SUPPORTING INFORMATION

Synthesis of (spiro)cyclopentapyridinones via C_{sp3}-H functionalization: A post-Ugi gold-catalyzed regioselective tandem cyclization

Dipak D. Vachhani,^a Marzia Galli,^a Jeroen Jacobs,^b Luc Van Meervelt,^b Erik V. Van der Eycken^{*a}

- ^a Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven)), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
- ^b Biomolecular Architecture, Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.

Corresponding author: erik.vandereycken@chem.kuleuven.be

Table of Contents

This page	S1
General experimental procedures and data	
Crystallographic data for compound 6f	
References	S21
Copies of ¹ H and ¹³ C NMR spectra	

Experimental Section

Materials:

All the starting materials, reagents and catalysts were purchased from Aldrich or Acros and used as such. For thin layer chromatography, analytical TLC plates (Alugram SIL G/UV254 and 70-230 mesh silica gel (E. M. Merck) were used). Column chromatography was performed using silica gel (Merck, 60-120 mesh size). Anhydrous solvents were purchased from Acros Organics and stored over molecular sieves. The chromatographic solvents used for isolation/purification of compounds were distilled prior to use. The chromatographic solvents are mentioned as volume:volume ratios. Reactions were typically run in oven-dried screw-cap vial under inert atmosphere.

Apparatus:

¹H and ¹³C NMR spectra were recorded on a 400 MHz & 300 MHz instrument using CDCl₃ and DMSO-d₆ as a solvent. The ¹H and ¹³C chemical shifts are reported in parts per million relative to tetramethylsilane using the residual solvent signal as the internal reference. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, bs = broad singlet, d = doublet, dd = double doublet, t = triplet, m = multiplet. The ¹³C NMR spectra are proton decoupled. The melting points were determined on a digital Barnsted Electrothermal 9200 apparatus and are uncorrected. Mass spectra were recorded by using a Kratos MS50TC and a Kratos Mach III system. The ion source temperature was 150-250 °C, as required. High resolution EI-mass spectra were performed with a resolution of 10,000. The low-resolution spectra were obtained with a HP5989A MS instrument. The low resolution ESI-MS were obtained with a Thermo Scientific instrument.

Aldehyde 2-alkynoic acid Isonitrile CHO 1a CHO ŅC 1b соон CHO 4a NC 1c 3a CHO COOH H₃CO[′] 4b 1d OCH3 NC 3b СНО H₃CO H₃CO[′] соон 1e 4c СНО ŅC F CI 3c 1f 4d соон CHO ,NC 1g 3d СНО 4e $O_2 N^2$ 1h

Table 1. Starting materials.

General procedure for synthesis of Ugi products.

To a solution of aldehyde **1a-i** (150 mg, 1 equiv) in methanol (10 mL) were added successively Na_2SO_4 (0.3g), propargylamine (1.1 equiv), alkynoic acid **3a-f** (1.1 equiv) and isonitrile **4a-e** (1.1 equiv) in a screw capped vial equipped with a magnetic stir bar. The reaction mixture was stirred at room temperature for 16-48 h in closed vial. After completion of the reaction, the mixture was diluted with EtOAc (100 mL) and was extracted with water (50 mL). Organic layer was washed with brine (50 mL), dried over magnesium sulfate and evaporated under reduced pressure to obtain residue which was subjected to silica gel column chromatography (10% Diethyl ether in Dichloromethane) to afford the desired product **5a-t** as solid.

N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-4,4-dimethyl-N-(prop-2-ynyl)pent-2-

ynamide (5a).

White solid, Yield 90 % (mixture of rotamers ~ 1:2). Melting point: 135-137 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.29 (m, 5H), 6.35-6.26 (m, 0.32H), 6.09 (s, 1H), 5.87-5.74 (m, 0.64H), 4.35-4.19 (m, 1.70H), 3.99-3.75 (m, 1H), 3.64-3.52 (m, 0.34H), 2.22-1.86 (m, 3H), 1.79-1.53 (m, 4H), 1.42-1.01 (m, 14H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7, 167.5, 155.5, 155.1, 134.3, 133.9, 129.5, 129.0, 128.7, 128.6, 103.1, 102.2, 79.4, 72.4, 72.1, 71.9, 71.2, 66.9, 60.3, 48.9, 48.6, 36.8, 32.9 (2), 32.7 (2), 32.2, 29.9, 27.8, 25.4, 24.7 (2). HRMS calculated for C₂₄H₃₀N₂O₂ 378.2307, found 378.2328.

N-(2-(tert-butylamino)-2-oxo-1-phenylethyl)-4,4-dimethyl-N-(prop-2-ynyl)pent-2-

ynamide (5b).

White solid, Yield 86 % (mixture of rotamers ~ 1:2). Melting point: 160-162 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.29 (m, 5H), 6.22 (bs, 0.30H), 6.04 (s, 0.66H), 5.98 (s, 0.32H), 5.71 (bs, 0.65H) 4.42-4.18 (m, 1.70H), 3.59 (d, *J* = 17.7 Hz, 0.31H), 2.16-2.12 (m, 0.28H), 1.98-1.93 (m, 0.62H), 1.44 (s, 3H), 1.36 (s, 6H), 1.29 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 167.8, 155.5, 155.1, 134.5, 134.0, 129.5 (2), 129.0, 128.8, 128.7, 128.5, 102.9, 102.1, 79.5, 79.4, 72.5, 72.0, 70.9, 67.2, 60.4, 52.2, 51.8, 36.7, 32.2, 30.0, 29.8, 28.6, 28.5, 27.8 (2). HRMS calculated for C₂₂H₂₈N₂O₂ 352.2151, found 352.2134.

N-(2-(tert-butylamino)-2-oxo-1-o-tolylethyl)-4,4-dimethyl-N-(prop-2-ynyl)pent-2-

ynamide (5c).

White solid, Yield 93 % (mixture of rotamers ~ 1:2). Melting point: 202-204 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.15 (m, 4H), 6.21 (bs, 0.31H), 6.12 (s, 0.65H), 6.04 (s, 0.34H), 5.57 (bs, 0.62H), 4.40 (bd, J = 18.3 Hz, 0.65H), 4.17 (t, J = 17.1 Hz, 1H), 3.55 (d, J = 17.4 Hz, 0.33H), 2.32-2.24 (m, 3H), 2.08 (bs, 0.32H), 1.83 (bs, 0.59H), 1.44 (s, 3H), 1.36 (s, 6H), 1.32-1.27 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 168.6, 155.3, 155.2, 139.5, 138.5, 132.6, 132.3, 130.9, 130.6, 129.2, 129.0 (2), 128.9, 126.7, 126.3, 102.7, 101.7, 79.3, 79.0, 72.4, 71.9, 71.7, 70.1, 64.9, 57.8, 52.2, 51.8, 36.4, 31.6, 30.0, 29.9, 28.6, 28.5, 27.8 (2), 19.4, 19.1. HRMS calculated for C₂₃H₃₀N₂O₂ 366.2307, found 366.2278.

ynamide (5d).

