Supporting Information

Functionalized Heterocyclic Scaffolds Derived from Morita-Baylis-Hillman Acetates

Huajian Zhu, Nana Shao, Tong Chen, Hongbin Zou* Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China) zouhb@zju.edu.cn

Table of Contents

I.	General Remarks	S2
II.	Optimization of Reaction Conditions	S2
III.	General Procedure for the Synthesis of Imidazo[1,2-a]pyridines	
IV.	General Procedure for the Synthesis of Indolizines	
V.	General Procedure for the Synthesis of Pyrroles	. S14
VI.	General Procedure for the Synthesis of Pyrazoles	S17
VII.	General Procedure for the Synthesis of Benzo[b][1,6]oxazocin-2-ones	.S20
VIII.	Reference	.S23
IX.	¹ H NMR and ¹³ C NMR Spectra	S24

I. General Remarks

DMF was distilled from calcium hydride. Purifications of reaction products were carried out by chromatography using silica gel (200–300 mesh). Melting points were measured on a Perkin-Taike X-4 apparatus and have been corrected. High resolution MS data were recorded on a Agilent 6200 Series TOF spectrometer. NMR spectra were recorded on Bruker AVIII for ¹H NMR at 500 MHz and for ¹³C NMR at 125 MHz. For ¹H NMR, tetramethylsilane (TMS) served as internal standard (δ). The spectra data presented here are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constant(s) in Hertz. For ¹³C NMR TMS (δ = 0) or CDCl₃ (δ = 77.26) was used as internal standard and spectra were obtained with complete proton decoupling. The starting materials MBHAs were prepared according to literature methods.¹ Compounds **6–10** are commercially available.

II. Optimization of Reaction Conditions

Intitially we optimized the reaction of MBHAs with bifunctional nucleophilies. Ethyl-2-acetoxy-3nitro-4-phenylbut-3(E)-enoate (**M1**) was used as the model reactant of MBHAs. Different solvents, bases and temperature were examined and the results were shown in Table 1–5. The most successful entry is highlighted in bold and used as the reaction system to form the heterocycles.

Ph AcO CO	Doet +	.NH ₂ cond	ditions	N N COOEt
M1	6			1
Entry	Solvent	Base	T (°C)	Yield (%) ^[b]
1	DMF	K_2CO_3	25	0
2	DMF	K_2CO_3	80	30
3	DMF	K ₂ CO ₃	115	81
4	MeCN	K_2CO_3	80	18
5	MeOH	K_2CO_3	65	0
6	toluene	K_2CO_3	110	trace
7	DMF	DABCO	115	24
8	DMF	Na ₂ CO ₃	115	72
9	DMF	DBU	115	42
10	DMF	Et ₃ N	115	15

Table 1: Optimization of reaction conditions for imidazo[1,2-a]pyridines.^[a]

[a] Reaction conditions: **M1** (0.2 mmol), **6** (0.2 mmol), K_2CO_3 (0.2 mmol), solvent (2 mL) were stirred at rt for 30 min, then heated to corresponding temperature. [b] Determined by high-performance liquid chromatography based on the disappearance of the starting **M1**.

Ph NO AcO CO	oEt +	COOEt	tions EtOOC	N COOEt
M1	7a			2
Entry	Solvent	Base	T (°C)	Yield (%) ^[b]
1	DMF	K ₂ CO ₃	25	62
2	DMF	K_2CO_3	80	21
3	MeCN	K_2CO_3	25	70
4	MeOH	K_2CO_3	25	0
5	toluene	K_2CO_3	25	56
6	MeCN	DABCO	25	66
7	MeCN	Na ₂ CO ₃	25	60
8	MeCN	DBU	25	34
9	MeCN	Et ₃ N	25	88

 \sim

Table 2: Optimization of reaction conditions for indolizines.^[a]

[a] Reaction conditions: M1 (0.2 mmol), 7a (0.2 mmol), base (0.3 mmol), solvent (2 mL) were stirred overnight. [b] Determined by high-performance liquid chromatography based on the disappearance of the starting M1.

Ph AcO M1	+ CN^	COOEt condit	ions ►EtOOC	Ph N COOEt
Entry	Solvent	Base	T (°C)	Yield (%) ^[b]
1	MeCN	DBU	25	44
2	MeCN	DBU	80	<10
3	DMF	DBU	25	0
4	MeOH	DBU	25	0
5	toluene	DBU	25	70
6	toluene	Na ₂ CO ₃	25	0
7	toluene	K_2CO_3	25	0
8	toluene	DABCO	25	0
9	toluene	Et ₃ N	25	0

 Table 3: Optimization of reaction conditions for pyrroles.
 [a]

[a] Reaction conditions: **M1** (0.2 mmol), **8** (0.2 mmol), base (0.2 mmol), solvent (2 mL) were stirred for 2h. [b] Determined by high-performance liquid chromatography based on the disappearance of the starting **M1**.

Ph AcO M1	NO ₂ +	≻—NHNH ₂ <u>coi</u> 9	nditions ► EtOO	C N N Ph 4
Entry	Solvent	Base	T (°C)	Yield (%) ^[b]
1	МеОН	-	25	39
2	МеОН	-	50	85
3	МеОН	-	65	90
4	MeOH	Na ₂ CO ₃	65	80
5	MeOH	K_2CO_3	65	79
6	MeOH	DABCO	65	83
7	MeOH	DBU	65	41
8	MeOH	Et ₃ N	65	76
9	MeCN	-	65	25
10	DMF	-	65	<15
11	toluene	-	65	trace

 Table 4: Optimization of reaction conditions for pyrazoles.^[a]

[a] Reaction conditions: **M1** (0.2 mmol), **9** (0.2 mmol), base (0.2 mmol) or absence, solvent (2 mL) were stirred overnight. [b] Determined by high-performance liquid chromatography based on the disappearance of the starting **M1**.

Table 5 : Optimization of reaction conditions for benzo[b][1,6]oxazocin-2-ones. ^[a]	
	Ph N—∕

Ph AcO M1	NO ₂ +	NH ₂ <u>-c</u> OH 10	onditions	
Entry	Solvent	Base	T (°C)	Yield (%) ^[b]
1	МеОН	-	40	0
2	МеОН	Na ₂ CO ₃	40	78
3	MeOH	K_2CO_3	40	31
4	MeOH	DABCO	40	29
5	MeOH	DBU	40	trace
6	MeOH	Et ₃ N	40	33
7	MeOH	Na ₂ CO ₃	25	0
8	MeCN	Na ₂ CO ₃	40	<15
9	DMF	Na ₂ CO ₃	40	0
10	toluene	Na ₂ CO ₃	40	trace

[a] Reaction conditions: **M1** (0.2 mmol), **10** (0.2 mmol), solvent (2 mL) were stirred at rt for 15 min. Then base (0.2 mmol) was added and the mixture was heated to corresponding temperature for 2h. [b] Determined by high-performance liquid chromatography based on the disappearance of the starting **M1**.

III. General Procedure for the Synthesis of Imidazo[1,2-a]pyridines

A mixture of MBHAs (0.3 mmol, 1.0 equiv), 2-amino-1-ethoxycarbonylmithyl-pyridium (6, 0.3 mmol, 1.0 equiv) and K_2CO_3 (0.3 mmol, 1.0 equiv) was stirred in DMF (2.0 mL) at room temperature for 30 min, then the mixture was heated to 115 °C for 1h. Water (5 mL) was added to it and the mixture was extracted three times with EtOAc (10 mL × 3). The combined organic layers were washed with water (10 mL × 3) and brine (10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuum. Purification of the residue by chromatography (silica gel) affords the product.

Ethyl 2-phenylimidazo[1,2-a]pyridine-3-carboxylate (1a):

Yellow solid. m.p.: 70 – 72 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.41 (1H, d, J = 7.0 Hz), 7.75 (3H, m), 7.43 (4H, m), 7.03 (1H, td, J = 7.0, 1.5 Hz), 4.30 (2H, q, J = 7.0 Hz), 1.22 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 161.2, 153.6, 147.1, 134.5, 130.2, 128.7, 128.3, 127.9, 127.5, 117.5, 114.1, 111.9, 60.5, 13.9. HRMS Calcd. For C₁₆H₁₄N₂O₂ + H⁺: 267.1134, found: 267.1146.

