Supporting Information

Alcohol Assisted C-C Bond Breaking: Copper-Catalyzed Deacetylative α-Arylation of β-keto Esters and Amides

Jie Ke, Chuan He, Huiying Liu, Huan Xu, and Aiwen Lei*

aiwenlei@whu.edu.cn

General Information General Procedures for the Deacetylative Arylation of β-Keto Esters and Amides: Reference Spectrum	2 2 9 10
--	-------------------

General Information

Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point is between 30-60 °C). Gradient flash chromatography was conducted eluting with a continuous gradient from petroleum to the indicated solvent, and they are listed as volume/volume ratios. NMR spectra were recorded on a Varian Mercury spectrometers at 300 MHz (¹H NMR), 75 MHz (¹³C NMR). Tetramethylsilane was used as an internal standard. All ¹H NMR spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Coupling constants are reported in Hertz (Hz). High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument, accurate masses are reported for the molecular ion ([M]⁺). Selective ratios were recorded with a Varian GC 2000 gas chromatography instrument with a FID detector. And GC yield were determined by the same instrument while naphthalene was used as the internal standard. GC-Ms spectra were recorded on a Varian GC-Ms 3900-2100T.

General Procedures for the Deacetylative Arylation of β-Keto Esters and Amides:

Ethyl 2-phenylacetate (3aa).¹ A mixture of iodobenzene 1a (1.0 mmol), ethyl acetoacetate 2a (3.0 mmol), CuI (10 mol %), K₃PO₄ (3.0 mmol), and alcohol additive (3.0 mmol) in DMSO (4 mL) was stirred in N₂ at 80 °C. After completion of the reaction, as indicated by GC or GC-MS, the mixture was quenched with diluted hydrochloride (2 mL, 2M), the solution was extracted with ethyl acetate (3 \times 5 mL).

The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 50:1) to afford **3aa** in 82% yield. The spectroscopic data of all the products are presented below. All the known compounds gave satisfactory spectroscopic values and are analogue to spectroscopic data reported in the literature. ¹H NMR (300 MHz, CDCl₃): δ 7.27-7.22 (m, 5H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.53 (s, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.9, 134.4, 129.5, 128.8, 127.3, 61.1, 41.7, 14.4.

Ethyl 2-*p*-tolylacetate (3ba).²

Isolated yield: 81%; ¹H NMR (300 MHz, CDCl₃): δ 7.11-7.03 (m, 4H), 4.05 (q, J = 7.1 Hz, 2H), 3.49 (s, 2H), 2.25 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.1, 136.8, 131.3, 129.5, 129.3, 61.0, 41.2, 21.3, 14.4.

Ethyl 2-*m*-tolylacetate (3ca).³

Isolated yield: 88%; ¹H NMR (300 MHz, CDCl₃): δ 7.14 (t, J = 7.5 Hz, 1H), 7.02-6.99 (m, 3H), 4.07 (q, J = 7.1 Hz, 2H), 3.50 (s, 2H), 2.26 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.0, 138.4, 134.3, 130.2, 128.7, 128.0, 126.5, 61.1, 41.6, 21.6, 14.4.

Ethyl 2-(2-methoxyphenyl)acetate (3da).¹

Isolated yield: 68%; ¹H NMR (300 MHz, CDCl₃): δ 7.19-7.08 (m, 2H), 6.85-6.77 (m, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.72 (s, 3H), 3.53 (s, 2H), 1.16 (t, *J* = 7.1 Hz, 3H); ¹³C

NMR (75 MHz, CDCl₃): δ 172.1, 157.7, 131.0, 128.7, 123.3, 120.6, 110.6, 60.8, 55.6, 36.2, 14.4.

Ethyl 2-(4-methoxyphenyl)acetate (3ea).²

Isolated yield: 76%; ¹H NMR (300 MHz, CDCl₃): δ 7.12 (d, *J* = 8.4 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H), 4.05 (q, *J* = 7.0 Hz, 2H), 3.70 (s, 3H), 3.46 (s, 2H), 1.16 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.2, 158.8, 130.5, 126.4, 114.1, 61.0, 55.4, 40.7, 14.4.

Ethyl 2-(biphenyl-4-yl)acetate (3fa).⁴

Isolated yield: 89%; ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.43 (m, 4H), 7.34-7.24 (m, 5H), 4.06 (q, *J* = 7.0 Hz, 2H), 3.54 (s, 2H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.8, 141.0, 140.2, 133.4, 129.9, 129.0, 127.5, 127.3, 61.1, 41.2, 14.4.

