Supporting Informatio

Rhodium Catalyzed Oxidative Coupling of Salicylaldehydes with Diazabicyclic Olefins: A one pot strategy involving aldehyde C-H cleavage and π -allyl chemistry towards fused ring chromanones

Jijy E.^a, Praveen Prakash^a, Shimi M.^a, Petri M. Pihko^{b,*}, Nayana Joseph^a and

K. V. Radhakrishnan^{a,}*

^aOrganic Chemistry Section, National Institute for Interdisciplinary Science and Technology

(CSIR), Trivandrum 695 019, India

^b University of Jyväskylä, Finland

E-mail: radhu2005@gmail.com

Table of Contents

General Methods	S2
Experimental Procedures	S2
Characterization of the Products	S2-S12
¹ H NMR & ¹³ C NMR Spectra	S13-S29
Assignment of Stereochemistry	S30-S35

General Methods

All chemicals were of the best grade commercially available and are used without further purification. All solvents were purified according to standard procedure; dry solvents were obtained according to the literature methods and stored over molecular sieves. Analytical thin layer chromatography was performed on glass plates coated with silica gel containing calcium sulfate binder. Gravity column chromatography was performed using 60-120 or 100-200 mesh silica gel and mixtures of hexane-ethyl acetate were used for elution.

Melting points were determined on a Buchi melting point apparatus and are uncorrected. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker Avance DPX 300 and Bruker AMX 500 spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.25, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quadret); dd (double doublet); m (multiplet). Coupling constants are reported as J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.03, triplet). Mass spectra were recorded under EI/HRMS at 60,000 resolution using Thermo Scientific Exactive mass spectrometer. IR spectra were recorded on Bruker FT-IR spectrometer.

<u>General Procedure for the Rh catalyzed oxidative coupling of salicylaldehydes with</u> <u>bicyclic hydrazines</u>

A mixture of azabicyclic hydrazine (1.0 eqiuv.), salicylaldehyde (1.0 equiv.), $[RhCl_2Cp^*]_2$ (3 mol%) and Cu(OAc)₂.H₂O (2.0 equiv.) were weighed in a schlenk tube and degassed for 10 minutes. Dry acetonitrile was added and the reaction mixture was purged with argon and allowed to stir at 80 $^{\circ}$ C for 16 hours. The solvent was evaporated in *vacuo* and the residue on silica gel (100-200 mesh) column chromatography yielded cyclopentene fused chromanones.

Characterization of the Products

Diethyl 1-(9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2dicarboxylate (3a)

> Yield: 70% as yellow viscous liquid. R_f : 0.35(5:5 hexane/EtOAc). IR (neat) ν_{max} : 3291, 2982, 2931, 1709, 1644, 1594, 1513, 1482, 1313, 1263, 1234, 1134, 1061, 1029, 865, 760 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.97 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 6.9 Hz, 1H),

7.05 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.86 (brs, 1H), 6.56 (brs, 1H), 5.45 (brs, 1H), 5.21-5.32 (m, 1H), 4.24-4.18 (m, 4H), 3.04-3.00 (m, 1H), 2.33 (brs, 1H), 1.31-1.24 (m, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 180.3, 160.9,
156.8, 155.5, 140.5, 138.8, 136.3, 127.7,
122.5, 118.4, 81.6, 63.0, 62.5, 62.4, 37.1,
14.5, 14.4.

HRMS (ESI): Calcd for $C_{18}H_{20}N_2O_6$, (M+Na): 383.12191; Found: 383.12125.

diisopropyl 1-(9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2dicarboxylate (3b)

Yield: 65% as yellow viscous liquid.

 R_f : 0.46 (5:5 hexane/EtOAc).

IR (neat) v_{max} : 3299, 2982, 2935, 2879, 1715, 1645, 1608, 1464, 1303, 1235, 1108, 1049, 858, 760 cm⁻¹.

¹H NMR (300 MHz, CDCl₃, TMS): δ 7.95 (d, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 6.9 Hz, 1H), 7.04 (t, *J* = 7,5 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.84 (brs, 1H), 5.47 (brs, 1H), 6.35 (brs, 1H), 5.29 (m, 1H), 4.98-4.95 (m, 2H), 2.98 (m, 1H), 2.33-2.27 (brs, 1H), 1.28-1.26 (m, 12H).