Ethyl 2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-carboxylate (1b):

Yellow solid. m.p.: 110 – 112 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.41 (1H, d, J = 7.0 Hz), 7.73 (3H, m), 7.45 (1H, t, J = 7.5 Hz), 7.41 (2H, d, J = 8.5 Hz), 7.05 (1H, t, J = 7.0 Hz), 4.32 (2H, q, J = 7.0 Hz), 1.25 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 160.9, 152.3, 147.1, 134.8, 132.9, 131.6, 128.4, 128.2, 127.8, 117.5, 114.3, 112.0, 60.6, 14.1. HRMS Calcd. For C₁₆H₁₃ClN₂O₂ + H⁺: 301.0744, found: 301.0738.

Ethyl 2-(4-fluorophenyl)imidazo[1,2-a]pyridine-3-carboxylate (1c):

Yellow solid. m.p.: 95 – 97 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.41(1H, d, J = 7.0 Hz), 7.74 (3H, m), 7.44(1H, m), 7.12 (2H, t, J = 9.0 Hz), 7.05 (1H, td, J = 7.0, 1.0 Hz), 4.32 (2H, q, J = 7.0 Hz), 1.24 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.2 (d, J = 247 Hz), 161.0, 152.6, 147.1, 132.1 (d, J = 8 Hz), 130.5 (d, J = 4 Hz), 128.4, 128.1, 117.5, 114.6 (d, J = 21 Hz), 114.2, 111.9, 60.6, 14.1. HRMS Calcd. For C₁₆H₁₃FN₂O₂ + H⁺: 285.1039, found: 285.1035.

Ethyl 2-(4-bromophenyl)imidazo[1,2-a]pyridine-3-carboxylate (1d):

Yellow solid. m.p.: 120 - 122 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.40 (1H, dt, J = 7.0, 1.0 Hz), 7.30 (1H, dt, J = 9.0, 1.0 Hz), 7.66 (2H, dt, J = 7.5, 2.0 Hz), 7.56 (1H, dt, J = 8.5, 2.0 Hz), 7.45 (1H, m), 7.05 (1H, td, J = 7.0, 1.5 Hz), 4.32 (2H, q, J = 7.0 Hz), 1.25 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 160.9, 152.3, 147.1, 133.4, 131.9, 130.8, 128.4, 128.2, 123.1, 117.5, 114.3, 112.0, 60.6, 14.1. HRMS Calcd. For C₁₆H₁₃BrN₂O₂ + H⁺: 345.0239, found: 345.0229.

Ethyl 2-(3-bromophenyl)imidazo[1,2-a]pyridine-3-carboxylate (1e):

Yellow solid. m.p.: 107 – 109 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.43 (1H, dt, J = 7.0, 2.0 Hz), 7.93 (1H, t, J = 7.0), 7.74 (1H, d, J = 9.0), 7.71 (1H, dt, J = 7.0, 2.0 Hz), 7.55 (1H, ddd, J = 8.0, 2.0, 1.0 Hz), 7.46 (1H, ddd, J = 9.0, 7.0, 1.5 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.06 (1H, td, J = 7.0, 1.0 Hz), 4.33 (2H, q, J = 7.0 Hz), 1.27 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 160.9, 151.7, 147.1, 136.5, 133.3, 129.2, 128.8, 128.4, 128.2, 121.5, 117.6, 114.4, 112.1, 60.7, 14.0. HRMS Calcd. For C₁₆H₁₃BrN₂O₂ + H⁺: 345.0239, found: 345.0229.

Ethyl 2-(3-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine-3-carboxylate (1f):

Yellow solid. m.p.: 108 – 110 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.45 (1H, d, J = 7.0 Hz), 8.05 (1H, s), 7.97 (1H, d, J = 7.5 Hz), 7.76 (1H, d, J = 9.0 Hz), 7.68 (1H, d, J = 7.5 Hz), 7.57 (1H, t, J = 8.0 Hz), 7.47 (1H, t, J = 7.5 Hz), 7.07 (1H, t, J = 7.0 Hz), 4.31 (2H, q, J = 7.0 Hz), 1.21 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 160.8, 151.8, 147.2, 135.3, 133.5, 129.9 (d, J = 33 Hz), 128.4, 128.3, 128.2, 127.3 (q, J = 4 Hz), 125.4 (q, J = 4 Hz), 125.3 (q, J = 271 Hz), 117.6, 114.5, 112.2, 60.7, 13.8. HRMS Calcd. For C₁₇H₁₃F₃N₂O₂ + H⁺: 335.1007, found: 335.1004.

Ethyl 2-(4-methoxyphenyl)imidazo[1,2-a]pyridine-3-carboxylate (1g):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.39 (1H, d, J = 7.0 Hz), 7.75 (2H, d, J = 8.5 Hz), 7.71 (1H, d, J = 9.5 Hz), 7.39 (1H, t, J = 7.5 Hz), 7.00 (1H, t, J = 6.5 Hz), 6.96 (2H, d, J = 8.5 Hz), 4.32 (2H, q, J = 7.0 Hz), 3.85 (3H, s), 1.26 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 161.2, 160.1, 153.4, 147.1, 131.6, 128.4, 127.9, 126.7, 117.3, 113.9, 113.0, 111.6, 60.4, 55.3, 14.1.

HRMS Calcd. For $C_{17}H_{16}N_2O_3 + H^+$: 297.1239, found: 297.1230.

Ethyl 2-(4-acetoxyphenyl)imidazo[1,2-a]pyridine-3-carboxylate (1h):

Yellow solid. m.p.: 112 – 114 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.42 (1H, d, J = 7.0 Hz), 7.80 (2H, d, J = 8.5 Hz), 7.74 (1H, d, J = 9.0 Hz), 7.45 (1H, m), 7.18 (2H, d, J = 8.5 Hz), 7.05 (1H, td, J = 7.0, 1.0 Hz), 4.32 (2H, q, J = 7.0 Hz), 2.33 (3H, s), 1.24 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.3, 161.1, 152.6, 151.1, 147.1, 132.0, 131.4, 128.4, 128.1, 120.7, 117.5, 114.2, 95.9, 60.6, 21.3, 14.0. HRMS Calcd. For C₁₈H₁₆N₂O₄ + H⁺: 325.1188, found: 325.1182.

Ethyl 2-(4-(dimethylamino)phenyl)imidazo[1,2-a]pyridine-3-carboxylate (1i):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.39 (1H, d, J = 7.0 Hz), 7.75 (2H, d, J = 8.5 Hz), 7.71 (1H, d, J = 8.5 Hz), 7.39 (1H, m), 6.98 (1H, t, J = 7.0 Hz), 6.76 (1H, d, J = 8.5 Hz), 4.35 (2H, q, J = 7.0 Hz), 1.32 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.5, 154.1, 150.8, 147.1, 131.3, 128.4, 127.7, 121.7, 117.1, 113.6, 111.2, 111.1, 60.4, 40.4, 14.3. HRMS Calcd. For C₁₈H₁₉N₃O₂ + H⁺: 310.1556, found: 310.1555.

Ethyl 2-(furan-2-yl)imidazo[1,2-a]pyridine-3-carboxylate (1j):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.36 (1H, d, J = 7.0 Hz), 7.74 (1H, d, J = 9.0 Hz), 7.62 (1H, d, J = 1.5 Hz), 7.41 (2H, m), 7.01 (1H, td, J = 7.0, 1.0 Hz), 6.56 (1H, dd, J = 3.5, 2.0 Hz), 4.50 (2H, q, J = 7.0 Hz), 1.47 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 160.6, 147.6, 147.2, 143.7, 143.1, 128.5, 128.3, 117.6, 114.2, 113.9, 111.6, 110.9, 60.9, 14.5. HRMS Calcd. For C₁₄H₁₂N₂O₃ + H⁺: 257.0926, found: 257.0917.

IV. General Procedure for the Synthesis of Indolizines

A mixture of MBHAs (0.3 mmol, 1.0 equiv), ethyl 2-pyridylacetate (**7a**, 0.3 mmol, 1.0 equiv) and Et_3N (0.45 mmol, 1.5 equiv) was stirred in MeCN (2 mL) at room temperature overnight. Once starting material was consumed (monitored by TLC), the organic solvent was removed and the residue was purified by column chromatography (silica gel) to give the product. The same method can also be used to prepare indolizines with cyano group from 2-pyridylacetonitrile (**7b**).