Ethyl 2-(4-fluorophenyl)acetate (3ga).²

Isolated yield: 81%; ¹H NMR (300 MHz, CDCl₃): δ 7.19-7.14 (m, 2H), 6.95-6.90 (m, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.50 (s, 2H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.7, 163.8, 160.6, 131.1, 131.0, 115.7, 115.5, 61.2, 40.7, 14.4.

Ethyl 2-(4-acetylphenyl)acetate (3ha).²

Isolated yield: 88%; ¹H NMR (300 MHz, CDCl₃): δ 7.93 (d, J = 7.8 Hz, 2H), 7.39 (d,

J = 7.8 Hz, 2H), 4.16 (q, J = 7.0 Hz, 2H), 3.68 (s, 2H), 2.60 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 198.0, 171.0, 139.7, 136.2, 131.7, 129.9, 129.8, 129.0, 128.8, 128.3, 61.4, 41.5, 26.9, 14.4.

Ethyl 4-(2-ethoxy-2-oxoethyl)benzoate (3ia).²

Isolated yield: 87%; ¹H NMR (300 MHz, CDCl₃): δ 7.94 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H), 3.60 (s, 2H), 1.32 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.2, 166.7, 139.4, 131.5, 130.3, 130.1, 129.6, 61.4, 61.2, 41.6, 14.6, 14.4.

Ethyl 2-(pyridin-3-yl)acetate (3ja).¹

Isolated yield: 73%; ¹H NMR (300 MHz, CDCl₃): δ 8.53 (s, 2H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.29-7.24 (m, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.63 (s, 2H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.8, 150.4, 148.5, 136.9, 130.0, 123.5, 61.3, 38.5, 14.2.

Ethyl 2-(6-methoxynaphthalen-2-yl)acetate (3ka).⁵

Isolated yield: 75%; ¹H NMR (300 MHz, CDCl₃): δ 7.70-7.64 (m, 3H), 7.37 (d, J = 8.4 Hz, 1H), 7.14-7.10 (m, 2H), 4.15 (q, J = 6.9 Hz, 2H), 3.88 (s, 3H), 3.72 (s, 2H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.0, 157.8, 133.8, 129.5, 129.4, 129.1, 128.1, 128.0, 127.3, 119.2, 105.8, 61.1, 55.5, 41.6, 14.4.

Ethyl 2-phenylacetate (3la).¹

Isolated yield: 38%; ¹H NMR (300 MHz, CDCl₃): δ 7.27-7.16 (m, 5H), 4.06 (q, J = 7.1 Hz, 2H), 3.53 (s, 2H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.9, 134.4, 129.5, 128.8, 127.3, 61.1, 41.7, 14.4.

Diethyl 2,2'-(1,4-phenylene)diacetate (3ma).²

Isolated yield: 80%; ¹H NMR (300 MHz, CDCl₃): δ 7.24 (s, 4H), 4.14 (q, *J* = 7.0 Hz, 4H), 3.59 (s, 4H), 1.25 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 171.8, 133.1, 130.4, 129.6, 128.6, 61.0, 41.2, 14.3.

Methyl 2-phenylacetate (3ab).⁶

Isolated yield: 75%; ¹H NMR (300 MHz, CDCl₃): δ 7.24-7.18 (m, 5H), 3.60 (s, 3H), 3.55 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 172.3, 134.2, 129.5, 128.8, 127.3, 52.3, 41.4.

OⁿBu

Butyl 2-phenylacetate (3ac).⁷

Isolated yield: 87%; ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.23 (m, 5H), 4.09 (t, *J* = 6.8 Hz, 2H), 3.61 (s, 2H), 1.64-1.55 (m, 2H), 1.40-1.30 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.0, 134.4, 129.5, 128.8, 127.2, 65.0, 41.7, 30.8, 19.3, 13.9.

O^tBu

tert-Butyl 2-phenylacetate (3ad).⁸

Isolated yield: 70%; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.04 (m, 5H), 3.45 (s, 2H), 1.36 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 171.2, 134.9, 130.2, 129.4, 128.7, 127.1, 121.9, 81.0, 42.9, 28.3.

Benzyl 2-phenylacetate (3ae).⁹

Isolated yield: 67%; ¹H NMR (300 MHz, CDCl₃): δ 7.33-7.24 (m, 10H), 5.13 (s, 2H), 3.67 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 171.6, 136.0, 134.1, 129.5, 128.8, 128.7, 128.4, 128.3, 127.3, 66.8, 41.5.