¹³C NMR (125 MHz, CDCl₃): δ 180.1, 161.0,
156.3, 155.0, 140.5, 138.6, 136.0, 127.7,
122.6, 121.8, 118.3, 81.7, 70.8, 70.3, 61.4,
37.0, 21.9, 21.8.

HRMS (ESI): Calcd for $C_{20}H_{24}N_2O_6$, (M+Na): 411.15321; Found: 411.15286.

di-tert-butyl 1-(9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2dicarboxylate (3c)

Yield: 60% as white solid. Mp: 140-143 °C. R_f: 0.53 (5:5 hexane/EtOAc). IR (neat) v_{max}: 3329, 2978, 2929, 1707, 1673, 1642, 1607, 1464, 1306, 1246, 1156, 1126, 1051, 1019, 856, 758 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.97 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 6.9 Hz, 1H),7.07-6.97 (m, 2H), 6.88 (s, 1H), 6.26 (brs, 1H), 5.52-5.45 (m, 1H), 5.29 (m, 1H), 3.00-2.97 (m, 1H), 2.29-2.14 (brs, 1H), 1.52-1.43 (m, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 180.4, 160.9, 155.6, 154.4, 139.4, 137.5, 136.7, 136.1, 127.7, 122.4, 121.8, 118.3, 82.0, 81.7, 60.2, 37.1, 28.2, 28.1, 27.8, 27.5.

HRMS (ESI): Calcd for C₂₂H₂₈N₂O₆, (M+Na): 439.18451; Found: 439.18413.

dibenzyl 1-(9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2dicarboxylate (3d)

Yield: 50% as yellow viscous liquid.

 R_f : 0.43 (5:5 hexane/EtOAc).

IR (neat) v_{max} : 3296, 2955, 2924, 2853, 1720, 1672, 1642, 1607, 1497, 1303, 1260, 1218, 1146, 1124, 1081, 1028, 857, 752 cm⁻¹.

¹H NMR (300 MHz, CDCl₃, TMS): δ 7.96 (d, J = 7.2 Hz, 1H), 7.48 (t, J = 7 Hz, 1H), 7.32-7.27 (m, 10H), 7.04 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.84 (s, 1H), 5.51 (s, 1H), 5.26-5.17 (m, 5H), 3.01 (s, 1H), 2.31 (s, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 179.9, 156.4,
155.1, 140.6, 138.3, 136.0, 135.3, 128.5,
128.4, 128.3, 128.2, 128.0, 127.7, 122.4,
121.7, 118.3, 112.9, 81.4, 68.4, 68.1, 62.1,
36.7.

HRMS (ESI): Calcd for C₂₈H₂₄N₂O₆,

(M+Na): 507.15321; Found: 507.15317.

diethyl 1-(7-methoxy-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2-dicarboxylate (3e)

Yield: 67% as yellow viscous liquid.

R_f: 0.33 (5:5 hexane/EtOAc).

IR (neat) v_{max} : 3314, 2981, 2922, 2851, 1716, 1485, 1381, 1287, 1230, 1164, 1132, 1059, 1032, 870, 761 cm⁻¹.

¹H NMR (300 MHz, CDCl₃, TMS): δ 7.37 (s, 1H), 7.10 (dd, J_1 = 3.3 Hz, J_2 = 9 Hz, 1H), 6.92 (d, J = 9.0 Hz, 1H), 6.86 (s, 1H), 6.59 (brs, 1H), 5.49 (brs, 1H), 5.26-5.24 (m, 1H), 4.24-4.21 (m, 4H), 3.84 (s, 3H), 2.98 (m, 1H), 2.30 (brs, 1H), 1.31-1.28 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 179.9, 156.6, 155.6, 155.3, 154.4, 140.3, 138.5, 125.5, 122.3, 119.6, 107.7, 81.5, 62.9, 62.3, 60.8, 55.7, 36.9, 14.5, 14.4. HRMS (ESI): Calcd for C₁₉H₂₂N₂O₇,

HRMS (ESI): Calcd for $C_{19}H_{22}N_2O_7$, (M+Na): 413.13247; Found: 413.13229.

diisopropyl 1-(7-methoxy-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2yl)hydrazine-1,2-dicarboxylate (3f)

Yield: 51% as yellow solid. Mp: 101-103 °C. R_f: 0.41 (5:5 hexane/EtOAc). IR (neat) *v*_{max}: 3404, 2979, 2926, 2854, 1709, 1665, 1484, 1381, 1286, 1233, 1205, 1107, 1031, 865, 771.