Ethyl 3-(2-ethoxy-2-oxoethyl)-2-phenylindolizine-1-carboxylate (2a):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.32 (1H, d, J = 8.5 Hz), 7.97 (1H, d, J = 7.0 Hz), 7.38 (5H, m), 7.12 (1H, ddd, J = 9.5, 7.0, 1.0 Hz), 6.82 (1H, td, J = 7.0, 1.0 Hz), 4.1 (4H, m), 3.75 (2H, s), 1.23 (3H, t, J = 7.5 Hz), 1.10 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.7, 164.9, 136.2, 134.8, 131.8, 130.5, 127.5, 127.1, 123.1, 122.3, 120.2, 116.5, 112.8, 102.2, 61.4, 59.2, 30.9, 14.1. HRMS Calcd. For C₂₁H₂₁NO₄ + H⁺: 352.1549, found: 352.1537.

Ethyl 2-(4-chlorophenyl)-3-(2-ethoxy-2-oxoethyl)indolizine-1-carboxylate (2b):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.31 (1H, d, J = 9.0 Hz), 7.98 (1H, d, d, J = 7.0 Hz), 7.38 (2H, m), 7.32 (2H, m), 7.13 (1H, ddd, d, J = 9.5, 7.0, 1.0 Hz), 6.83 (1H, td, d, J = 7.0, 1.0 Hz), 4.17 (4H, m), 3.73 (2H, s), 1.24 (3H, t, d, J = 7.0 Hz), 1.16 (3H, t, d, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 164.8, 136.3, 133.4, 133.3, 132.0, 130.4, 127.9, 123.3, 122.6, 120.4, 116.7, 113.1, 102.2, 61.6, 59.4, 30.9, 14.3, 14.2. HRMS Calcd. For C₂₁H₂₀ClNO₄ + H⁺: 386.1159, found: 386.1155.

Ethyl 3-(2-ethoxy-2-oxoethyl)-2-(4-fluorophenyl)indolizine-1-carboxylate (2c):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.31 (1H, d, J = 9.0 Hz), 7.98 (1H, d, J = 7.0 Hz), 7.35 (2H, m), 7.12 (3H, m), 6.82 (1 H, td, J = 6.5, 1.0 Hz), 4.17 (4H, m), 3.73 (2H, s), 1.23 (3H, t, J = 7.0 Hz), 1.15 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 164.8, 162.3 (d, J = 244 Hz), 136.2, 132.1 (d, J = 8 Hz), 130.7, 130.6 (d, J = 4 Hz), 123.1, 122.5, 120.2, 116.6, 114.4 (d, J = 21 Hz), 112.9, 102.2, 61.4, 59.2, 30.8, 14.2, 14.1. HRMS Calcd. For C₂₁H₂₀FNO₄ + H⁺: 370.1455, found: 370.1449.

Ethyl 2-(4-bromophenyl)-3-(2-ethoxy-2-oxoethyl)indolizine-1-carboxylate (2d):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.31 (1H, d, J = 9.0 Hz), 7.98 (1H, d, J = 7.0 Hz), 7.53 (2H, d, J = 8.0 Hz), 7.27 (2H, d, J = 8.0 Hz), 7.13 (1H, ddd, J = 8.0, 7.0, 1.0 Hz), 6.83 (1H, td, J = 7.0, 1.0 Hz), 4.19 (2H, q, J = 7.0 Hz), 4.15 (2H, q, J = 7.0 Hz), 1.24 (3H, t, J = 7.0 Hz), 1.16 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 164.8, 136.3, 133.8, 132.4, 130.8, 130.6, 123.3, 122.7, 121.6, 120.4, 116.6, 113.1, 102.2, 61.6, 59.4, 30.9, 14.3, 14.2. HRMS Calcd. For C₂₁H₂₀BrNO₄ + H⁺: 430.0654, found: 430.0652.

Ethyl 2-(3-bromophenyl)-3-(2-ethoxy-2-oxoethyl)indolizine-1-carboxylate (2e):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.32 (1H, d, J = 9.5 Hz), 8.00 (1H, d, J = 7.0 Hz), 7.56 (1H, t, J = 1.5 Hz), 7.49 (1H, dt, J = 8.0, 1.0 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.27 (1H, t, J = 7.5 Hz), 7.13 (1H, dd, J = 8.0, 7.0 Hz), 6.83 (1H, td, J = 7.0, 1.0 Hz), 4.16 (4H, m), 3.74 (2H, s), 1.25 (3H, t, J = 7.0 Hz), 1.13 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 164.8, 137.1, 136.4, 133.7, 130.3, 130.1, 129.4, 129.1, 123.3, 122.7, 121.6, 120.3, 116.7, 113.2, 102.2, 61.6, 59.4, 31.0, 14.3, 14.2. HRMS Calcd. For C₂₁H₂₀BrNO₄ + H⁺: 430.0654, found: 430.0652.

Ethyl 2-(2-bromophenyl)-3-(2-ethoxy-2-oxoethyl)indolizine-1-carboxylate (2f):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.32 (1H, d, J = 9.0 Hz), 8.00 (1H, d, J = 7.0 Hz), 7.65 (1H, dd, J = 8.0, 1.0 Hz), 7.33 (2H, m), 7.23 (1H, td, J = 8.0, 2.0 Hz), 7.12 (1H, ddd, J = 8.0, 7.0, 1.0 Hz), 6.82 (1H, td, J = 7.0, 1.0 Hz), 4.11 (4H, m), 3.70 (1H, d, J = 16.5 Hz), 3.66 (1H, d, J = 16.5 Hz), 1.19 (3H, t, J = 7.0 Hz), 1.03 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.3, 164.7, 136.5, 136.1, 132.2, 131.9, 130.3, 129.0, 126.8, 125.2, 123.4, 122.5, 120.3, 116.5, 112.9, 102.8, 61.4, 59.2, 30.8, 14.2, 14.0. HRMS Calcd. For C₂₁H₂₀BrNO₄ + H⁺: 430.0654, found: 430.0652.

Ethyl 3-(2-ethoxy-2-oxoethyl)-2-(3-(trifluoromethyl)phenyl)indolizine-1-carboxy late (2g):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.38 (1H, d, J = 9.0 Hz), 8.03 (1H, d, J = 7.0 Hz), 7.69 (1H, s), 7.63 (1H, d, J = 7.5 Hz), 7.60 (1H, d, J = 7.5 Hz), 7.53 (1H, t, J = 7.5 Hz), 7.16 (1H, m), 6.86 (1H, td, J = 7.0, 1.0 Hz), 4.16 (4H, m), 3.72 (2H, s), 1.24 (3H, t, J = 7.0 Hz), 1.06 (3H, t, J =

7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.3, 164.6, 136.4, 135.7, 134.0, 130.0, 129.9 (d, J = 32 Hz), 127.9, 127.5 (q, J = 4 Hz), 125.4, 123.9 (q, J = 4 Hz), 123.2, 122.7, 120.3, 116.6, 113.2, 102.2, 61.5, 59.3, 30.9, 14.0, 13.9. HRMS Calcd. For C₂₂H₂₀F₃NO₄ + H⁺: 420.1423, found: 420.1416.

Ethyl 3-(2-ethoxy-2-oxoethyl)-2-(4-methoxyphenyl)indolizine-1-carboxylate (2h):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.30 (1H, d, J = 9.0 Hz), 7.96 (1H, d, J = 7.0 Hz), 7.32 (2H, dt, J = 8.5, 2.0 Hz), 7.11 (1H, dd, J = 9.0, 6.5 Hz), 6.95 (2H, dt, J = 8.5, 2.0 Hz), 6.81 (1H, td, J = 8.5, 2.0 Hz), 4.20 (2H, q, J = 7.5 Hz), 4.15 (2H, q, J = 7.5 Hz), 3.86 (3H, s), 3.76 (2H, s), 1.23 (3H, t, J = 7.0 Hz), 1.18 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.7, 164.9, 158.8, 136.1, 131.7, 131.5, 126.9, 122.2, 120.2, 116.6, 113.0, 112.7, 102.2, 61.3, 59.2, 55.3, 30.9, 14.3, 14.2. HRMS Calcd. For C₂₂H₂₃NO₅ + H⁺: 382.1654, found: 382.1645.

Ethyl 2-(4-acetoxyphenyl)-3-(2-ethoxy-2-oxoethyl)indolizine-1-carboxylate (2i):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.32 (1H, d, J = 9.0 Hz), 7.96 (1H, d, J = 7.0 Hz), 7.40 (2H, d, J = 8.5 Hz), 7.13 (3H, m), 6.82 (1H, t, J = 7.0 Hz), 4.16 (4H, m), 3.76 (2H, s), 2.33 (3H, s), 1.24 (3H, t, J = 7.0 Hz), 1.12 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.7, 169.6, 165.0, 150.1, 136.4, 132.4, 131.7, 130.8, 123.2, 122.6, 120.7, 120.3, 116.7, 113.1, 102.3, 61.5, 59.4, 30.9, 21.4, 14.2, 14.2. HRMS Calcd. For C₂₃H₂₃NO₆ + H⁺: 410.1604, found: 410.1600.

