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Experiments 

Synthesis of Pd Nanocrystals. In a typical synthesis of Pd nanocubes, 11 mL of an aqueous 

solution containing poly(vinyl pyrrolidone) (PVP, MW = 55,000, 105 mg, Aldrich), L-ascorbic 

acid (60 mg, Aldrich), KCl (185 mg, J. T. Baker), KBr (5 mg, Aldrich), and Na2PdCl4 (57 mg, 

Aldrich) was heated at 80 C in air under magnetic stirring for 3 h and cooled down to room 

temperature. In the synthesis of Pd octahedral, PVP (105 mg, Aldrich), citric acid, (180 mg, 

Aldrich), and Na2PdCl4 (57 mg, Aldrich) were dissolved in a mixture solution containing 3 mL 

of ethanol and 8 mL of water. The resulting solution was heated at 80 C in air under magnetic 

stirring for 3 h and cooled down to room temperature.  

To load the Pd nanocrystals on the carbon powder, 80 mg of Ketjen Black was dispersed in 5 

mL of deionized water and sonicated for 1 h. The carbon black suspension was then added to the 

11 mL of dispersion of Pd nanocrystals and the reaction mixture was heated to 80 °C in air for 2 

h. After cooling to room temperature, the precipitate was retrieved by centrifugation to give a 

black powder. The final product was dried in air and ready for test.  

Electrochemical Evaluation and Pt Monolayer Deposition.  Approximately 15 mg of the 

Pd/C nanocrystals was dispersed in a solvent consisting of 12 ml of water, 3 ml of isopropanol, 

and 60 µl of 5% Nafion (Aldrich) by ultrasonic for 10 min. 10 µl of the suspension was 

deposited on a pre-cleaned glassy carbon rotating disk electrode (RDE, Pine Instruments) and 

allowed to dry in air. The capping agents (poly(vinyl pyrrolidone), Br
-
 and Cl

-
) on Pd surfaces 

can be removed using a non-destructive method at room temperature by keeping the electrode 

potential at the hydrogen evaluation region, for example -0.05 V for 60 s.
 
After removing the 

capping agents, the catalyst was cycled between 0.08 and 0.8 V (vs. the reversible hydrogen 

electrode or RHE) for 5 cycles in a N2 saturated aqueous solution of 0.1 M HClO4 at 50 mV s
-1

. 

The up-limit potential was set to 0.8 V to minimize the dissolution of Pd at high potentials.  

The Pt shell was prepared via galvanic displacement with an underpotentially deposited 

(UPD) Cu monolayer prepared from a 50 mM H2SO4 + 50 mM CuSO4 solution. The electrode, 

covered with a Cu monolayer was rinsed and immersed in a 1.0 mM K2PtCl4 (Johnson Matthey) 

+ 50 mM H2SO4 (GFS Chemicals) solution for about 2 min to displace the Cu with Pt. An 

Ag/AgCl/KCl (3 M) leak-free electrode and Pt gauze were used as reference and counter 

electrodes, respectively. All potentials are quoted with respect to RHE. All of these operations 

were carried out under a nitrogen atmosphere. The electrochemical area and Pt loading were 
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measured based on the charge associated with the stripping of a UPD Cu monolayer on Pd, 

assuming 420, 490 and 460 μC cm
-2

 for full Cu monolayer coverage on cubes, octahedra, and 

conventional particles, respectively. 

The oxygen reduction polarization curves were measured in an oxygen saturated 0.1 M 

HClO4 (GFS Chemicals) solution at a scan rate of 10 mV s
-1

 at 1600 rpm.  The kinetic current jk 

at 0.9 V was derived by the Koutecky-Levich equation 

2/1

111

Bjj k

  

where j is the measured current density, B is a constant, and ω is the rotation rate. All the 

Electrolytes were prepared from MilliQ UV-plus water (Millipore). 