¹H NMR (300 MHz, CDCl₃, TMS): δ 7.35-7.34 (m, 1H), 7.07 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, 1H), 6.90-6.87 (m, 1H), 6.83 (s, 1H), 6.35 (brs, 1H), 5.46 (s, 1H), 5.24 (m, 1H), 4.97-4.95 (m, 2H), 3.81 (s, 3H), 2.95 (s, 1H), 2.31 (brs, 1H), 1.28-1.23 (m, 12H). Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

> ¹³C NMR (125 MHz, CDCl₃): δ 179.8, 155.5, 154.8, 154.3, 140.6, 138.6, 125.4, 122.4, 119.5, 107.7, 99.9, 81.5, 70.0, 62.1, 55.6, 37.3, 22.6, 22.0, 21.8. HRMS (ESI): Calcd for $C_{21}H_{26}N_2O_7$, (M+Na): 441.16377; Found: 441.16327.

di-tert-butyl 1-(7-methoxy-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2yl)hydrazine-1,2-dicarboxylate (3g)

Yield: 54% as yellow solid.

Mp: 80-85 °C.

 R_{f} : 0.48 (5:5 hexane/EtOAc).

IR (neat) *v*_{max}: 3318, 2978, 2932, 1707, 1673, 1641, 1618, 1485, 1393, 1337, 1287, 1251, 1159, 1082, 1035, 882, 778.

¹H NMR (300 MHz, CDCl₃, TMS): δ 7.35 (m, 1H), 7.09-7.06 (m, 1H), 6.90-6.88 (m, 2H), 6.20 (s, 1H), 5.42 (s, 1H), 5.23 (m, 1H), 3.81 (s, 3H), 2.93 (brs, 1H), 2.30 (brs, 1H), 1.47-1.43 (m, 18H).

¹³C NMR (125 MHz, CDCl₃): δ 180.1, 155.7, 154.4, 140.1, 139.0, 124.7, 124.6, 122.6, 119.6, 108.6, 81.8, 61.1, 55.8, 37.0, 28.2, 28.1.

HRMS (ESI): Calcd for C₂₃H₃₀N₂O₇, (M+Na): 469.19507; Found: 469.19505.

dibenzyl 1-(7-methoxy-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2-dicarboxylate (3h)

Yield: 56% as yellow viscous liquid. $R_f: 0.41$ (5:5 hexane/EtOAc). IR (neat) v_{max} : 3336, 3034, 2924, 2853, 1715, 1666, 1590, 1485, 1356, 1287, 1227, 1124, 1039, 856, 754. ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.36-7.33 (m, 11H), 7.10 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, 1H), 6.89 (d, J = 9 Hz, 1H), 6.80 (s, 1H), 6.55 (s, 1H), 5.52 (s, 1H), 5.18 (m, 5H), 3.83

(s, 3H), 2.99 (s, 1H), 2.26 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 180.0, 155.6, 155.3, 154.6, 140.8, 137.9, 135.5, 135.4, 130.9, 128.5, 128.4, 128.3, 128.0, 128.0, 125.3, 122.5, 119.6, 108.2, 81.6, 68.6, 68.1, 61.7, 55.8, 36.8. HRMS (ESI): Calcd for C₂₉H₂₆N₂O₇, (M+Na): 537.16377; Found: 537.16345.

diethyl 1-(7-methyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2dicarboxylate (3i)

Yield: 58% as yellow viscous liquid.
R_f: 0.33 (5:5 hexane/EtOAc).
IR (neat) v_{max}: 3303, 2924, 2854, 1716, 1672, 1620, 1485, 1381, 1288, 1230, 1168, 1132, 1098, 1032, 828, 761.