Ethyl 2-(4-(dimethylamino)phenyl)-3-(2-ethoxy-2-oxoethyl)indolizine-1-carboxy Late (2j):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.29 (1H, d, J = 9.0 Hz), 7.95 (1H, d, J = 7.0 Hz), 7.28 (2H, dt, J = 8.5, 3.0 Hz), 7.09 (1H, m), 6.79 (3H, m), 4.23 (2H, q, J = 7.0 Hz), 4.16 (2H, q, J = 7.0 Hz), 3.80 (2H, s), 2.99 (6H, s), 1.23 (6H, m); ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 165.2, 149.9, 136.3, 132.4, 131.5, 123.2, 122.5, 122.0, 120.3, 116.6, 112.7, 111.9, 102.3, 61.4, 59.2, 10.8, 31.2, 14.5, 14.3. HRMS Calcd. For C₂₃H₂₆N₂O₄ + H⁺: 395.1971, found: 395.1970.

Ethyl 3-(2-ethoxy-2-oxoethyl)-2-(furan-2-yl)indolizine-1-carboxylate (2k):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.28 (1H, d, J = 9.0 Hz), 7.98 (1H, d, J = 7.0 Hz), 7.56 (1H, m), 7.10 (1H, ddd, J = 9.0, 7.0, 1.0 Hz), 6.80 (1H, td, J = 7.0, 1.0 Hz), 6.68 (1H, d, J = 8.0 Hz), 6.52 (1H, m), 4.29 (2H, q, J = 7.0 Hz), 4.15 (2H, q, J = 7.0 Hz), 3.96 (2H, s), 1.28 (3H, t, J = 7.0 Hz), 1.23 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.4, 164.5, 147.4,142.4, 136.4, 123.2, 122.5, 120.4, 120.3, 117.7, 113.0, 110.8, 110.8, 102.1, 61.4, 59.4, 31.2, 14.4, 14.1. HRMS Calcd. For C₁₉H₁₉NO₅ + H⁺: 342.1341, found: 342.1333.

Ethyl 2-(1-cyano-2-phenylindolizin-3-yl)acetate (2l):

Brown solid. m.p.: 134 – 136 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.04 (1H, d, J = 7.0 Hz), 7.70 (1H, d, J = 9.0 Hz), 7.58 (2H, d, J = 8.0 Hz), 7.50 (2H, t, J = 7.0 Hz), 7.42 (1H, t, J = 7.0 Hz), 7.14 (1H, t, J = 7.5 Hz), 6.86 (1H, t, J = 7.0 Hz), 4.22 (2H, q, J = 7.0 Hz), 3.92 (2H, s), 1.28 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.3, 138.1, 132.0, 131.8, 129.6, 128.9, 128.2, 123.8, 122.5, 117.9, 116.7, 115.3, 113.4, 81.9, 61.7, 31.1, 14.2. HRMS Calcd. For C₁₉H₁₆N₂O₂ + H⁺: 305.1290, found: 305.1278.

Ethyl 2-(2-(4-chlorophenyl)-1-cyanoindolizin-3-yl)acetate (2m):

Brown solid. m.p.: 139 – 141 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (1H, d, J = 7.0 Hz), 7.69 (1H, d, J = 8.5 Hz), 7.53 (2H, d, J = 8.5 Hz), 7.47 (2H, d, J = 8.5 Hz), 7.15 (1H, dd, J = 8.5, 7.0 Hz), 6.87 (1H, td, J = 7.0, 1.0 Hz), 4.23 (2H, q, J = 7.0 Hz), 3.88 (2H, s), 1.28 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.1, 138.2, 134.4, 130.9, 130.6, 130.5, 129.1, 123.8, 122.8, 117.9, 116.5, 115.4, 113.5, 81.9, 61.8, 31.0, 14.2. HRMS Calcd. For C₁₉H₁₅ClN₂O₂ + H⁺: 339.0900, found: 339.0898.

Ethyl 2-(1-cyano-2-(4-fluorophenyl)indolizin-3-yl)acetate (2n):

Brown solid. m.p.: 109 – 111 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (1H, d, J = 7.0 Hz), 7.69 (1H, d, J = 9.0 Hz), 7.56 (2H, m), 7.16 (3H, m), 6.87 (1H, td, J = 7.0, 1.0 Hz), 4.22 (2H, q, J = 7.0 Hz), 3.88 (2H, s), 1.28 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.2, 162.77 (d, J = 247 Hz), 138.1, 131.4 (d, J = 8 Hz), 130.4, 128.0 (d, J = 4 Hz), 123.8, 122.7, 117.8, 116.6, 115.9 (d, J = 21 Hz), 115.3, 113.5, 81.9, 61.8, 31.0, 14.2. HRMS Calcd. For C₁₉H₁₅FN₂O₂ + H⁺: 323.1196, found: 323.1191.

Ethyl 2-(2-(4-bromophenyl)-1-cyanoindolizin-3-yl)acetate (20):

Brown solid. m.p.: 128 - 130 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (1H, d, J = 7.0 Hz), 7.69 (1H, d, (1H, d, J = 9.0 Hz), 7.63 (2H, d, J = 8.5 Hz), 7.46 (2H, d, J = 8.0 Hz), 7.15 (1H, dd, J = 8.5, 7.0 Hz), 6.87 (1H, t, J = 7.0 Hz), 4.22 (2H, q, J = 7.0 Hz), 3.88 (2H, s), 1.28 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.1, 138.2, 132.1, 131.2, 130.9, 130.6, 123.9, 122.8, 122.7, 117.9, 116.5, 115.3, 113.6, 81.8, 61.9, 31.0, 14.2. HRMS Calcd. For C₁₉H₁₅BrN₂O₂ + H⁺: 383.0395, found: 383.0386.

Ethyl 2-(2-(3-bromophenyl)-1-cyanoindolizin-3-yl)acetate (2p):

Brown solid. m.p.: 107 - 109 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.09 (1H, d, J = 7.0 Hz), 7.60 (1H, t, J = 2.0 Hz), 7.70 (1H, d, J = 9.0 Hz), 7.55 (2H, m), 7.37 (1H, t, J = 8.0 Hz), 7.16 (1H, dd, J = 8.5, 7.0 Hz), 6.88 (1H, td, J = 7.0, 1.0 Hz), 4.23 (2H, q, J = 7.0 Hz), 3.89 (2H, s), 1.31 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.0, 138.2, 134.1, 132.5, 131.3, 130.4, 130.1, 128.4, 123.9, 122.9, 122.8, 117.9, 116.3, 115.6, 113.6, 81.9, 61.9, 31.1, 14.2. HRMS Calcd. For C₁₉H₁₅BrN₂O₂ + H⁺: 383.0395, found: 383.0386.

Ethyl 2-(2-(2-bromophenyl)-1-cyanoindolizin-3-yl)acetate (2q):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.01 (1H, d, J = 7.0 Hz), 7.70 (2H, m), 7.39 (2H, m), 7.29 (1H, td, J = 7.0, 2.5 Hz), 7.14 (1H, ddd, J = 9.0, 7.0, 0.5 Hz), 6.86 (1H, td, J = 7.0, 1.0 Hz), 4.12 (2H, m), 3.76 (2H, s), 1.21 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 168.8, 137.7, 133.1, 133.0, 132.6, 130.7, 130.2, 127.5, 124.4, 124.0, 122.6, 117.9, 116.5, 116.2, 113.3, 81.2, 61.6, 30.9, 14.1. HRMS Calcd. For C₁₉H₁₅BrN₂O₂ + H⁺: 383.0395, found: 383.0386.

Ethyl 2-(1-cyano-2-(3-(trifluoromethyl)phenyl)indolizin-3-yl)acetate (2r):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.14 (1H, d, J = 7.0 Hz), 7.89 (1H, s), 7.82 (1H, d, J = 7.5 Hz), 7.70 (2H, m), 7.64 (1H, t, J = 7.5 Hz), 7.18 (1H, ddd, J = 9.0, 7.0, 0.5Hz), 6.90 (1H, td, J = 7.0, 1.0 Hz), 4.24 (2H, q, J = 7.0 Hz), 3.88 (2H, s), 1.29 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 168.9, 138.2, 133.1, 132.9, 131.2 (q, J = 33 Hz), 130.1, 129.5, 126.4 (q, J = 4 Hz), 125.1 (q, J = 271 Hz), 124.9 (q, J = 4 Hz), 124.0, 123.0, 117.9, 116.3, 115.6, 113.7, 81.9, 62.0, 31.2, 14.0. HRMS Calcd. For C₂₀H₁₅F₃N₂O₂ + H⁺: 373.1164, found: 373.1154.