Ethyl 4-(2-(cyclohexyloxy)-2-oxoethyl)benzoate (3if).

Isolated yield: 72%; ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 4.70-4.68 (m, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.56 (s, 2H), 1.73-1.70 (m, 2H), 1.60-1.57 (m, 2H), 1.33-1.17 (m, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 170.6, 166.7, 139.7, 130.2, 130.0, 129.5, 73.6, 61.2, 42.1, 31.7, 25.6, 23.9, 14.6. HRMS (APCI) calcd for C₁₇H₂₂O₄ [M]⁺: 290.1518; found 290.1519.

Butyl 2-(pyridin-3-yl)acetate (3jc).

Isolated yield: 59%; ¹H NMR (300 MHz, CDCl₃): δ 8.53 (s, 2H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.29-7.25 (m, 1H), 4.11 (t, *J* = 6.8 Hz, 2H), 3.63 (s, 2H), 1.66-1.56 (m, 2H), 1.39-1.29 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.0, 150.6, 148.7, 137.1, 130.1, 123.6, 65.3, 38.8, 30.8, 19.3, 13.9. HRMS (APCI) calcd for C₁₁H₁₅NO₂ [M]⁺:193.1103; found 193.1100.

NFt₂

N,*N*-diethyl-2-phenylacetamide (3ag).¹⁰

Isolated yield: 45%; ¹H NMR (300 MHz, CDCl₃): δ 7.24-7.15 (m, 5H), 3.61 (s, 2H), 3.30 (q, *J* = 6.9 Hz, 2H), 3.20 (q, *J* = 7.0 Hz, 2H), 1.06-0.97 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 170.4, 135.5, 129.3, 128.7, 126.7, 42.5, 40.9, 40.3, 14.2, 13.0.

1-Morpholino-2-phenylethanone (3ah).¹⁰

Isolated yield: 44%; ¹H NMR (300 MHz, CDCl₃): δ 7.27-7.14 (m, 5H), 3.65 (s, 2H), 3.59-3.56 (m, 4H), 3.38-3.36 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 169.9, 135.0, 129.1, 128.8, 127.2, 67.0, 66.7, 46.8, 42.4, 41.1.

(Z)-3-phenylallyl acetate.¹¹

Isolated yield: 75%; ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.25 (m, 5H), 6.65 (d, J = 15.9 Hz, 1H), 6.33-6.23 (m, 1H), 4.72 (d, J = 6.3 Hz, 2H), 2.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.1, 136.3, 134.4, 128.8, 128.3, 126.8, 123.3, 65.3, 21.2.

Reference

- 1. R. Shang, D.-S. Ji, L. Chu, Y. Fu and L. Liu, Angew. Chem., Int. Ed., 2011, 50, 4470-4474.
- 2. B. Song, F. Rudolphi, T. Himmler and L. J. Goossen, Adv. Synth. Catal., 2011, 353, 1565-1574.
- 3. X.-x. Liu and M.-z. Deng, Chem. Commun., 2002, 622-623.
- 4. N. Rios-Lombardia, E. Busto, E. Garcia-Urdiales, V. Gotor-Fernandez and V. Gotor, *J. Org. Chem.*, 2009, **74**, 2571-2574.
- 5. L. K. Wadhwa, S. Chandiran and P. D. Sharma, *Indian J. Chem., Sect. B Org. Chem. Incl. Med. Chem.*, 2004, **43B**, 1292-1298.
- 6. R. Lerebours and C. Wolf, J. Am. Chem. Soc., 2006, 128, 13052-13053.
- 7. A. O. Terent'ev, D. A. Borisov, I. A. Yaremenko, Y. N. Ogibin and G. I. Nikishin, *Synthesis*, 2010, 1145-1149.
- 8. W. R. R. Harker, E. L. Carswell and D. R. Carbery, Org. Lett., 2010, 12, 3712-3715.
- 9. J. E. Milne, J. A. Murry, A. King and R. D. Larsen, J. Org. Chem., 2009, 74, 445-447.
- 10. Y. Motoyama, M. Aoki, N. Takaoka, R. Aoto and H. Nagashima, *Chem. Commun.*, 2009, 1574-1576.
- 11. S. Magens, M. Ertelt, A. Jatsch and B. Plietker, Org. Lett., 2008, 10, 53-56.