¹H NMR (300 MHz, CDCl₃, TMS): δ 7.74 (s, 1H), 7.31-7.27 (m,1H), 6.88-6.85 (m, 2H), 6.47 (s, 1H), 5.48 (s, 1H), 5.26 (m, 1H), 4.25-4.20 (m, 4H), 2.98 (s, 1H), 2.37-2.34 (m, 4H), 1.32-1.26 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 180.2, 159.0, 155.4, 140.8, 137.1, 131.3, 127.2, 122.2, 118.1, 81.6, 62.9, 62.3, 62.2, 61.5, 37.0, 20.2, 14.3, 14.2. HRMS (ESI): Calcd for $C_{19}H_{22}N_2O_6$, (M+Na): 397.13756; Found: 397.13736.

diisopropyl 1-(7-methyl-9-oxo 2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2-dicarboxylate (3j)

Yield: 50% as yellow viscous liquid.
R_f: 0.43 (5:5 hexane/EtOAc).
IR (neat) v_{max}: 3302, 2981, 2931, 2875, 1716, 1643, 1617, 1486, 1382, 1294, 1234, 1138, 1109, 1046, 826, 764.

¹H NMR (500 MHz, CDCl₃, TMS): δ 7.75 (s, 1H), 7.31-7.27 (m, 1H), 6.89-6.87 (m, 2H), 6.38-6.32 (s, 1H), 5.48 (s, 1H), 5.30-5.26 (m, 1H), 4.98-4.97 (m, 2H), 2.98 (s, 1H), 2.35-2.32 (m, 4H), 1.27-1.23 (m, 12H). ¹³C NMR (125 MHz, CDCl₃): δ 179.9, 159.0, 156.1, 154.9, 140.6, 138.2, 136.9, 131.1, 127.3, 122.3, 118.1, 81.6, 70.6, 70.1, 61.4, 37.0, 22.6, 22.0, 21.9, 21.8, 20.3.

LRMS (FAB): Calcd for $C_{21}H_{26}N_2O_6$, (M+Na): 425.16886; Found: 425.16834.

di-tert-butyl 1-(7-methyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2yl)hydrazine-1,2-dicarboxylate (3k)

Yield: 52% as yellow viscous liquid.

 R_f : 0.51 (5:5 hexane/EtOAc).

IR (neat) *v*_{max}: 3325, 2978, 2927, 2856, 1709, 1644, 1619, 1485, 1394, 1295, 1249, 1158, 1083, 1052, 852, 761.

¹H NMR (500 MHz, CDCl₃, TMS): δ 7.75 (s, 1H), 7.29 (m, 1H), 6.87 (d, J = 8.5 Hz, 2H), 6.23 (s, 1H), 5.44 (s, 1H), 5.25 (m, 1H), 2.96 (s, 1H), 2.31 (m, 4H), 1.48-1.42 (m, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 180.4, 159.1, 155.6, 154.4, 140.3, 138.8, 137.0, 131.2, 127.2, 122.2, 118.2, 81.7, 61.2, 37.1, 28.2, 28.1, 20.2. HRMS (ESI): Calcd for $C_{23}H_{30}N_2O_6$,

(M+Na): 453.20016; Found: 453.20033.

diethyl 1-(5-methyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2dicarboxylate (3l)

Yield: 40% as yellow viscous liquid.

 R_f : 0.48 (5:5 hexane/EtOAc).

IR (neat) *v*_{max}: 3297, 2982, 2926, 2856, 1717, 1673, 1642, 1617, 1573, 1485, 1383, 1293, 1229, 1134, 1095, 1060, 879, 762.

¹H NMR (500 MHz, CDCl₃, TMS): δ 7.82 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 7 Hz, 1H), 6.94 (t, J = 8 Hz, 1H), 6.84 (s, 1H), 6.53 (s, 1H), 5.51 (s, 1H), 5.28 (t, J = 7 Hz, 1H), 4.23-4.18 (m, 4H), 3.04 (t, J = 6 Hz, 1H), 2.36 (s, 1H), 2.24 (s, 3H), 1.29-1.24 (m, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 180.5, 159.1, 156.7, 155.4, 140.7, 137.8, 137.0, 127.6, 125.3, 122.2, 121.2, 81.5, 62.9, 62.3, 61.5, 37.1, 15.7, 14.3, 14.2.