Ethyl 2-(1-cyano-2-(4-methoxyphenyl)indolizin-3-yl)acetate (2s):

Brown solid. m.p.: 132 - 134 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.03 (1H, d, J = 7.0 Hz), 7.67 (1H, d, J = 9.0 Hz), 7.52 (2H, d, J = 8.5 Hz), 7.11 (1H, ddd, J = 9.0, 7.0, 0.5 Hz), 7.02 (2H, d, J = 9.0 Hz), 6.84 (1H, td, J = 7.0, 1.0 Hz), 4.22 (2H, q, J = 7.0 Hz), 3.90 (2H, s), 3.86 (3H, s), 1.28 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.4, 159.6, 138.0, 131.6, 130.8, 124.3, 123.8, 122.4, 117.7, 116.9, 115.0, 114.4, 113.2, 81.8, 61.7, 55.4, 31.1, 14.2. HRMS Calcd. For C₂₀H₁₈N₂O₃ + H⁺: 335.1396, found: 335.1394.

Ethyl 2-(2-(4-acetoxyphenyl)-1-cyanoindolizin-3-yl)acetate (2t):

Brown oil. ¹H NMR (500 MHz, CDCl₃): δ 8.04 (1H, d, J = 7.0 Hz), 7.70 (1H, d, J = 9.0 Hz), 7.62 (2H, d, J = 8.5 Hz), 7.23 (2H, d, J = 8.5 Hz), 7.15 (1H, m), 6.87 (1H, td, J = 7.0, 1.0 Hz), 4.22 (2H, q, J = 7.0 Hz), 3.92 (2H, s), 2.34 (3H, s), 1.28 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 169.2, 150.6, 138.2, 130.7, 129.6, 123.8, 122.7, 122.1, 117.9, 116.6, 115.4, 114.0, 113.5, 81.9, 61.8, 29.7, 21.2, 14.2. HRMS Calcd. For C₂₁H₁₈N₂O₄ + H⁺: 363.1345, found: 363.1338.

Ethyl 2-(1-cyano-2-(furan-2-yl)indolizin-3-yl)acetate (2u):

Brown solid. m.p.: 130 – 132 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.98 (1H, d, J = 7.0 Hz), 7.64 (1H, d, J = 8.5 Hz), 7.55 (1H, dd, J = 2.0, 0.5 Hz), 7.11 (1H, ddd, J = 8.5, 7.0, 1.0 Hz), 7.04 (1H, dd, J = 3.5, 0.5 Hz), 6.83 (1H, td, J = 7.0, 1.0 Hz), 6.54 (1H, dd, J = 3.5, 2.0 Hz), 4.24 (2H, s), 4.18 (2H, q, J = 7.0 Hz), 1.24 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.1, 147.2, 142.5, 138.5, 123.5, 122.8, 120.5, 117.7, 116.7, 114.6, 113.5, 111.7, 119.3, 79.2, 61.6, 31.2, 14.1. HRMS Calcd. For C₁₇H₁₄N₂O₃ + H⁺: 295.1083, found: 295.1077.

V. General Procedure for the Synthesis of Pyrroles

To a solution of 2-isocyanoacetate (8, 0.3 mmol, 1.0 equiv) and DBU (0.3 mmol, 1.0 equiv) in toluene (1 mL) was added MBHAs (0.3 mmol, 1.0 equiv) in toluene (1 mL) dropwise and then the mixture was stirred at room temperature for 2h. Water (5 mL) was added to it and the mixture was extracted three times with EtOAc (10 mL \times 3). The combined organic layers were washed with water (10 mL \times 3) and brine (10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuum. Purification of the residue by chromatography (silica gel) affords the product.

Diethyl 3-phenyl-1H-pyrrole-2,5-dicarboxylate (3a):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.50 (1H, s), 7.59 (1H, d, J = 3.5 Hz), 7.32 (5H, m), 4.12 (4H, m), 1.10 (3H, t, J = 7.5 Hz), 1.07 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.8, 160.9, 133.7, 132.3, 130.1, 127.1, 126.9, 126.7, 121.0, 117.3, 60.5, 59.8, 13.9, 13.8. HRMS Calcd. For C₁₆H₁₇NO₄ + H⁺: 288.1236, found: 288.1239.

Diethyl 3-(4-chlorophenyl)-1H-pyrrole-2,5-dicarboxylate (3b):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.64 (1H, s), 7.58 (1H, d, J = 3.0 Hz), 7.32 (2H, d, J = 8.0 Hz), 7.26 (2H, d, J = 8.0 Hz), 4.14 (4H, m), 1.15 (3H, t, J = 7.0 Hz), 1.11 (3H, t, J = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.7, 160.8, 133.1, 132.2, 131.6, 131.0, 127.2, 126.9, 121.0, 117.1, 60.7, 59.9, 14.1, 13.9. HRMS Calcd. For C₁₆H₁₆ClNO₄ + H⁺: 322.0846, found: 322.0840. Diethyl 3-(4-fluorophenyl)-1H-pyrrole-2,5-dicarboxylate (3c):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.66 (1H, s), 7.58 (1H, d, J = 3.5 Hz), 7.29 (2H, m), 7.04 (2H, t, J = 8.5 Hz), 4.14 (4H, m), 1.42 (3H, t, J = 7.0 Hz), 1.09 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.8, 162.3 (d, J = 244 Hz), 160.9, 131.9 (d, J = 8.0 Hz), 131.2, 129.5 (d, J = 4.0 Hz), 126.9, 121.1, 117.2, 113.9 (d, J = 21 Hz), 60.7, 59.9, 14.1, 13.9. HRMS Calcd. For C₁₆H₁₆FNO₄ + H⁺: 306.1142, found: 306.1136.

Diethyl 3-(4-bromophenyl)-1H-pyrrole-2,5-dicarboxylate (3d):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.59 (1H, s), 7.58 (1H, d, J = 3.5 Hz), 7.47 (2H, d, J = 8.0 Hz), 7.21 (2H, d, J = 8.0 Hz), 4.15 (4H, m), 1.52 (3H, t, J = 7.0 Hz), 1.11 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.7, 160.8, 132.7, 131.9, 131.0, 130.1, 126.9, 121.4, 121.0, 117.1, 60.7, 59.9, 14.1,13.9. HRMS Calcd. For C₁₆H₁₆BrNO₄ + H⁺: 366.0341, found: 366.0338.

Diethyl 3-(3-bromophenyl)-1H-pyrrole-2,5-dicarboxylate (3e):

Yellow solid. m.p.: 91 – 93 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.52 (1H, s), 7.62 (1H, d, J = 3.5 Hz), 7.50 (1H, s), 7.47 (1H, d, J = 8.0 Hz), 7.28 (1H, d, J = 8.0 Hz), 7.23 (1H, t, J = 8.0 Hz), 4.15 (4H, m), 1.13 (6H, m); ¹³C NMR (125 MHz, CDCl₃): δ 163.6, 160.8, 135.8, 133.2, 130.2, 130.1, 129.0, 128.4, 126.9, 121.2, 120.8, 117.3, 60.8, 60.3, 14.0, 13.8. HRMS Calcd. For C₁₆H₁₆BrNO₄ + H⁺: 366.0341, found: 366.0338.

Diethyl 3-(2-bromophenyl)-1H-pyrrole-2,5-dicarboxylate (3f):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.75 (1H, s), 7.62 (1H, d, J = 3.0 Hz), 7.59 (1H, dd, J =

8.0, 1.0 Hz), 7.30 (1H, td, J = 7.5, 1.0 Hz), 7.25 (1H, dd, J = 7.5, 2.0 Hz), 7.18 (1H, m), 4.09 (4H, m), 1.06 (3H, t, J = 7.0 Hz), 1.00 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.6, 160.8, 136.0, 131.7, 131.2, 130.5, 128.6, 126.7, 126.3, 124.2, 121.4, 117.5, 60.6, 59.8, 13.9, 13.7. HRMS Calcd. For C₁₆H₁₆BrNO₄ + H⁺: 366.0341, found: 366.0338.