White solid, Yield 92% (mixture of rotamers ~ 1:2). Melting point: 188-190 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.15 (m, 9H), 6.80-6.72 (m, 0.29H), 6.25 (bs, 1H), 6.15-6.05 (m, 0.64H), 4.70-4.42 (m, 2H), 4.38-4.13 (m, 1.62H), 3.55 (dd, *J* = 17.4 Hz, J = 2.4 Hz, 0.33H), 2.29 (s, 3H), 1.82 (bs, 1H), 1.29 (s, 5.7H), 1.27 (s, 2.8H). ¹³C NMR (75 MHz, CDCl₃) δ 169.4, 155.3, 155.2, 139.2, 138.5, 137.6, 131.9 (2), 131.0, 130.7, 129.3, 129.2 (2), 129.1, 128.7, 128.6, 128.0, 127.8, 127.6, 127.4, 126.6, 126.3, 103.1, 102.0, 78.9, 78.8, 72.3, 71.8, 71.6, 70.6, 64.4, 57.9, 43.8, 43.7, 36.4, 31.7, 29.9 (2), 27.8 (2), 19.3, 19.2. HRMS calculated for C₂₆H₂₈N₂O₂ 400.2151, found 400.2139.

 $\begin{array}{c} \downarrow \\ \downarrow \\ HN \\ \downarrow \\ \downarrow \\ HN \\ \downarrow \\ \downarrow \\ \downarrow \\ 0 \end{array} = + 4.4$

o 4,4-dimethyl-*N*-(2-oxo-1-*o*-tolyl-2-(2,4,4-trimethylpentan-2-ylamino)ethyl)-*N*-(prop-2-

White solid, Yield 96% (mixture of rotamers ~ 1:2). Melting point: 163-165°C. ¹H NMR (300 MHz, CDCl₃) δ 7.43-7.16 (m, 4H), 6.15 (bs, 0.30H), 6.06 (s, 1H), 5.54 (bs, 0.58H), 4.39 (dd, J = 18.1 Hz, J = 2.7 Hz, 0.66H), 4.21-4.11 (m, 1H), 3.67 (dd, J = 16.8 Hz, J = 2.1 Hz, 0.31H), 2.31-2.28 (m, 3H), 2.06 (bt, 0.31H), 1.89-1.81 (m, 1H), 1.77 (bd, 0.60H), 1.61 (s, 0.60H), 1.59-1.52 (m, 0.35H), 1.56-1.39 (m, 6H), 1.34-1.26 (m, 9H), 1.02 (s, 3H), 0.95 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 168.1, 155.3, 155.1, 139.3, 138.5, 132.5, 132.4, 130.9, 130.6, 129.2 (2), 129.1, 128.9, 126.5, 126.2, 102.6, 101.7, 79.2, 79.0, 72.4, 72.1, 71.6, 70.4, 64.7, 58.2, 56.4, 56.0, 53.4, 52.7, 52.4, 36.5, 31.8, 31.6 (2), 31.5, 31.4, 30.0, 29.9, 29.1, 28.9, 28.1, 27.8 (2), 19.3 (2). HRMS calculated for C₂₇H₃₈N₂O₂ 422.2933, found 422.2942.

 $\sqrt{0}$ $\sqrt{N-(2-(tert-butylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-4,4-dimethyl-$ *N*-(prop-2-ynyl)pent-2-ynamide (**5f**).

White solid, Yield 83 % (mixture of rotamers ~ 1:2). Melting point: 147-149 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.20 (m, 2H), 6.96-6.84 (m, 2H), 6.19 (bs, 0.30H), 5.97 (s, 0.64H), 5.92 (s, 0.33), 5.64 (bs, 0.61H), 4.41 (m, 1.67H), 3.82 (s, 3H), 3.58 (d, *J* = 17.7 Hz, 0.33H), 2.14 (bs, 0.28H), 1.97 (bs, 0.60), 1.43 (s, 3H), 1.35 (s, 6H), 1.31-1.27 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 168.1, 159.9, 159.8, 155.4, 155.1, 131.0, 130.8, 126.4, 125.9, 114.4, 114.1, 102.8, 101.8, 79.7, 79.5, 72.5, 72.0, 71.9, 70.9, 66.8, 60.0, 55.3, 55.2, 52.1, 51.7, 36.5, 32.0, 30.0, 29.9, 28.6 (2), 27.8 (2). HRMS calculated for C₂₃H₃₀N₂O₃ 282.2256, found 282.2250.

N-(2-(tert-butylamino)-2-oxo-1-(2,3,4-trimethoxyphenyl)ethyl)-4,4-dimethyl-N-

(prop-2-yn-1-yl)pent-2-ynamide (5g).

White solid, Yield 91 % (mixture of rotamers ~ 1:1). Melting point: 62-64 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.14-6.99 (m, 1H), 6.71-6.64 (m, 1H), 6.24 (s, 1H), 6.07 (bs, 0.44H), 5.59 (bs, 0.53H), 4.48-4.16 (m, 1.59H), 3.93-3.83 (m, 9H), 3.76 (dd, J = 17.1 Hz, J = 2.7 Hz, 0.57H), 2.06 (bs, 0.43H), 1.92 (bt, 0.50H), 1.41 (s, 4H), 1.36-1.26 (m, 14H). ¹³C NMR (75 MHz, CDCl₃) δ 168.7, 168.5, 155.3, 155.1, 154.6, 154.5, 153.0, 152.8, 141.9, 141.8, 124.5, 124.4, 120.4, 119.9, 107.1, 106.8, 101.9, 101.4, 79.6 (2), 72.6, 72.0, 71.4, 70.7, 61.6, 60.8, 60.6, 60.5, 55.9 (2), 55.0, 52.0, 51.7, 36.5, 31.8, 30.0, 29.9, 28.6 (2), 27.8, 27.7. HRMS calculated for C₂₅H₃₄N₂O₅ 442.2468, found 442.2492.

N-(2-(tert-butylamino)-1-(2-chloro-4-fluorophenyl)-2-oxoethyl)-4,4-dimethyl-N-

(prop-2-yn-1-yl)pent-2-ynamide (5h).

White solid, Yield 89 % (mixture of rotamers ~ 1:2). Melting point: 171-173 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.63-7.38 (m, 1H), 7.22-6.99 (m, 2H), 6.27 (bs, 0.34H), 6.21 (s, 0.37H), 6.16 (s, 0.57H), 5.75 (bs, 0.55H), 4.44-4.21 (m, 1.60H), 3.47 (dd, *J* = 17.7 Hz, *J* = 2.1 Hz, 0.40H), 2.14 (bs, 0.34H), 1.95 (bs, 0.52H), 1.45-1.27 (m, 18H). ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 167.3, 164.3 (2), 161.0, 160.9, 155.4, 155.0, 137.5, 137.3, 137.1, 137.0, 132.1, 131.9, 131.8, 128.5, 128.4, 128.2, 128.1, 117.6, 117.4, 117.3, 117.1, 114.7, 114.5, 114.4, 114.1, 102.9, 102.0, 79.0, 78.5, 72.3, 72.2, 71.7, 70.9, 64.1, 57.3, 52.4, 51.9, 36.7, 31.5, 29.9 (2), 28.5 (2), 27.8 (2). HRMS calculated for C₂₂H₂₆CIFN₂O₂ 404.1667, found 404.0869.

