Supplementary Material (ESI) for Chemistry Communications This journal is (c) The Royal Society of Chemistry 2013

Electronic Supplementary Information

One-Pot Synthesis of Magnetically Recyclable Mesoporous Silica Supported Acid-Base Catalysts for Tandem Reactions

Samuel Woojoo Jun,^{*ab} Mohammadreza Shokouhimehr,^{*ab} Dong Jun Lee,^{ab} Youngjin Jang,^{ab} Jinkyung Park^{ab} and Taeghwan Hyeon^{*ab}

^aCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea.
^bSchool of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea.
E-mail: thyeon@snu.ac.kr; Fax: +82-2-886-8457; Tel: +82-2-880-7150;

‡ These two authors contributed equally to this work.

Synthesis of magnetically separable mesoporous silica acid-base site isolated catalyst

In typical synthesis, 0.1 g of iron(II) chloride tetrahydrate, 0.27 g of iron(III) chloride hexahydrate and 0.1 g of cethyltrimethylammonium bromide (CTAB) were dissolved in distilled water. This solution was stirred for 5 min at 70 °C, and 4 mL of 2 M sodium hydroxide aqueous solution was rapidly injected. 0.5 mL of tetraethylorthosilicate (TEOS) and mesitylene was slowly added, followed by addition of 0.5 mL of ethyl acetate to the solution. Subsequently, 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane (CESE, 100 μ L) dissolved in dichloromethane and [3-(2-aminoethylamino)propyl]trimethoxysilane (AAPS, 100 μ L) was added with vigorous stirring, and this solution was aged for 6 h. The resulting MMAB catalyst was obtained by introducing the mixture of hydrochloric acid (40 μ L) and ethanol (20 mL) solution at 60 °C for 3 h to remove CTAB and to activate sulfonic acid functional groups.

Figure S1. The powder X-ray diffraction (XRD) pattern of the synthesized catalyst (PDF#: 99-0073). Diffusive peak from 20° to 30° is due to amorphous silica part in the material.

Figure S2. Magnetic behavior of MMAB measured at 5 K and 300 K.

Figure S3. Magnetic separation of the synthesized MMAB catalyst; (a) dispersed in nitromethane and (b) in the presence of magnetic force.

Figure S4. FT-IR spectra of (a) MMAB, (b) AAPS, (c) CESE, and (d) Fe₃O₄.

Figure. S5. XPS spectra of MMAB: (a) survey scan; high resolution scans of (b) Si 2p, (c) Fe 2p, (d) S 2p, (e) N 1s and (e) C 1s.

Figure S6. NH₃-TPD profile of MMAB

Figure S7. CO₂-TPD profile of MMAB

Table S1. The CHNS elemental analysis results of MMAB and MMAB-SP.

Sample	Elemental Contents (wt %)			
	С	Н	Ν	S
MMAB	15.85	3.313	1.744	2.256
MMAB-SP	15.28	3.638	1.726	2.281