Diethyl 3-(3-(trifluoromethyl)phenyl)-1H-pyrrole-2,5-dicarboxylate (3g):

Yellow solid. m.p.: 49 – 51 °C; ¹H NMR (500 MHz, CDCl₃): δ 9.83 (1H, s), 7.63 (1H, d, J = 3.5 Hz), 7.59 (2H, m), 7.52 (1H, d, J = 7.5 Hz), 7.46 (1H, t, J = 7.5 Hz), 4.11 (4H, m), 1.08 (3H, t, J = 7.0 Hz), 1.02 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.7, 161.0, 134.7, 133.7, 130.3, 129.4 (q, J = 32 Hz), 127.3, 127.2, 124.4 (q, J = 271 Hz), 123.8 (q, J = 4 Hz), 122.3, 121.3, 117.2, 60.9, 60.0, 13.9, 13.6. HRMS Calcd. For C₁₇H₁₆F₃NO₄ + H⁺: 356.1110, found: 356.1104.

Diethyl 3-(4-methoxyphenyl)-1H-pyrrole-2,5-dicarboxylate (3h):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.67 (1H, s), 7.58 (1H, d, J = 3.5 Hz), 7.29 (2H, d, J = 9.0 Hz), 6.91 (2H, d, J = 9.0 Hz), 4.16 (4H, m), 3.84 (3H, s), 1.18 (3H, t, J = 7.0 Hz), 1.13 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.9, 161.0, 158.8, 132.3, 131.4, 126.9, 125.6, 120.8, 117.0, 112.5, 60.5, 59.8, 55.2, 14.2, 14.0. HRMS Calcd. For C₁₇H₁₉NO₅ + H⁺: 318.1341, found: 318.1340.

Diethyl 3-(4-acetoxyphenyl)-1H-pyrrole-2,5-dicarboxylate (3i):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.73 (1H, s), 7.59 (1H, d, J = 3.5 Hz), 7.32 (2H, d, J = 8.5 Hz), 7.07 (2H, d, J = 8.5 Hz), 4.12 (4H, m), 2.30 (3H, s), 1.12 (3H, t, J = 7.0 Hz), 1.07 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.4, 163.9, 161.1, 149.9, 131.5, 131.2, 131.1, 127.0, 121.2, 120.1, 117.3, 60.7, 59.9, 21.2, 13.9, 13.7. HRMS Calcd. For C₁₈H₁₉NO₆ + H⁺: 346.1291, found: 346.1287.

Diethyl 3-(4-(dimethylamino)phenyl)-1H-pyrrole-2,5-dicarboxylate (3j):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.45 (1H, s), 7.57 (1H, d, J = 3.5 Hz), 7.27 (2H, d, J = 8.5 Hz), 6.75 (2H, d, J = 8.5 Hz), 4.19 (4H, m), 2.98 (6H, s), 1.20 (3H, t, J = 7.0 Hz), 1.18 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.9, 160.9, 149.9, 133.1, 131.2, 126.9, 120.9, 120.5, 116.9, 111.3, 60.4, 59.7, 40.7, 14.2, 14.1. HRMS Calcd. For C₁₈H₂₂N₂O₄ + H⁺: 331.1658, found: 331.1652.

Diethyl 3-(furan-2-yl)-1H-pyrrole-2,5-dicarboxylate (3k):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 9.78 (1H, s), 7.56 (1H, d, J = 3.5 Hz), 7.50 (1H, dd, J = 2.0, 1.0 Hz), 6.54 (1H, dd, J = 3.0, 1.0 Hz), 6.48 (1H, dd, J = 3.0, 2.0 Hz), 4.24 (2H, q, J = 7.0 Hz), 4.20 (2H, q, J = 7.0 Hz), 1.22 (6H, m); ¹³C NMR (125 MHz, CDCl₃): δ 163.5, 160.6, 145.4, 141.8, 126.9, 122.3, 120.3, 117.8, 110.9, 110.7, 60.9, 60.1, 14.2, 14.1. HRMS Calcd. For C₁₄H₁₅NO₅ + H⁺: 278.1028, found: 278.1020.

VI. General Procedure for the Synthesis of Pyrazoles

A mixture of MBHAs (0.3 mmol, 1.0 equiv) and phenylhydrazine (9, 0.3 mmol, 1.0 equiv) was stirred in MeOH (2 mL) at 65 °C overnight. Once starting material was consumed (monitored by TLC), the organic solvent was removed and the residue was purified by column chromatography (silica gel) to give the target compound.

Ethyl 1,3-diphenyl-1H-pyrazole-5-carboxylate (4a):²

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (2H, m), 7.45 (7H, m), 7.36 (1H, tt, *J* = 7.0, 1.5 Hz), 7.34 (1H, s), 4.27 (2H, q, *J* = 7.0 Hz), 1.27 (3H, t, *J* = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 159.1, 151.5, 140.4, 134.7, 132.2, 128.8, 128.7, 128.6, 128.4, 126.1, 125.8, 109.4, 61.2, 14.1. HRMS Calcd. For C₁₈H₁₆N₂O₂ + H⁺: 293.1290, found: 293.1282.

Ethyl 3-(4-chlorophenyl)-1-phenyl-1H-pyrazole-5-carboxylate (4b):

Yellow solid. m.p.: 61 - 63 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.45 (2H, d, J = 8.5 Hz), 7.48 (5H, m), 7.39 (2H, d, J = 8.5 Hz), 7.30 (1H, s), 4.27 (2H, q, J = 7.0 Hz), 1.27 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 150.4, 140.3, 134.9, 134.2, 130.7, 128.9, 128.8, 128.6, 127.1, 126.1, 109.3, 61.3, 14.0. HRMS Calcd. For C₁₈H₁₅ClN₂O₂ + H⁺: 327.0900, found: 327.0898.

Ethyl 3-(4-fluorophenyl)-1-phenyl-1H-pyrazole-5-carboxylate (4c):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.85 (2H, m), 7.48 (5H, m), 7.28 (1H, s), 7.11 (2H, t, *J* = 9.0 Hz), 4.27 (2H, q, *J* = 7.0 Hz), 1.27 (3H, t, *J* = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 162.9 (d, *J* = 245 Hz), 159.0, 150.6, 140.3, 134.8, 128.7, 128.6, 128.4 (d, *J* = 4 Hz), 127.5 (d, *J* = 8 Hz), 126.1, 115.7 (d, *J* = 21 Hz), 109.2, 61.3, 14.0. HRMS Calcd. For C₁₈H₁₅FN₂O₂ + H⁺: 311.1196, found: 311.1189.

Ethyl 3-(4-bromophenyl)-1-phenyl-1H-pyrazole-5-carboxylate (4d):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.75 (2H, d, J = 8.5 Hz), 7.55 (2H, d, J = 8.5 Hz), 7.48 (5H, m), 7.30 (1H, s), 4.27 (2H, q, J = 7.0 Hz), 1.26 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 150.4, 140.3, 134.9, 131.9, 131.1, 128.8, 128.5, 127.3, 126.1, 122.4, 109.3, 61.3, 14.0. HRMS Calcd. For C₁₈H₁₅BrN₂O₂ + H⁺: 371.0395, found: 371.0391.

Ethyl 3-(3-bromophenyl)-1-phenyl-1H-pyrazole-5-carboxylate (4e):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 8.05 (1H, t, J = 1.5 Hz), 7.79 (1H, d, J = 8.0 Hz), 7.48 (6H, m), 7.31 (1H, s), 7.29 (1H, t, J = 8.0 Hz), 4.27 (2H, q, J = 7.0 Hz), 1.27 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 150.0, 140.2, 134.2, 131.3, 130.3, 129.0, 128.8, 128.7,

128.6, 128.2, 126.1, 124.3, 109.5, 61.3, 14.0. HRMS Calcd. For $C_{18}H_{15}BrN_2O_2 + H^+$: 371.0395, found: 371.0391.

Ethyl 1-phenyl-3-(3-(trifluoromethyl)phenyl)-1H-pyrazole-5-carboxylate (4f):

Yellow solid. m.p.: 96 – 98 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.15 (1H, s), 8.06 (1H, d, J = 7.5 Hz), 7.61 (1H, d, J = 7.5 Hz), 7.54 (1H, t, J = 7.5 Hz), 7.49 (5H, m), 7.37 (1H, s), 4.28 (2H, q, J = 7.5 Hz), 1.28 (3H, t, J = 7.5 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 150.0, 140.2, 135.0, 133.0, 131.2 (d, J = 32 Hz), 129.2, 128.9, 128.6, 128.2, 126.1, 124.9 (q, J = 4 Hz), 124.1 (q, J = 271 Hz), 122.5 (q, J = 4 Hz), 109.5, 61.4, 14.0. HRMS Calcd. For C₁₉H₁₅F₃N₂O₂ + H⁺: 361.1164, found: 361.1155.