White solid, Yield 71 % (mixture of rotamers ~ 1:4). Melting point: 56-59 °C. ¹H NMR (**300** MHz, **CDCl**₃) δ 6.06-5.89 (m, 0.78H), 5.50-5.40 (m, 0.16H), 4.58 (dd, J = 18.0 Hz, J = 2.7 Hz, 0.88H), 4.41-4.12 (m, 2.27H), 3.85-3.60 (m, 1H), 2.48-2.29 (m, 1H), 2.24 (bt, 0.77H), 2.16 (bs, 0.19H), 1.99-1.78 (m, 2H), 1.76-1.50 (m, 4H), 1.44-1.24 (m, 11H), 1.24-1.03 (3H), 1.02-0.89 (m, 6H). ¹³C NMR (**75** MHz, **CDCl**₃) δ 168.4, 167.7, 156.0, 154.5, 102.5, 79.4, 78.7, 72.4, 71.7, 71.1, 68.7, 63.2, 48.4, 48.2, 35.6, 33.0, 32.8, 32.7, 32.5, 30.1, 29.9, 27.9, 27.8, 27.5, 27.1, 25.4 (2), 24.7, 24.6 (2), 20.0, 19.4 (2). HRMS calculated for C₂₁H₃₂N₂O₂ 344.2464, found 344.2473.

O' N-(2-(cyclohexylamino)-2-oxo-1-p-tolylethyl)-4,4-dimethyl-N-(prop-2-ynyl)pent-2-

ynamide (5j).

White solid, Yield 82 % (mixture of rotamers ~ 1:2). Melting point: 129-131 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.13 (m, 4H), 6.29 (bs, 0.31H), 6.04 (s, 1H), 5.76 (bs, 0.60H), 4.32-4.20 (m, 1.62H), 4.00-

3.73 (m, 1H), 3.55 (d, J = 17.7 Hz, 0.33H), 2.36 (s, 3H), 2.21-1.86 (m, 3H), 1.80-1.53 (m, 3H), 1.48-0.85 (m, 15H). ¹³**C** NMR (75 MHz, CDCl₃) δ 167.9, 167.8, 155.5, 155.1, 138.8, 138.4, 131.3, 130.8, 129.7, 129.4, 102.9, 102.0, 79.5, 72.5, 72.0 (2), 71.2, 66.7, 60.2, 48.8, 48.6, 36.7, 32.9, 32.7 (2), 32.1, 30.0, 29.9, 27.8 (2), 25.4, 24.8, 24.7, 21.1. HRMS calculated for C₂₅H₃₂N₂O₂ 392.2464, found 392.2450.

N-(2-(cyclohexylamino)-2-oxo-1-(p-tolyl)ethyl)-N-(prop-2-yn-1-yl)pent-2-ynamide

(5k).

Pale yellow solid, Yield 92 % (mixture of rotamers ~ 1:2). Melting point: 100-102 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.14 (m, 4H), 6.30 (bd, 0.37H), 6.09 (s, 0.39H), 6.00 (s, 0.60H), 5.78 (bs, 0.59H), 4.34-4.29 (m, 1H), 4.23 (dd, *J* = 17.7 Hz, *J* = 2.1 Hz, 0.61H), 3.99-3.74 (m, 1H), 3.57 (dd, *J* = 17.7 Hz, *J* = 2.4 Hz, 0.39H), 2.40 (m, 2H), 2.36 (m, 3H), 2.18 (m, 0.36H), 2.04 (m, 0.65H), 2.01-1.86 (m, 2H), 1.80-1.54 (m, 4H), 1.47-1.27 (m, 2H), 1.22 (bt, 3H), 1.18-1.02 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 155.4, 155.0, 138.9, 138.5, 131.1, 130.8, 129.7, 129.5, 129.4 (2), 97.0, 96.2, 79.5, 79.4, 73.2, 72.7, 72.0, 71.4, 66.6, 60.6, 48.9, 48.6, 36.8, 32.9, 32.8, 32.7 (2), 32.2, 25.4, 24.8, 24.7 (2), 21.1, 12.7 (2), 12.6. HRMS calculated for C₂₃H₂₈N₂O₂ 364.2151, found 364.2173.

N-(2-(cyclohexylamino)-1-(4-nitrophenyl)-2-oxoethyl)-N-(prop-2-yn-1-yl)pent-2-

ynamide (51).

Pale yellow solid, Yield 91 % (mixture of rotamers ~ 1:3). Melting point: 69-71 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.29-8.17 (m, 2H), 7.65-7.54 (m, 2H), 6.34-6.25 (m, 0.22H), 6.21 (s, 0.24H), 6.14-6.00 (m, 1.45H), 4.50 (dd, *J* = 18.3 Hz, *J* = 2.7 Hz, 0.72H), 4.37 (dd, *J* = 18.3 Hz, *J* = 2.1 Hz, 0.77H), 4.26 (dd, *J* = 17.4 Hz, *J* = 2.7 Hz, 0.25H), 4.00-3.76 (m, 1H), 3.70 (dd, *J* = 17.7 Hz, *J* = 2.1 Hz, 0.25H), 2.48-2.35 (m, 2H), 2.22-2.18 (m, 0.22H), 2.12-2.07 (m, 0.68H), 2.06-1.87 (m, 2H), 1.82-1.62 (m, 3H), 1.46-1.08 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 166.2, 155.4, 154.8, 147.8, 141.8, 141.2, 130.5, 130.1, 123.9, 123.7, 97.9, 97.5, 78.6, 78.5, 72.8, 72.7, 72.3, 65.4, 59.7, 49.2, 48.8, 37.3, 32.9, 32.8 (2), 32.6, 32.5, 25.4, 25.3, 24.8, 24.7 (2), 24.6, 12.7, 12.6, 12.5. HRMS calculated for C₂₂H₂₅N₃O₄ 395.1845, found 395.1847.

N-(2-(tert-butylamino)-2-oxo-1-(o-tolyl)ethyl)-4-cyclopentyl-N-(prop-2-yn-1-yl)but-

2-ynamide (5m).

White solid, Yield 88% (mixture of rotamers ~ 1:2). Melting point: 173-175 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.14 (m, 4H), 6.23-6.03 (m, 1.30H), 5.54 (bs, 0.61H), 4.50-4.10 (m, 1.66H), 3.68-3.53 (m, 0.33H), 2.46-2.36 (m, 2H), 2.30 (bs, 3H), 2.20-2.03 (m, 1.35H), 1.92-1.74 (m, 2.65H), 1.71-1.49 (m, 4H), 1.48-1.18 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 168.6, 155.2, 155.1, 139.5, 138.5, 132.5, 132.3, 130.9, 130.6, 129.2, 129.1, 128.9, 126.6, 126.3, 94.5, 79.3, 79.0, 73.8, 73.3, 71.6, 70.3, 64.7, 57.9, 52.2, 51.8, 38.3, 36.4, 32.2, 32.0, 31.8, 28.6, 25.1, 24.7, 19.4, 19.2. HRMS calculated for C₂₅H₃₂N₂O₂ 392.2464, found 392.2434.