HRMS (ESI): Calcd for C₁₉H₂₂N₂O₆, (M+Na): 397.13756; Found: 397.13746.

diisopropyl 1-(5-methyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2yl)hydrazine-1,2-dicarboxylate (3m)

Yield: 51% as yellow viscous liquid.
R_f: 0.58 (5:5 hexane/EtOAc).
IR (neat) v_{max}: 3319, 2981, 2927, 2856, 1714, 1668, 1643, 1598, 1470, 1299, 1237, 1109,

1039, 829, 759. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.82 (d, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 7 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 6.85-6.84 (m, 1H), 6.35 (s, 1H), 5.50 (s, 1H), 5.28 (t, *J* = 7 Hz, 1H), 5.00-4.93 (m, 2H), 3.04 (t, *J* = 6.5 Hz, 1H), 2.24 (m, 4H), 1.27-1.23 (m, 12H). ¹³C NMR (125 MHz, CDCl₃): δ 180.2, 159.0, 156.4, 154.8, 140.2, 138.2, 136.9, 127.4, 125.4, 122.1, 121.1, 81.3, 70.0, 69.9, 60.7, 37.1, 22.0, 15.9.

HRMS (ESI): Calcd for $C_{21}H_{26}N_2O_6$, (M+Na): 425.16886; Found: 425.16841.

di-tert-butyl 1-(5-methyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2yl)hydrazine-1,2-dicarboxylate (3n)

H^tBuO₂C NH CO₂^tBu Yield: 51% as yellow solid.

Mp: 103-107 °C.

R_f: 0.68 (5:5 hexane/EtOAc).

IR (neat) *v*_{max}: 3315, 2978, 2929, 1710, 1670, 1599, 1477, 1368, 1344, 1301, 1251, 1157, 1053, 1019, 852, 757.

¹H NMR (500 MHz, CDCl₃, TMS): δ 7.82 (d, J = 8 Hz, 1H), 7.35 (d, J = 7 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.85 (s, 1H), 6.23 (s, 1H), 5.45 (s, 1H), 5.27 (t, J = 6.5 Hz, 1H), 3.02 (s, 1H), 2.25-2.24 (m, 4H), 1.52-1.43 (m, 18H).

¹³C NMR (125 MHz, CDCl₃): δ 180.6, 159.2,
155.6, 154.4, 140.2, 138.5, 136.8, 127.5,
125.3, 122.3, 121.1, 82.0, 81.6, 61.0, 37.2,
28.2, 28.1, 15.6.

HRMS (ESI): Calcd for C₂₃H₃₀N₂O₆, (M+Na): 453.20016; Found: 453.20013.

diethyl 1-(5-isopropyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2-yl)hydrazine-1,2-dicarboxylate (30)

R_f: 0.41 (5:5 hexane/EtOAc). IR (neat) v_{max}: 3299, 2967, 2928, 2870, 1717,

Yield: 40% as yellow viscous liquid.

1670, 1646, 1595, 1472, 1383, 1292, 1230, 1123, 1060, 858, 760.

¹H NMR (500 MHz, CDCl₃, TMS): δ 7.84-7.82 (m, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.85-6.83 (m, 1H), 6.51 (s, 1H), 5.50 (s, 1H), 5.26 (t, J = 7 Hz, 1H), 4.23-4.17 (m, 4H), 3.35-3.30 (m, 1H), 3.04 (t, J = 6.5 Hz, 1H), 2.38-2.30 (m, 1H), 1.29-1.20 (m, 12H).

¹³C NMR (125 MHz, CDCl₃): δ 180.4, 158.2,
156.6, 155.4, 140.8, 138.1, 138.0, 132.6,
122.6, 121.5, 120.8, 81.5, 62.8, 62.2, 61.6,
37.0, 26.9, 22.5, 22.3, 14.4, 14.2.

HRMS (ESI): Calcd for $C_{21}H_{26}N_2O_6$, (M+Na): 425.16886; Found: 425.16791.