Ethyl 3-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-5-carboxylate (4g):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (2H, d, J = 9.0 Hz), 7.47 (5H, m), 7.26 (1H, s), 6.95 (2H, d, J = 9.0 Hz), 4.26 (2H, q, J = 7.0 Hz), 3.84 (3H, s), 1.26 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 159.8, 159.2, 151.3, 140.4, 134.6, 128.6, 128.5, 127.1, 126.1, 124.9, 114.1, 108.9, 61.2, 55.3, 14.0. HRMS Calcd. For C₁₉H₁₈N₂O₂ + H⁺: 323.1396, found: 323.1394.

Ethyl 3-(4-acetoxyphenyl)-1-phenyl-1H-pyrazole-5-carboxylate (4h):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (2H, d, J = 8.5 Hz), 7.48 (5H, m), 7.29 (1H, s), 7.16 (2H, d, J = 8.5 Hz), 4.26 (2H, q, J = 7.0 Hz), 2.31 (3H, s), 1.26 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 169.4, 159.1, 150.8, 150.7, 140.3, 134.8, 129.9, 128.7, 128.6, 126.9, 126.1, 121.9, 109.3, 61.2, 21.2, 14.0. HRMS Calcd. For C₂₀H₁₈N₂O₂ + H⁺: 351.1345, found: 351.1338.

Ethyl 3-(furan-2-yl)-1-phenyl-1H-pyrazole-5-carboxylate (4i):

Yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 7.45 (6H, m), 7.24 (1H, s), 6.78 (1H, d, J = 3.0 Hz), 6.49 (1H, dd, J = 3.0, 2.0 Hz), 4.25 (2H, q, J = 7.0 Hz), 1.26 (3H, t, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 147.6, 144.1, 142.4, 140.1, 134.4, 128.8, 128.6, 126.2, 111.5, 109.1, 106.8, 61.3, 14.0. HRMS Calcd. For C₁₆H₁₄N₂O₃ + H⁺: 283.1083, found: 283.1080.

VII. General Procedure for the Synthesis of Benzo[b][1,6]oxazocin-2-ones

A mixture of MBHAs (0.3 mmol, 1.0 equiv) and 2-aminophenol (10, 0.3 mmol, 1.0 equiv) was stirred in MeOH (2 mL) at room temperature for 15 min. Then Na_2CO_3 (0.3 mmol, 1.0 equiv) was added and the mixture was heated to 40 °C for 2h. Once the starting MBHAs disappeared, the organic solvent was removed and the residue was purified by column chromatography (silica gel) to give the product.

(3Z,5E)-5-Phenyl-2H-benzo[b][1,6]oxazocin-2-one (5a):

Yellow solid. m.p.: $151 - 153 \,^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃): δ 8.14 (1H, d, $J = 16.5 \,\text{Hz}$), 7.77 (1H, d, $J = 7.5 \,\text{Hz}$), 7.67 (2H, d, $J = 7.0 \,\text{Hz}$), 7.53 (1H, d, $J = 16.5 \,\text{Hz}$), 7.47 (1H, t, $J = 7.0 \,\text{Hz}$), 7.40 (4H, m), 7.30 (1H, d, $J = 8.0 \,\text{Hz}$); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 149.6, 146.0, 140.4, 135.8, 131.9, 130.6, 129.9, 129.0, 128.9, 128.1, 125.7, 121.2, 116.3. HRMS Calcd. For C₁₆H₁₁NO₂ + H⁺: 250.0868, found: 250.0867.

(3Z,5E)-5-(4-Chlorophenyl)-2H-benzo[b][1,6]oxazocin-2-one (5b):

Yellow solid. m.p.: 148 – 150 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.09 (1H, d, J = 16.5 Hz), 7.77 (1H, dd, J = 8.0, 1.5 Hz), 7.59 (2H, dt, J = 9.0, 2.0 Hz), 7.48 (2H, m), 7.37 (3H, m), 7.31 (1H, dd, J = 8.5, 1.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 153.0, 149.4, 146.1, 138.9, 135.8, 134.4, 131.9, 130.7, 129.2, 129.0, 125.7, 121.8, 116.3. HRMS Calcd. For C₁₆H₁₀ClNO₂ + H⁺: 284.0478, found: 284.0468.

(3Z,5E)-5-(4-Fluorophenyl)-2H-benzo[b][1,6]oxazocin-2-one (5c):

Yellow solid. m.p.: 141 – 143 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.10 (1H, d, J = 16.5 Hz), 7.76 (1H, dd, J = 16.5 Hz), 7.64 (2H, m), 7.47 (1H, td, J = 8.5, 2.0 Hz), 7.43 (1H, d, J = 16.5 Hz), 7.37 (1H, m), 7.30 (1H, dd, J = 8.0, 1.0 Hz), 7.10 (2H, t, J = 8.5 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 163.7 (d, J = 249 Hz), 153.1, 149.4, 146.0, 139.1, 132.0 (d, J = 3 Hz), 131.9, 130.6 129.9 (d, J = 8 Hz), 128.9, 125.7, 120.9 (d, J = 2 Hz), 116.3, 116.1 (d, J = 22 Hz). HRMS Calcd. For C₁₆H₁₀FNO₂ + H⁺: 268.0774, found: 268.0771.

(3Z,5E)-5-(4-Bromophenyl)-2H-benzo[b][1,6]oxazocin-2-one (5d):

Yellow solid. m.p.: 137 - 139 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (1H, d, J = 16.5 Hz), 7.76 (1H, dd, J = 8.0, 1.0 Hz), 7.50 (6H, m), 7.38 (1H, t, J = 7.5 Hz), 7.30 (1H, d, J = 8.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 153.0, 149.3, 146.0, 138.9, 134.7, 132.2, 131.9, 130.8, 129.4, 129.0, 125.7, 124.1, 121.8, 116.4. HRMS Calcd. For C₁₆H₁₀BrNO₂ + H⁺: 327.9973, found: 327.9969.

(3Z,5E)-5-(3-Bromophenyl)-2H-benzo[b][1,6]oxazocin-2-one (5e):

Yellow solid. m.p.: >250 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (1H, d, J = 16.5 Hz), 7.78 (2H, m), 7.57 (1H, d, J = 7.5 Hz), 7.48 (3H, m), 7.39 (1H, t, J = 7.5 Hz), 7.28 (2H, m); ¹³C NMR (125 MHz, CDCl₃): δ 153.0, 149.1, 146.1, 138.6, 137.8, 132.6, 131.9, 130.9, 130.7, 130.4, 129.1, 126.6, 125.7, 123.1, 122.5, 116.3. HRMS Calcd. For C₁₆H₁₀BrNO₂ + H⁺: 327.9973, found: 327.9969.

(3Z,5E)-5-(2-Bromophenyl)-2H-benzo[b][1,6]oxazocin-2-one (5f):

Yellow solid. m.p.: 148 – 150 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.50 (1H, d, J = 16.0 Hz), 7.82 (1H, dd, J = 8.0, 1.0 Hz), 7.79 (1H, dd, J = 8.0, 1.0 Hz), 7.63 (1H, dd, J = 8.0, 1.0 Hz), 7.48 (2H, m), 7.38 (2H, m), 7.31 (1H, dd, J = 8.0, 1.0 Hz), 7.23 (1H, td, J = 8.0, 1.0 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 149.3, 146.1, 138.6, 135.7, 133.4, 131.9, 130.9, 130.8, 129.3, 127.7, 127.6, 125.7, 125.6, 123.6, 116.3. HRMS Calcd. For C₁₆H₁₀BrNO₂ + H⁺: 327.9973, found: 327.9969.

(3Z,5E)-5-(3-(Trifluoromethyl)phenyl)-2H-benzo[b][1,6]oxazocin-2-one (5g):

Yellow solid. m.p.: 158 – 160 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.17 (1H, d, J = 16.0 Hz), 7.90 (1H, s), 7.83 (1H, d, J = 7.5 Hz), 7.79 (1H, dd, J = 8.0, 1.5 Hz), 7.62 (1H, d, J = 7.5 Hz), 7.52 (3H, m), 7.40 (1H, td, J = 7.5, 1.0 Hz), 7.32 (1H, dd, J = 8.0, 1.5 Hz); ¹³C NMR (125 MHz, CDCl₃): δ 153.0, 149.1, 146.1, 138.6, 136.5, 131.9, 131.5 (d, J = 32 Hz), 131.1, 130.9, 129.4, 129.2, 126.2 (q, J = 4 Hz), 125.8, 124.7 (q, J = 4 Hz), 123.9 (q, J = 271 Hz), 122.9, 116.4. HRMS Calcd. For C₁₇H₁₀F₃NO₂ + H⁺: 318.0742, found: 318.0733.