 $\textit{N-(2-(cyclohexylamino)-2-oxo-1-(o-tolyl)ethyl)-4-cyclopentyl-N-(prop-2-yn-1-v-(prop-2-v-(pro-2-v-(prop-2-v-(pro-2-v-(pro-2-v-(pro-2-v-(pro-2-v-(pro-2-v-(pro-$

yl)but-2-ynamide (5n).

Pale yellow solid, Yield 84 % (mixture of rotamers ~ 1:2). Melting point: 100-102 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.16 (m, 4H), 6.32 (bd, 0.35H), 6.20-6.14 (m, 1H), 5.69-5.60 (m, 0.60H), 4.40-4.16 (m, 1.61H), 4.03-3.75 (m, 1H), 3.58-3.45 (m, 0.53H), 2.44-2.36 (m, 2H), 2.26-2.31 (m, 3H), 2.18-2.05 (m, 1H), 2.02-1.76 (m, 4H), 1.75-1.49 (m, 7H), 1.44-1.02 (m, 7H). ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 168.4, 155.2, 155.1, 139.4, 138.5, 132.4, 132.1, 131.0, 130.6, 129.2 (2), 129.1, 128.9, 126.6, 126.3, 95.5, 94.5, 79.2, 79.0, 73.7, 73.2, 71.8, 70.5, 64.4, 57.7, 48.9, 48.7, 38.3 (2), 36.4, 32.9 (2), 32.7 (2), 32.1, 32.0, 31.7, 25.4 (2), 25.1, 24.8, 24.7 (2), 19.3, 19.2. HRMS calculated for C₂₇H₃₄N₂O₂ 418.2620, found 418.2620.

N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-4-cyclopentyl-N-(prop-2-yn-1-yl)but-

2-ynamide (50).

White solid, Yield 92 % (mixture of rotamers ~ 1:2). Melting point: 102-104 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.31 (m, 5H), 6.27 (bd, 0.35H), 6.18 (s, 0.37H), 6.07 (s, 0.63H), 5.80 (bs 0.60H), 4.43-4.18

(m, 1.62H), 4.00-4.75 (m, 1H), 3.67-3.57 (m, 0.39H), 2.44-2.36 (m, 2H), 2.20-2.06 (m, 1H), 2.05-1.51 (m, 12H), 1.45-1.03 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7, 167.5, 155.4, 155.0, 134.2, 134.0, 129.6, 129.4, 129.0, 128.9, 128.8, 128.7, 95.7, 95.0, 79.3 (2), 73.7, 73.2, 72.1, 71.4, 66.7, 60.6, 49.0, 48.6, 38.3, 36.8, 32.9 (2), 32.8, 32.7, 32.3, 32.1, 32.0, 25.4, 25.1, 24.8, 24.7, 22.7. HRMS calculated for C₂₆H₃₂N₂O₂ 404.2464, found 404.2424.

N-((tert-butylcarbamoyl)(phenyl)methyl)-4-cyclohexyl-N-(prop-2-ynyl)but-2-

ynamide (5p).

White solid, Yield 86 % (mixture of rotamers ~ 1:2). Melting point: 120-122 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.30 (m, 5H), 6.1 (bs, 0.3H), 6.07 (s, 0.34H), 6.01 (s, 0.65H), 5.70 (bs, 0.62H), 4.43-4.27 (m, 1.33H), 4.26-4.15 (m, 0.34H), 3.71-3.59 (m, 0.34H), 2.33-2.22 (m, 2H), 2.15-2.09 (m, 0.3H), 1.98-1.91 (m, 0.61H), 1.87-1.51 (m, 5H), 1.42 (s, 3H), 1.36 (s, 6H), 1.29-0.94 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 168.0, 167.7, 155.4, 155.0, 134.4, 134.2, 129.6, 129.4, 129.0, 128.8, 128.7, 128.6, 95.0, 94.3, 79.4, 74.6, 74.2, 71.9, 71.1, 66.9, 60.6, 52.2, 51.8, 36.7(3), 32.7, 32.6, 32.4, 28.6, 28.5, 26.7, 25.9. HRMS calculated for C₂₅H₃₂N₂O₂ 392.2464, found 392.2492.

N-((cyclohexylcarbamoyl)(2-chloro-4-fluorophenyl)methyl)-4-cyclohexyl-N-(prop-

2-ynyl)but-2-ynamide (5q).

White solid, Yield 87 % (mixture of rotamers ~ 1:2). Melting point: 68-70 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.54 (m, 0.55H), 7.47-7.33 (m, 0.43H), 7.23-7.10 (m, 1H), 7.10-6.95 (m, 1H), 6.44-6.27 (m, 0.83 H), 6.20 (s, 0.54H), 5.89 (d, *J* = 6.6 Hz, 0.51H), 4.44-4.27 (m, 1.57H), 3.99-3.71 (m, 1H), 3.53-3.37 (m, 0.32H), 2.33-2.22 (m, 2H), 2.19-1.50 (m, 13H), 1.46-0.93 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 167.4, 167.1, 164.3, 161.0, 155.3, 154.8, 137.3, 137.2, 137.1, 136.9, 132.3, 132.2, 132.1, 128.3, 128.2, 128.0, 127.9, 117.6, 117.3(2), 117.0, 114.7, 114.4(2), 114.1, 95.2, 94.3, 78.8, 78.5, 74.3, 73.9, 72.3, 71.3, 63.7, 57.2, 49.1, 48.7, 36.7, 32.8(2), 32.6(2), 31.6, 26.7(2), 25.9, 25.4, 25.3, 24.8, 24.7, 24.6. HRMS calculated for C₂₇H₃₂ClFN₂O₂ 470.2136, found 470.2147.

$$\underset{O}{\overset{\mathsf{HN}}{\longrightarrow}} \underset{\mathcal{O}}{\overset{\mathsf{O}}{=}} \underset{\mathsf{O}}{\overset{\mathsf{O}}{=}} \underset{\mathsf{O}}{\overset{\mathsf{O}}{=}} \underset{\mathsf{O}}{\overset{\mathsf{O}}{=}} \underset{\mathsf{O}}{\overset{\mathsf{O}}{=}} \underset{\mathsf{O}}{\overset{\mathsf{O}}{=}} \underset{\mathsf{O}}{\overset{\mathsf{O}}{=}} \underset{\mathsf{O$$

ynamide (5r).