Physical Characterization. Powder X-ray diffraction patterns (XRD) were taken by a 

commercial diffractometer (Bruker AXS D8 Discover) using Cu Ka radiation (λ= 1.54056A˚ ). 

The particle size was calculated using the Scherrer equation. 

Transmission electron microscopy (TEM) studies were done with a FEI Tecnai G2 Spirit 

microscope operated at 120 kV by drop casting the dispersions of nanoparticles on carbon-coated 

copper grids. High-resolution TEM analyses were carried out using a JEOL 3000F microscope 

operated at 300 kV. High-angle annular dark-field (HAADF) STEM images were acquired using 

an aberration corrected Hitachi HD2700C STEM. 

DFT Calculations. The first-principles calculations are based on spin-polarized density 

functional theory (DFT) using a Generalized Gradient Approximation (GGA)
1
 and projector 

augmented wave (PAW) method
2
 as implemented in Vienna Ab-Initio Simulation Package 

(VASP).
3
 The cut-off energy for plane wave basis set was 400 eV and Brillouin zone was 

sampled using a Monkhorst-Pack sampling technique
3
 with 5×5×1 k-point grid for surface 

calculations. The Pt monolayer surfaces are modeled as pseudomorphic layers placed on top of 

the Pd(111) and Pd(100) surfaces with a lattice constant corresponding to the bulk substrate. 

Surfaces are modeled by 6-layer slabs with 2×2 surface cell separated by a 14 Å vacuum layer 

perpendicular to the surface. The top four layers were fully relaxed until Hellmann–Feynman 

forces were 0.01 eV Å
-1

. The binding energy of atomic oxygen is calculated as BEo = E 

(O/surface) - E (surface)-1/2E (O2). The E (O/surface) and E (surface) are total electronic 

energies of oxygen adsorbed on surface and surface alone. The E (O2) is the energy of oxygen 

gas in its ground state. For Pd surfaces, the most stable oxygen adsorption configurations are an 
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fcc hollow site surrounded by three atoms on the (111) surface, and a center site surrounded by 

four atoms on the (100) surface, respectively. For Pd-Pt surfaces, the most stable oxygen 

adsorption configurations are an fcc hollow site surrounded by three atoms on the (111) surface, 

and a bridge site between two atoms on the (100) surface, respectively. 

 

References 

(1) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953-17979. 

(2) (a) Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for Ab Initio Total-Energy 

Calculations using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186. (b) Kresse, 

G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. 

Phys. Rev. B 1999, 59, 1758-1775. 

(3) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 

1976, 13, 5188-5192. 

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013



 S6 

 

 

Figure S1. XRD patterns of (a) Pd/C cubes, (b) Pd/C octahedra and (c) conventional Pd/C.  
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Figure S2. EDX patterns of (a) the Pd-Pt/C cubes and (b) Pd-Pt/C octahedra.  
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Figure S3. (a) STEM and (b) 2D-EELS mapping using Pt M edge of a single Pd-Pt octahedron 

particle.   

5 nm 
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Figure S4. Comparison of the losses in activity and ECA for Pt shells on different types of Pd 

cores after 5000 rounds of potential cycling, with Pt/C (6 nm and 2.5 nm) serving as the 

benchmark. 
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Figure S5. Characterization of Pd-Pt/C octahedra after 5000 potential cycles. (a) STEM images, 

(b) EELS line profile of Pt across a single Pd-Pt nanoparticle shown in the inset, (d) 2D-EELS 

mapping using Pt M edge of a single Pd-Pt octahedron particle in (c).The scale bar in the inset of 

(b)  is 2 nm. 
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Figure S6. Voltammetry curves of Pt shells deposited on (a) Pd cubes and (b) Pd octahedra 

before and after potential cycling in a nitrogen-saturated 0.1 M HClO4 solution. Scanning rate = 

50 mV s
-1

. The currents were normalized against the geometric area of the rotating disk electrode 

(0.196 cm
2
). 
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