(3Z,5E)-5-(4-Methoxyphenyl)-2H-benzo[b][1,6]oxazocin-2-one (5h):

Yellow solid. m.p.: 166 – 168 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.10 (1H, d, J = 16.0 Hz), 7.75 (1H, dd, J = 8.0, 1.5 Hz), 7.62 (2H, d, J = 8.5 Hz), 7.44 (1H, td, J = 7.5, 1.5 Hz), 7.40 (1H, d, J = 16.0 Hz), 7.36 (1H, td, J = 8.0, 1.5 Hz), 7.29 (1H, dd, J = 8.5, 1.0 Hz), 6.94 (2H, d, J = 8.5 Hz), 3.85 (3H, s); ¹³C NMR (125 MHz, CDCl₃): δ 161.2, 153.3, 149.8, 145.9, 140.1, 132.5, 132.1, 130.1, 129.8, 128.7, 125.6, 118.8, 116.3, 114.5, 55.4. HRMS Calcd. For C₁₇H₁₃NO₃ + H⁺: 280.0974, found: 280.0972.

4-((3Z,5E)-2-Oxo-2H-benzo[b][1,6]oxazocin-5-yl)phenyl acetate (5i):

Yellow solid. m.p.: $169 - 171 \,^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃): δ 8.13 (1H, d, $J = 16.0 \,\text{Hz}$), 7.77 (1H, dd, $J = 8.0, 1.5 \,\text{Hz}$), 7.68 (2H, d, $J = 8.5 \,\text{Hz}$), 7.47 (2H, m), 7.38 (1H, td, $J = 8.0, 1.0 \,\text{Hz}$), 7.30 (1H, dd, $J = 8.0, 1.0 \,\text{Hz}$), 7.15 (2H, d, $J = 8.5 \,\text{Hz}$), 2.32 (3H, s); ¹³C NMR (125 MHz, CDCl₃): δ 169.2, 153.1, 151.8, 149.5, 146.0, 139.3, 133.6, 131.9, 130.6, 129.2, 128.9, 125.7, 122.2, 121.3, 116.3, 21.2. HRMS Calcd. For C₁₈H₁₃NO₄ + H⁺: 308.0923, found: 308.0920.

(3Z,5E)-5-(4-(Dimethylamino)phenyl)-2H-benzo[b][1,6]oxazocin-2-one (5j):

Yellow solid. m.p.: 70 – 72 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.10 (1H, d, J = 16.0 Hz), 7.72 (1H, dd, J = 8.0, 1.5 Hz), 7.57 (2H, d, J = 9.0 Hz), 7.39 (1H, td, J = 8.0, 1.5 Hz), 7.33 (2H, m), 7.27 (1H, m), 6.70 (2H, d, J = 9.0 Hz), 3.04 (6H, s); ¹³C NMR (125 MHz, CDCl₃): δ 153.6, 151.6, 150.0, 145.8, 141.0, 132.4, 130.0, 129.3, 128.3, 125.5, 123.9, 116.2, 115.8, 111.9, 40.2. HRMS Calcd. For C₁₈H₁₆N₂O₂ + H⁺: 293.1290, found: 293.1285.

VIII. Reference

1 Kuan, H. H.; Reddy, R. J.; Chen, K. Tetrahedron, 2010, 66, 9875 - 9879.

2 Yang, X.; Shui, S.; Chen, X.; He, H.; Wu, F. Journal of Fluorine Chemistry, 2010, 131, 426 – 432.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

4.210 4.196 4.181 4.185 4.167 4.167 4.167 4.161 4.133 -8.296 $<^{7.984}_{7.970}$ $\int_{-7.373}^{7.373} \int_{-7.316}^{7.335} 7.335$ 1.251 1.251 1.177 1.163 COOEt EtOOC `cı 2b 1.00 ± 1.04 1 3.20 3.11 ⊣_ 1.01 ± 1.01 ± 4.19-2.02 – 2.07 5.0 4.5 f1 (ppm) 8.0 7.5 6.5 6.0 5.5 4.0 3.5 . 3.0 2.5 2.0 1.5 7.0 -136.325 -102.219 --61.581 --59.403 -30.904 $\mathcal{L}^{14.337}_{14.253}$ COOEt Et00C `cı 2b 170 . 160 150 . 140 90 f1 (ppm) 40 130 120 110 100 80 70 60 50 30 20

4.212 4.197 4.1183 4.1169 4.1169 4.1161 4.1161 4.132 $\begin{array}{c} \mathcal{L}_{8.312} \\ \mathcal{L}_{8.294} \\ \mathcal{L}_{7.575} \\ \mathcal{L}_{7.526} \\$ 11251 11237 11237 11233 11233 11233 11167 COOEt EtOOC. 2d 1.00 ± 1.01 ± 2.04 1 1.02 ⊣ 2.05-I 2.23 ± 1.03 ± 4.26 3.29 3.16 Å 5.5 5.0 4.5 f1 (ppm) . 8.0 7.5 7.0 6.0 4.0 3.5 3.0 2.5 2.0 1.5 6.5 136,315
136,315
133,843
130,793
130,793
122,6615
122,665
1220,359
-116,630
-113,112
-113,112
-113,112 -102.150 -61.577 -59.402 -30.887 $\mathcal{L}^{14.334}_{14.246}$ COOEt Et000 Br 2d 170 140 100 90 f1 (ppm) 60 . 40 160 150 130 120 110 80 70 50 30 20

 ^{1,293}
^{1,293}
^{1,279}
^{1,265} $\begin{array}{c} \mathcal{L}_{6,8038} \\ \mathcal{L}_{7,679} \\ \mathcal{L}_{7,661} \\ \mathcal{L}_{7,661} \\ \mathcal{L}_{7,661} \\ \mathcal{L}_{7,132} \\ \mathcal{L}_{7,013} \\ \mathcal{L}_{7,013} \\ \mathcal{L}_{7,013} \\ \mathcal{L}_{6,823} \\ \mathcal{L}_{6,825} \\ \mathcal{L}_{6,825}$ 4.237 4.208 4.194 3.859 -осн_з COOEt 2s Å l # 1 [⊥] 100 8.0 1.02 -1.00 1.98 2.04 \pm 2.01 3.14 法 3.14 ± 1.03 \frac{1}{1} 5.0 4.5 f1 (ppm) 7.5 7.0 6.5 6.0 5.5 . 4.0 3.5 3.0 2.5 2.0 1.5 √131.588 √130.811 123.780 −122.396 −122.396 117.716 117.716 113.245 -81.829 -61.714 -55.357 -31.089 -14.182 -ОСН3 ~COOEt 2s 170 90 f1 (ppm) 160 150 140 130 120 110 100 80 70 60 50 40 30 20

7.824 7.807 7.493 7.484 7.484 7.484 7.486 7.486 7.387 1.282
1.268
1.268
1.268
1.254 4.288 4.274 4.260 a COOEt 4b 5.01⁺ 2.03 ± 5.07 2.06 子 1.00 净 3.45 -≖ 7.4 7.0 5.0 2.2 6.6 6.2 5.8 5.4 4.6 f1 (ppm) 4.2 3.8 3.0 2.6 1.4 3.4 1.8 128.953 128.832 128.650 127.063 126.104 -159.008 -150.384-140.279 -134.204 -61.322 -14.052 -130.703 ~128.953 ~128.832 ~128.650 -127.063 -126.104 CI U. COOEt 4b 129 128 127 f1 (ppm) 131 130 126 125 . 160 80 f1 (ppm) 20 0 150 140 130 120 110 100 90 70 60 50 40 30 10

 $L_{8.055}^{8.055}$ $C_{7.802}^{7.802}$ $L_{7.471}^{7.485}$ $L_{7.316}^{7.316}$ 7.2334 290 4 275 4 261 $\int_{-1.257}^{1.286}$ COOE 4e 2.32 -[1.00 ⊾ 1.09 ± 6.40 ⊣ 1.02 / 1.45 / 3.22 -≖ 8.0 5.0 4.5 f1 (ppm) 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 128.876 128.767 128.655 128.655 128.239 126.103 -150.009 -140.239 -61.332 -14.043 --128.876 --128.767 -129.049 -128.655 -128.239 COOE 128.5 f1 (ppm) 4e 129.0 155 . 145 115 105 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm) 135 125 95

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