White solid, Yield 80% (mixture of rotamers ~ 1:2). Melting point: 79-81 °C. ¹H NMR (**300** MHz, CDCl₃) δ 7.33-7.13 (m, 4H), 6.42-6.32 (m, 0.30H), 6.07 (m, 0.31H), 6.03 (s, 0.67H), 5.93-5.82 (m, 0.63H), 4.33-4.19 (m, 1.67H), 3.61 (d, *J* = 18 Hz, 0.31H), 3.38 (q, *J* = 6.0 Hz, 0.66H), 3.29 (q, *J* = 6.6 Hz, 1.33H), 2.36 (s, 3H), 2.20-2.15 (m, 0.30H), 2.06-2.01 (m, 0.60H), 1.62-1.21 (m, 13H), 1.00-0.84 (m, 3H). ¹³C NMR (**75** MHz, CDCl₃) δ 168.8, 168.7, 155.5, 155.1, 138.9, 138.5, 131.0, 130.8, 129.7, 129.5, 129.4 (2), 102.1, 79.4 (2), 72.4, 71.8, 71.3, 66.7, 60.5, 39.5, 39.4, 36.8, 32.2, 31.4, 31.3, 30.0, 29.9, 27.9, 27.8, 21.1, 20.0 (2), 13.7. HRMS calculated for C₂₃H₃₀N₂O₂ 366.2307, found 366.2308.

0 *N*-(1-(butylamino)-3-methyl-1-oxobutan-2-yl)-4,4-dimethyl-*N*-(prop-2-ynyl)pent-2-ynamide (5s).

White solid, Yield 95% (mixture of rotamers ~ 1:5). Melting point: 52-54 °C. ¹H NMR (**300** MHz, CDCl₃) δ 6.11-5.96 (m, 0.87H), 5.63-5.50 (m, 0.15H), 4.62-4.06 (m, 3H), 3.34-3.04 (m, 2H), 2.48-2.30 (m, 1H), 2.24 (bs, 0.82H), 2.17 (bs, 0.16H), 1.55-1.40 (m, 2H), 1.39-1.24 (m, 11H), 1.03-0.86 (m, 11H). ¹³C NMR (**75** MHz, CDCl₃) δ 169.3, 168.6, 156.1, 154.6, 102.6, 101.7, 79.3, 78.7, 77.4, 77.0, 76.6, 72.4, 71.8, 71.0, 68.5, 63.3, 39.3, 39.0, 35.7, 34.1, 31.4, 31.3, 30.1, 29.9, 27.9, 27.8, 27.4, 26.9, 22.3, 20.1, 20.0 (2), 19.5, 19.4, 19.3, 14.0, 13.7. HRMS calculated for C₁₉H₃₀N₂O₂ 318.2307, found 318.2329.

0'' N-(2-(cyclohexylamino)-2-oxo-1-(*p*-tolyl)ethyl)-4,4-dimethyl-*N*-(2-methylbut-3-yn-2-yl)pent-2-ynamide (**5t**).

Pale yellow solid, Yield 75 % (mixture of rotamers ~ 1:2). Melting point: 106-108 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.27 (m, 2H), 7.18-7.09 (bs2H), 5.99-5.35 (m, 1H), 3.91-3.63 (m, 1H), 2.52 (s, 1H), 2.34 (s, 3H), 2.00-1.72 (m, 6H), 1.71-1.46 (m, 4H), 1.43-0.97 (m, 13H). ¹³C NMR (75 MHz, CDCl₃) δ 168.2,

155.3, 137.4, 133.3, 129.0, 128.5, 86.8, 74.0, 65.9, 56.0, 48.5, 32.7, 32.6, 30.1, 27.7, 25.5, 24.6 (2), 21.0. **HRMS** calculated for C₂₇H₃₆N₂O₂ 420.2777, found 420.2801.

General procedure for gold-catalyzed tandem cyclization.

To a glass vial IPrAuCl (5 mol%) and AgOTf (5 mol%) were loaded along with DCE (2 mL). Ugi product **5a-s** (0.2 mmol) was added and reaction mixture was stirred at 120°C in a screw capped vial until completion. After completion, reaction mixture was purified by silica gel column chromatography (20% diethyl ether in dichloromethane) to afford compound **6a-s**.

N-cyclohexyl-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1H-cyclopenta[c]pyridin-2(3H)-yl)-

2-phenylacetamide (6a).

White Solid, Yield 68 %, Melting point: 174-176 °C. ¹H NMR (400 MHz, DMSO) δ 8.11 (d, 1H, J = 5.46 Hz), 7.46-7.30 (m, 3H), 7.26-7.17 (m, 2H), 6.19 (s, 1H), 5.91 (bs, 1H), 5.47 (s, 1H), 4.63 (d, 1H, J = 13.05 Hz), 3.70-3.55 (m, 2H), 2.35 (bs, 2H), 1.82-1.48 (m, 6H), 1.34-1.18 (m, 4H), 1.17-1.03 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 168.5, 165.3, 134.9, 133.6, 131.9, 129.3, 128.7, 128.1, 109.6, 59.3, 48.6, 48.4, 43.7, 40.8, 32.8 (2), 28.3, 28.2, 25.4, 24.7 (2). HRMS Calculated for C₂₄H₃₀N₂O₂ 378.2307, found 378.2310.

N-tert-butyl-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1*H*-cyclopenta[*c*]pyridin-2(3*H*)-yl)-2-

phenylacetamide (6b).

White Solid, Yield 78 %, Melting point: 184-186 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.33 (m, 5H), 6.24 (s, 1H), 5.77 (s, 1H), 5.66 (bs, 1H), 5.54 (s, 1H), 4.62 (d, 1H, *J* = 16.95 Hz), 3.80 (d, 1H, *J* = 16.95 Hz), 2.36 (bs, 2H), 1.36 (s, 9H), 1.18-1.14 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 168.7, 165.2, 135.2, 133.7, 131.7, 129.4, 128.7, 128.1, 109.7, 59.6, 51.6, 48.6, 43.7, 40.8, 28.7, 28.3, 28.2. HRMS Calculated for C₂₂H₂₈N₂O₂ 352.2151, found 352.2150.

N-(*tert*-butyl)-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1*H*-cyclopenta[*c*]pyridin-2(3*H*)-yl)-

2-(*o*-tolyl)acetamide (6c).

White Solid, Yield 91%, Melting point: 229-231°C. ¹H NMR (**300** MHz, CDCl₃) δ 7.42 (d, 1H, J = 7.14 Hz), 7.31-7.16 (m, 3H), 6.25 (s, 1H), 5.71 (s, 1H), 5.52 (m, 2H), 4.59 (d, 1H, *J* = 17.1 Hz), 3.57 (d, 1H, *J* = 17.7 Hz), 2.34 (bs, 2H), 2.25 (s, 3H), 1.36 (s, 9H), 1.17-1.13 (m, 6H) . ¹³C NMR (**75** MHz, CDCl₃) δ 169.9, 168.4, 164.8, 138.6, 133.7, 133.4, 131.4, 130.8, 129.5, 128.4, 126.0, 109.6, 57.6, 51.6, 48.5, 43.9, 40.7, 28.6, 28.3, 28.2, 19.3. HRMS Calculated for C₂₃H₃₀N₂O₂ 366.2307, found 366.2317.

N-benzyl-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1H-cyclopenta[c]pyridin-2(3H)-yl)-2-

(o-tolyl)acetamide (6d).