Yield: 50% as yellow viscous liquid.

diisopropyl 1-(5-isopropyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2yl)hydrazine-1,2-dicarboxylate (3p)

R_f: 0.53 (5:5 hexane/EtOAc). IR (neat) v_{max}: 3300, 2979, 2933, 2872, 1716, 1673, 1646, 1596, 1472, 1383, 1303, 1235, 1146, 1108, 1051, 855, 760. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.83 (d, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.85-6.83 (m, 1H), 6.34 (s, 1H), 5.49 (s, 1H), 5.26 (t, J = 7 Hz, 1H), 4.99-4.93 (m, 2H), 3.35-3.30 (m, 1H), 3.04-3.02 (m, 1H), 2.38-2.30 (m, 1H), 1.28-1.20 (m, 18H). ¹³C NMR (125 MHz, CDCl₃): δ 180.5, 158.2, 156.3, 155.0, 140.7, 138.0, 132.6, 125.2, 122.6, 121.5, 81.6, 70.7, 70.2, 61.7, 37.0, 26.9, 22.5, 22.3, 21.9, 21.8. HRMS (ESI): Calcd for $C_{23}H_{30}N_2O_6$, (M+Na): 453.20016; Found: 453.19932.

di-tert-butyl 1-(5-isopropyl-9-oxo-2,3,3a,9-tetrahydrocyclopenta[b]chromen-2yl)hydrazine-1,2-dicarboxylate (3q)

Yield: 52% as yellow viscous liquid.

 R_f : 0.61 (5:5 hexane/EtOAc).

IR (neat) *v*_{max}: 3327, 2972, 2928, 2871, 1707, 1670, 1594, 1473, 1369, 1253, 1157, 1048, 857, 757.

¹H NMR (500 MHz, CDCl₃, TMS): δ 7.83 (d, J = 7 Hz, 1H), 7.43 (d, J = 6Hz, 1H), 7.02-6.99 (m, 1H), 6.86 (s, 1H), 6.24 (s, 1H), 5.46 (s, 1H), 5.26-5.24 (m, 1H), 3.36-3.30

(m, 1H), 3.02-3.01 (m, 1H), 2.41-2.37 (m, 1H), 1.48-1.42 (m, 18H), 1.26-1.20 (m,6H). ¹³C NMR (125 MHz, CDCl₃): δ 180.5. 158.3, 155.6, 154.3, 140.3, 138.4, 137.9, 132.5, 125.2, 122.6, 121.4, 81.9, 81.6, 61.2, 37.1, 28.2, 28.1, 27.1, 27.0, 22.5, 22.4. HRMS (ESI): Calcd for C₂₅H₃₄N₂O₆, (M+Na): 489.23146; Found: 489.23146.

¹³C NMR of 3a

¹³C NMR of 3b

¹³C NMR of 3c

¹³C NMR of 3d

¹³C NMR of 3e

¹³C NMR of 3f

¹³C NMR of 3g

¹³C NMR of 3h

¹³C NMR of 3i

¹³C NMR of 3j

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

¹³C NMR of 3k

¹³C NMR of 3l

¹³C NMR of 3m

¹³C NMR of 3n

¹³C NMR of 30

¹³C NMR of 3p

¹³C NMR of 3q

Assignment of Stereochemistry

¹³C NMR of 3g

¹H-¹H COSY NMR of 3g

 $\begin{array}{l} COSY \ NMR \ of \ 3g \ showing \ correlation \ between \ (i) \ H_3 \ and \ H_4 \ (ii) \ H_1 \ and \ H_4 \ (iii) \ H_4 \ and \ H_4 \ (iv) \ H_2 \ and \ H_1 \ (v) \ H_2 \ and \ H_3 \end{array}$

Expansion of COSY NMR of 3g showing correlation between (i) $\rm H_2$ and $\rm H_3$ (ii) $\rm H_2$ and $\rm H_1$

Expansion of COSY NMR of 3g showing correlation between (i) H_1 and H_4 (ii) H_3 and H_4 (iii) H_1 and H_4 (Two methylene protons)

HMQC of 3g

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

DEPT 135 of 3g

NOE spectrum of 3g

On irradiation of one of the methylene protons, both H₁ and H₃ signals were enhanced.

NOE spectrum of 3g

Irradiation of the other methylene proton did not produce enhancement on H_1 and H_3 signals.