
H	-1.950662	4.248305	1.166460
C	-0.622946	3.712197	-0.450253
H	-0.545952	2.898203	-1.178008
H	-0.635984	4.638250	-1.034821
C	0.622950	3.712198	0.450251
H	0.545956	2.898206	1.178009
H	0.635990	4.638252	1.034817
C	1.950859	3.564412	-0.313023
H	2.000648	2.555531	-0.729961
H	1.950667	4.248299	-1.166464
C	3.186787	3.832606	0.562625
H	3.034646	3.363354	1.537863
H	3.254284	4.908607	0.753030
C	4.578959	3.360178	0.021238
C	5.665061	3.872384	0.989035
H	5.495593	3.541582	2.013147
H	5.677611	4.963566	0.997484
H	6.653125	3.525108	0.683574
C	4.847730	3.992646	-1.352398
H	5.827065	3.702269	-1.736420
H	4.836363	5.080122	-1.263443
H	4.100138	3.719673	-2.095141

1,1,9,9-Tetramethyl[9](2,11)teropyrenophane (29) ($\mathrm{E}=-1971.8878607$ Hartree)

	-5.060312	1.611372	0.041275
C	-4.901319	0.921221	-1.164580
H	-5.062459	1.430524	-2.105240
C	-4.413480	-0.385403	-1.210103
C	-4.064093	-1.034288	0.002417
C	-4.432740	-0.428044	1.228350
C	-4.925632	0.882704	1.222092
H	-5.106228	1.353910	2.177344
C	-4.100980	-1.052026	-2.439646
H	-4.480998	-0.642404	-3.367057
C	-3.266772	-2.120135	-2.456476
H	-2.984517	-2.551378	-3.405688
C	-2.655486	-2.606281	-1.252239
C	-3.179691	-2.150553	-0.010960
C	-2.661453	-2.639491	1.219635
C	-3.282734	-2.190880	2.431723
H	-3.003155	-2.645309	3.370887
C	-4.126552	-1.128725	2.438825
H	-4.515532	-0.748834	3.375144
C	-1.408204	-3.273724	-1.255061
C	-0.716391	-3.432371	-0.023641
C	-1.409273	-3.302145	1.209514
C	-0.677422	-3.547727	-2.457332
H	-1.205866	-3.663139	-3.392410
C	0.677421	-3.547727	-2.457332
H	1.205864	-3.663139	-3.392410
C	1.408202	-3.273725	-1.255061
C	0.716389	-3.432371	-0.023641
C	1.409271	-3.302145	1.209514
C	0.677840	-3.596437	2.405595
H	1.205245	-3.725808	3.339399
C	-0.677842	-3.596437	2.405595
H	-1.205247	-3.725807	3.339399
C	2.655484	-2.606282	-1.252239
C	3.179689	-2.150554	-0.010960
C	2.661451	-2.639492	1.219635
C	3.266771	-2.120137	-2.456476
H	2.984516	-2.551380	-3.405688
C	4.100979	-1.052027	-2.439646
H	4.480998	-0.642406	-3.367057
C	4.413479	-0.385405	-1.210103
C	4.064092	-1.034289	0.002417
C	4.432740	-0.428046	1.228350
C	4.126550	-1.128727	2.438825
H	4.515531	-0.748835	3.375144
C	3.282732	-2.190881	2.431723
H	3.003153	-2.645309	3.370887

C	4.901319	0.921220	-1.164580
H	5.062460	1.430522	-2.105240
C	5.060312	1.611370	0.041275
C	4.925632	0.882702	1.222092
H	5.106229	1.353908	2.177344
C	5.200332	3.140933	0.030419
C	5.514115	3.713204	1.421541
H	4.729821	3.505015	2.147505
H	5.618863	4.797132	1.355346
H	6.451097	3.314172	1.813653
C	6.332306	3.580910	-0.918667
H	7.290718	3.171363	-0.596202
H	6.415816	4.669115	-0.927267
H	6.159271	3.259290	-1.945040
C	1.291539	3.897859	-0.426105
H	1.266826	3.515973	-1.452059
H	1.324711	4.989295	-0.510334
C	0.000001	3.478396	0.291693
H	0.000001	2.390067	0.408906
H	0.000002	3.890363	1.306283
C	-1.291537	3.897861	-0.426104
H	-1.266822	3.515978	-1.452060
H	-1.324710	4.989297	-0.510330
C	-2.569958	3.392415	0.261729
H	-2.501091	2.307410	0.367544
H	-2.609492	3.795878	1.277367
C	-3.856672	3.749838	-0.498089
H	-3.737509	3.440752	-1.540077
H	-3.974063	4.838304	-0.516802
C	-5.200330	3.140936	0.030419
C	-6.332304	3.580913	-0.918667
H	-6.159270	3.259291	-1.945040
H	-6.415811	4.669118	-0.927269
H	-7.290716	3.171368	-0.596201
C	-5.514112	3.713206	1.421541
H	-6.451094	3.314175	1.813653
H	-5.618860	4.797135	1.355346
H	-4.729818	3.505018	2.147505
C	2.569961	3.392417	0.261731
H	2.609494	3.795885	1.277367
H	2.501094	2.307412	0.367551
C	3.856674	3.749837	-0.498089
H	3.974067	4.838303	-0.516803
H	3.737511	3.440750	-1.540077