White Solid, Yield 59 %, Melting point: 193-195 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.38 (m, 1H), 7.34-7.17 (m, 8H), 6.41 (s, 1H), 6.10 (m, 1H), 5.77-5.71 (m, 1H), 5.52 (s, 1H), 4.63-4.40 (m, 3H), 3.65 (dd, 1H, J = 17.1 Hz, J = 2.4 Hz), 2.35 (bs, 2H), 2.25 (s, 3H), 1.17-1.13 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 170.4, 168.7, 164.9, 138.5, 137.9, 133.6, 132.7, 131.8, 130.8, 129.6, 128.6, 127.7, 127.3, 126.0, 109.4, 57.4, 48.5, 43.9, 43.5, 40.7, 28.2, 19.2. HRMS Calculated for C₂₆H₂₈N₂O₂ 400.2151, found 400.2141.

2-(5,5-dimethyl-3-oxo-5,6-dihydro-1H-cyclopenta[c]pyridin-2(3H)-yl)-2-(o-tolyl)-N-(2,4,4-trimethylpentan-2-yl)acetamide (**6e**).

Pale yellow Solid, Yield 64 %, Melting point: 169-171 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.42 (m, 1H), 7.30-7.18 (m, 3H), 6.24 (s, 1H), 5.76-5.70 (m, 1H), 5.60-5.51 (m, 2H), 4.53 (dd, 1H, *J* = 16.8 Hz, *J* = 2.7 Hz), 3.61 (dd, 1H, *J* = 17.1 Hz, *J* = 2.4 Hz), 2.39-2.32 (m, 2H), 2.25 (s, 3H), 1.84 (d, 1H, *J* = 14.7 Hz), 1.54 (d, 1H, *J* = 15 Hz), 1.45 (m, 6H), 1.17-1.13 (m, 6H), 0.95 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ

169.2, 168.4, 164.7, 138.6, 133.7, 133.1, 131.5, 130.8, 129.7, 128.4, 125.9, 109.6, 57.8, 55.7, 52.8, 48.6, 43.9, 40.7, 31.5, 28.8, 28.3, 28.2, 19.3. **HRMS** Calculated for C₂₇H₃₈N₂O₂ 422.2933, found 422.2903.

 $0^{\circ} = 0^{\circ} = 1^{\circ} N^{-(tert-butyl)-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1H-cyclopenta[c]pyridin-2(3H)-yl)-2-(4-methoxyphenyl)acetamide (6f).$

White Solid, Yield 70%, Melting point: 200-202 °C. ¹H NMR (**300** MHz, CDCl₃) δ 7.32 (d, 2H, *J* = 8.49 Hz), 6.90 (d, 2H, *J* = 8.49 Hz), 6.17 (s, 1H), 5.76 (s, 1H), 5.59 (bs, 1H), 5.53 (s, 1H), 4.59 (d, 1H, *J* = 18.0 Hz), 3.86-3.75 (m, 4H), 2.36 (bs, 2H), 1.35 (s, 9H), 1.1.17-1.13 (m, 6H). ¹³C NMR (**75** MHz, CDCl₃) δ 169.3, 168.6, 165.2, 159.4, 133.7, 131.6, 130.8, 127.0, 114.1, 109.7, 59.1, 55.2, 51.6, 48.6, 43.5, 40.7, 28.7, 28.3, 28.2. HRMS Calculated for C₂₃H₃₀N₂O₃ 382.2256, found 382.2252.

N-(*tert*-butyl)-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1*H*-cyclopenta[*c*]pyridin-2(3*H*)yl)-2-(2,3,4-trimethoxyphenyl)acetamide (**6g**).

White Solid, Yield 67 %, Melting point: 174-176 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.14 (d, 1H, *J* = 8.67 Hz), 6.67 (d, 1H, *J* = 8.67 Hz), 6.32 (s, 1H), 5.77-5.76 (m, 1H), 5.59-5.54 (m, 2H), 4.56 (d, 1H, *J* = 14.52 Hz), 3.92-3.80 (m, 10H), 2.41-2.27 (m, 2H), 1.35 (s, 9H), 1.17-1.13 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 168.4, 164.8, 154.1, 152.8, 142.2, 133.8, 131.4, 124.8, 121.0, 110.0, 106.7, 60.8, 60.7, 55.9, 55.3, 51.4, 48.6, 44.0, 40.7, 28.7, 28.4, 28.2. HRMS Calculated for C₂₅H₃₄N₂O₅ 442.2468, found 442.2431.

N-(*tert*-butyl)-2-(2-chloro-4-fluorophenyl)-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1*H*-cyclopenta[*c*]pyridin-2(3*H*)-yl)acetamide (**6h**).

White Solid, Yield 90 %, Melting point: 213-215 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.56 (m, 1H), 7.22-7.14 (m, 1H), 7.09-7.98 (m, 1H), 6.26 (s, 1H), 5.85-5,72 (m, 2H), 5.53 (s, 1H), 4.50 (d, 1H, *J* = 17.4 Hz), 3.75 (d 1H, *J* = 16.2 Hz), 2.39 (bs 2H), 1.36 (s, 9H), 1.21-1.13 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ

168.7, 168.6, 164.8, 136.4, 136.2, 133.3, 132.0, 131.9, 128.9 (2), 117.6, 117.3, 114.2, 113.9, 109.5, 57.6, 51.7, 48.6, 44.2, 40.8, 28.5, 28.2. **HRMS** Calculated for C₂₂H₂₆ClFN₂O₂ 404.1667, found 404.1686.

N-cyclohexyl-2-(5,6-dihydro-5,5-dimethyl-3-oxo-1H-cyclopenta[c]pyridin-2(3H)-yl)-3-methylbutanamide (**6**i).

Pale yellow Solid, Yield 81 %, Melting point: 141-143 °C. ¹H NMR (300 MHz, CDCl₃) δ 6.10 (m, 1H), 5.91 (s, 1H), 5.49 (s, 1H), 4.50 (d, J = 1.4 Hz, 1H), 4.44-4.16 (m, 2H), 3.77-3.62 (m, 1H), 2.46-2.30 (m, 3H), 1.91-1.54 (m, 5H), 1.37-1.07 (m, 11H), 0.97 (d, J = 6.4 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 168.6, 165.6, 133.3, 132.0, 109.6, 48.6, 47.9, 40.8, 32.9, 32.7, 28.4, 28.1, 25.4, 25.0, 24.7, 24.6, 19.7, 18.4. HRMS Calculated for C₂₁H₃₂N₂O₂ 344.2464, found 344.2470.

 $\textit{N-cyclohexyl-2-(5,5-dimethyl-3-oxo-5,6-dihydro-1\textit{H-cyclopenta}[c]pyridin-2(3\textit{H})-yl)-interval and a statement of the st$

2-(*p*-tolyl)acetamide (6j).

White Solid, Yield 74%, Melting point: 160-162 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.28 (d, 2H, *J* = 7.98 Hz), 7.18 (d, 2H, *J* = 7.98 Hz), 6.26 (s, 1H), 5.81-5.67 (m, 2H), 5.53 (s, 1H), 4.58 (dd, 1H, *J* = 16.8 Hz, *J* = 2.46 Hz), 3.91-3.74 (m, 2H), 2.41-2.31 (m, 5H), 1.97-1.86 (m, 2H), 1.74-1.54 (m, 4H), 1.42-1.26 (m, 3H), 1.21-1.03 (m, 7H). ¹³C NMR (75 MHz, CDCl₃) δ 168.7 (2), 165.2, 138.0, 133.7, 131.8, 131.7, 129.4, 129.3, 109.7, 59.1, 48.6, 48.4, 43.6, 40.8, 32.8 (2), 28.3, 28.2, 25.4, 24.8, 24.7, 21.1. HRMS Calculated for C₂₅H₃₂N₂O₂ 392.2464, found 392.2446.

N-cyclohexyl-2-(3-oxo-5,6-dihydro-1H-cyclopenta[c]pyridin-2(3H)-yl)-2-(p-

tolyl)acetamide (6k).

White Solid, Yield 52 %, Melting point: 126-128 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, 2H, *J* = 7.89 Hz), 7.17 (d, 2H, *J* = 7.71 Hz), 6.25 (s, 1H), 5.93 (bs, 1H), 5.75 (bd, 1H, *J* = 7.53 Hz), 5.66 (s, 1H), 4.55 (d, 1H, *J* = 14.67 Hz), 3.93-3.75 (m, 2H), 2.72-2.62 (m, 2H), 2.60-2.50 (m, 2H), 2.35 (s, 3H), 1.98-1.86 (m, 2H), 1.66-1.55 (m, 1H), 1.44-1.25 (m, 3H), 1.21-1.04 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 168.6, 164.9, 160.8, 137.9, 136.0, 135.2, 131.8, 129.3, 129.2, 111.0, 59.0, 48.4, 43.3, 32.8, 31.6, 27.8, 25.4, 24.8, 24.7, 21.1. HRMS Calculated for C₂₃H₂₈N₂O₂ 364.2151, found 364.2143.

 $\textit{N-cyclohexyl-2-(4-nitrophenyl)-2-(3-oxo-5,6-dihydro-1\textit{H-cyclopenta}[c]pyridin-1m{H-cyclopenta}[c]pyridin-1m{H-cyclopenta}[c]$

2(3H)-yl)acetamide (6l)

White Solid, Yield 61 %, Melting point: 201-203 °C. ¹H NMR (**300** MHz, CDCl₃) δ 8.21 (d, 2H, \underline{J} = 8.7 Hz), 7.58 (d, 2H, J = 8.4 Hz), 6.38 (s, 1H), 6.24-6.12 (m, 1H), 6.09-6.01 (m, 1H), 5.70 (s, 1H), 4.48 (d, 1H, J = 18,0 Hz), 4.01-3.75 (m, 2H), 2.76-2.54 (m, 4H), 2.01-1.05 (m, 12H). ¹³C NMR (**75** MHz, CDCl₃) δ 167.3, 165.1, 162.0, 147.4, 142.8, 136.7, 135.3, 129.7, 123.6, 110.5, 58.4, 48.6, 43.6, 32.8, 31.8, 28.0, 25.4, 24.7. HRMS Calculated for C₂₂H₂₅N₃O₄ 395.1845, found 395.1845.

N-(tert-butyl)-2-(3-oxospiro[cyclopenta[c]pyridine-6,1'-cyclopentan]-2(1H,3H,5H)-yl)-2-(o-tolyl)acetamide (6m).

White Solid, Yield 62 %, Melting point: 103-105°C. ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.38 (m, 1H), 7.32-7.18 (m, 3H), 6.23 (s, 1H), 5.69 (s, 1H), 5.60 (bs, 1H), 5.50 (s, 1H), 4.55 (d, 1H, *J* = 17.7 Hz), 3.54 (d, 1H, *J* = 18.0 Hz), 2.50 (bs, 2H), 2.25 (s, 3H), 1.60-1.24 (m, 16H), 0.92-0.84 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 164.4, 159.5, 142.7, 138.6, 133.3, 133.2, 130.8, 129.5, 128.4, 126.0, 111.1, 57.6, 56.3, 51.6, 43.6, 42.6, 39.3, 28.6, 24.3, 19.3. HRMS Calculated for C₂₅H₃₂N₂O₂ 392.2464, found 392.2484.

N-cyclohexyl-2-(3-oxospiro[cyclopenta[c]pyridine-6,1'-cyclopentan]-2(1H,3H,5H)-

yl)-2-(o-tolyl)acetamide (6n)

White Solid, Yield 58 %, Melting point: 185-187 °C. ¹H NMR (**300** MHz, CDCl₃) δ 7.45-7.38 (m, 1H), 7.31-7.16 (m, 3H), 6.31 (s, 1H), 5.72 (bs, 1H), 5.64-5.53 (m, 2H), 4.53 (bd, 1H, *J* = 17.13 Hz), 3.92-3.76 (m, 1H), 3.58 (bd, 1H, *J* = 17.13 Hz), 2.50 (bs, 2H), 2.26 (s, 3H), 1.99-1.88 (m, 2H), 1.76-1.85 (m, 16H). ¹³C NMR (**75** MHz, CDCl₃) δ 169.3, 164.4, 159.6, 142.9, 138.6, 133.1 (2), 130.8, 129.5, 128.5, 126.0, 111.0, 57.4, 56.3, 48.5, 43.5, 42.6, 39.3, 32.8 (2), 25.5, 24.8, 24.7, 24.3 (2), 19.3. HRMS Calculated for C₂₇H₃₄N₂O₂ 418.2620, found 418.2626.

N-cyclohexyl-2-(3-oxospiro[cyclopenta[c]pyridine-6,1'-cyclopentan]-2(1H,3H,5H)-

yl)-2-phenylacetamide (60)

Off white Solid, Yield 62 %, Melting point: 98-100 °C. ¹H NMR (**300** MHz, CDCl₃) δ 7.44-7.30 (m, 5H), 6.30 (s, 1H), 5.87-5.73 (m, 2H), 5.62 (s, 1H), 4.56 (d, 1H, *J* = 17.13 Hz), 3.93-3.74 (m, 2H), 2.52 (bs, 2H), 2.00-1.85 (m, 2H), 1.75-1.04 (m, 15H). ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 164.9, 160.0, 143.2, 134.9, 133.1, 129.3, 128.6, 128.1, 111.1, 59.2, 56.4, 48.4, 43.3, 42.7, 39.3 (2), 32.8 (2), 25.4, 24.7 (2), 24.3 . HRMS Calculated for C₂₆H₃₂N₂O₂ 404.2464, found 404.2438.

N-(tert-butyl)-2-(3'-oxospiro[cyclohexane-1,6'-cyclopenta[c]pyridin]-

2'(1'H,3'H,5'H)-yl)-2-phenylacetamide (6p)

Off white Solid, Yield 65 %, Melting point: 105-107 °C. ¹H NMR (**300** MHz, CDCl₃) δ 7.45-7.30 (m, 5H), 6.23 (s, 1H), 5.82 (s, 1H), 5.69-5.55 (m, 2H), 4.57 (d, 1H, J = 16.8 Hz), 3.77 (d, 1H, *J* = 17.4 Hz), 2.45 (s, 2H), 1.46-1.20 (m, 19H). ¹³C NMR (**75** MHz, CDCl₃) δ 169.0, 164.8, 159.5, 143.9, 135.2, 133.0, 129.4, 128.7, 128.1, 111.3, 59.5, 51.6, 49.4, 43.3, 40.5, 37.3, 37.2, 28.6, 25.5, 23.3. HRMS Calculated for C₂₅H₃₂N₂O₂ 392.2464, found 392.2434.

2-(2-chloro-4-fluorophenyl)-N-cyclohexyl-2-(3'-oxospiro[cyclohexane-1,6'-

cyclopenta[c]pyridin]-2'(1'H,3'H,5'H)-yl)acetamide (6q)

Pale yellow Solid, Yield 67 %, Melting point: 125-127 °C. ¹H NMR (**300** MHz, CDCl₃) δ 7.71-7.63 (m, 1H), 7.21-7.14 (m, 1H), 7.08-6.96 (m, 1H), 6.29 (s, 1H), 5.97-5.81 (m, 2H), 5.62 (s, 1H), 4.44 (d, 1H, *J* = 16.8 Hz), 3.88-3.67 (m, 2H), 2.47 (s, 2H), 1.98-1.83 (m, 2H), 1.75-1.46 (m, 7H), 1.45-1.02 (m, 14H). ¹³C NMR (**75** MHz, CDCl₃) δ 168.1, 164.3, 159.6, 144.3, 136.3, 136.2, 132.7, 132.2, 132.1, 128.7 (2), 117.6, 117.2, 114.1, 113.9, 111.3, 57.3, 49.5, 48.5, 43.8, 40.5, 37.2, 32.7, 25.5, 25.4, 24.7 (2), 23.3. HRMS Calculated for C₂₇H₃₂ClFN₂O₂ 470.2136, found 470.2120.

N-butyl-2-(5,6-dihydro-5,5-dimethyl-3-oxo-1H-cyclopenta[c]pyridin-2(3H)-yl)-2-p-

tolylacetamide (6r)

White Solid, Yield 41 %. ¹H NMR (300 MHz, CDCl₃) δ 7.29 (d, J = 7.92 Hz, 2H), 7.18 (d, J = 7.53 Hz, 2H), 6.28 (s, 1H), 5.99 (m, 1H), 5.78 (bs, 1H), 5.52 (s, 1H), 4.57 (d, J = 17.13 Hz, 1H), 3.88 (d, J = 17.13 Hz, 1H), 3.36-3.18 (m, 2H), 2.43-2.25 (m, 5H), 1.54-1.40 (m, 2H), 1.36-1.25 (m, 2H), 1.19-1.11(m, 6H), 0.89 (t, J = 7.17 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.7, 168.8, 165.2, 138.0, 133.6, 131.8, 131.7, 129.3(2), 109.6, 59.1, 48.6, 43.7, 40.8, 39.2, 31.4, 28.3, 28.2, 21.4, 20.0, 13.7. HRMS Calculated for C₂₃H₃₀N₂O₂ 366.2307, found 366.2325.

(7a)

White Solid, Yield 25 %. ¹H NMR (300 MHz, CDCl₃) δ 7.08 (d, *J* = 7.89 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.05 (s, 1H), 5.87 (s, 1H), 4.00-3.86 (m, 1H), 3.59-3.46 (m, 1H), 2.47 (s, 3H), 2.27 (s, 3H), 1.54-1.28 (m, 13H), 0.92 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 165.5, 159.7, 137.9, 133.4, 129.5, 125.7, 122.3, 121.8, 119.2, 57.1, 42.8, 32.6, 31.1, 31.0, 21.0, 20.0, 18.5, 13.7. HRMS Calculated for C₂₃H₃₀N₂O₂ 366.2307, found 366.2311.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

(**7b**)

White Solid, Yield 26 %. ¹H NMR (**300** MHz, CDCl₃) δ 5.97 (s, 1H), 4.68 (d, J = 5.64 Hz, 1H), 3.95-3.81 (m, 1H), 3.69-3.56 (m, 1H), 2.45 (s, 3H), 2.25-2.13 (m, 1H), 1.60-1.49 (m, 2H), 1.41-1.33 (m, 11H), 1.00-0.92 (m, 6H), 0.85 (d, J = 6.96 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.2, 165.4, 158.9, 122.7, 122.0, 118.6, 59.0, 42.6, 32.7, 32.4, 31.3, 30.9, 20.1, 19.4, 18.5, 17.6, 13.7. HRMS Calculated for C₁₉H₃₀N₂O₂ 318.2307, found 318.2315.

Crystallography. Single crystals of 6f, suitable for X-ray diffraction were obtained by slow evaporation from a ethylacetate solution at room temperature. X-ray intensity data were collected at 100K on an Agilent Supernova diffractometer, equipped with an Atlas CCD detector, using Mo K α radiation ($\lambda = 0.7107$ Å). The images were interpreted and integrated with the CrysAlisPro software from Agilent Technologies^[1]. Using $Olex2^{[2]}$, the structure was solved with the ShelxS^[3] structure solution program using Direct Methods and refined with the ShelxL refinement package using full-matrix least squares minimization on F^2 . Non hydrogen atoms were anisotropically refined and the hydrogen atoms in the riding mode with isotropic temperature factors were fixed at 1.2 times U_{eq} of the parent atoms (1.5 for methyl groups). Dichloromethane is disordered over two positions. CCDC 937689 contains the supplementary crystallographic for can data this paper and be obtained free charge of via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336033; or deposit@ccdc.cam.ac.uk).

Crystallographic data $C_{23}H_{30}N_2O_3$, M = 382.49 g mol⁻¹, triclinic, P-1 (no. 2), a = 9.9200(14) Å, b = 10.6423(9) Å, c = 11.0407(14) Å, $\alpha = 95.237(8)^{\circ}$, $\beta = 115.250(13)^{\circ}$, $\gamma = 91.298(9)^{\circ}$, V = 1047.4(2) Å³, T = 100.0(2) K, Z = 2, $\rho_{calcd} = 1.213$ g cm⁻³, μ (Mo K α) = 0.080 mm⁻¹, F(000) = 412, crystal size 0.2 x 0.2 x 0.2 mm³, 4280 reflections measured, 3503 unique ($R_{int} = 0.0266$) which were used in all calculations. The final wR_2 was 0.1505 (all data) and R_1 was 0.0546 (>2sigma(I)).

Figure 1: Crystal structure of compound 6f. Thermal ellipsoid set at 50% probability.

References

- [1] CrysAlis PRO (2012). Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.
- [2] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341.
- [3] G. M. Sheldrick, ActaCryst. (2008). A64, 112-122

¹H and ¹³C NMR spectra of compound **5b** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5c** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **5d** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5f** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5g** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5h** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5i** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **5j** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5l** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **5m** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **5n** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **50** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5q** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5s** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **5t** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6a** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6c** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6d** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6g** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6h** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6i** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6k** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6l** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6m** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **6n** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **60** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **6p** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **6q** (300 MHz, CDCl₃).

 1 H and 13 C NMR spectra of compound **7a** (300 MHz, CDCl₃).

¹H and ¹³C NMR spectra of compound **7b** (300 MHz, CDCl₃).

