Electronic Supplementary Information

A Homospin Cobalt(II) Topological Ferrimagnet

Ji-Yong Zou,^{a,b} Wei Shi,^{*a} Na Xu,^a Lei-Lei Li,^a Jin-Kui Tang,^c Hong-Ling Gao,^b Jian-Zhong Cui^b and Peng Cheng^{*a}

^a Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), and Tianjin Co-Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China.

^b Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.

^c State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

1.	Synthesis2
2.	Crystallographic Studies4
3.	Thermogravimetric Analysis5
4.	Power X-Ray Diffraction5
5.	X-ray Photoelectron Spectroscopy6
6.	Magnetic Data6
7.	BVS Calculation8

1. Synthesis

Materials and General Characterization. H_3TDA ($H_3TDA = 1H-1,2,3$ triazole-4,5-dicarboxylic acid) was prepared according to literature.¹ All other reagents and solvents employed were commercially available and used as received without further purification. Elemental analyses for C, H and N were carried out on a Perkin–Elmer analyzer. Powder X-ray diffraction measurements were recorded on a D/Max-2500 X-ray diffractometer using Cu-K α radiation. FT-IR spectra were measured with a Bruker Tensor 27 Spectrometer on KBr disks. Thermogravimetric analysis (TGA) was carried out on a Delta Series TA-SDTQ600 analyzer in nitrogen atmosphere from room temperature to 800 °C (10 °C min⁻¹) using aluminum crucibles. Magnetic susceptibility measurements were performed on a Quantum Design SQUID MPMS XL-7 magnetometer. Diamagnetic corrections were made for all the constituent atoms with Pascal's constants and the sample holders. X-ray Photoelectron Spectroscopy (XPS) was carried out on Axis Ultra DLD.

Synthesis of { $[H_2N(CH_3)_2][Co_3(TDA)_2(TZ)(H_2O)]$ ·3.5H₂O}_n (1): A mixture of Co(OAc)₂·4H₂O (0.0252 g, 0.1 mmol), H₃TDA (0.0319 g, 0.2 mmol) and HTZ (0.0070 g, 0.1 mmol) (HTZ = 1*H*-1,2,4-triazole) was dissolved in H₂O (3 mL) and DMF (3 mL). The pH of the solution was adjusted to 6.46 with 0.2 mol dm⁻³ NaHCO₃ aqueous solution. The mixture was sealed in a 25 mL Teflon-lined stainless steel reactor heated at 90 °C for 72 h, and then cooled to room temperature at a speed of 1 °C h⁻¹. Pink rhombic crystals of **1** in *ca*. 43% yield (based on Co) were obtained. Anal. calcd. Calcd for C₁₂H₁₉N₁₀O_{12.5}Co₃ (%): C, 21.19; H, 2.82; N,

20.59. Found (%): C, 21.36; H, 2.75; N, 20.64. IR (KBr, cm⁻¹): 3436s, 3192s, 1680m, 1599vs, 1513m, 1412vs, 1372m, 1291s, 1225s, 1146s, 1070m, 991w, 831m, 703m, 661m.

2. Crystallographic Studies

Single-crystal X-ray diffraction measurement of **1** was recorded on an Oxford Supernova diffractometer with a graphite monochromatic *Mo-Ka* radiation ($\lambda = 0.71073$ Å). The structure was solved by direct method and refined by full-matrix least-squares techniques on F^2 using the *SHELXS-97* and *SHELXS-97* programs.² Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms were placed in idealized positions and located in the difference Fourier map. The formula was identified by combining single-crystal structure, element analysis and thermogravimetric analysis (Figure S1). The crystallographic data for **1** are listed in Table S1. Selected bond lengths and bond angles are listed in Table S2. CCDC 909522 for **1** contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif).

Scheme S1. Representation of H₃TDA and HTZ and their coordination modes in 1.

compound		1		
formula		$C_{12}H_{19}N_{10}O_{12.5}Co_3$		
formula weight		680.14		
crystal system		orthorhombic		
space group		Fddd		
<i>a</i> (Å)		15.6139(8)		
<i>b</i> (Å)		18.3439(11)		
<i>c</i> (Å)		34.336(3)		
α (°)		90		
β (°)		90		
γ (°)		90		
$V(\text{\AA}^3)$		9834.5(11)		
Ζ		16		
D_c , g cm ⁻³		1.829		
μ , mm ⁻¹		2.079		
F(000)		5424		
GOF on F^2		1.127		
$R_{\rm int}$		0.0486		
$R_1, wR_2 [I > \sigma(I)]$		0.0490, 0.1473		
R_1, wR_2 (all data)		0.0694, 0.1574		
Residues (e Å ⁻³)		1.263/-0.410		
Tab	le S2. Selected	bonds lengths (Å) and angle	es (°) for 1 .	
			< / <	
		1		
Co1—N1 ^{#1}	2.048(5)	N2—Co1—O4 ^{#3}	114.23(19)	
Co1—N4 ^{#2}	2.079(5)	$N1^{\#1}$ —Co1—O2 ^{#1}	75.40(17)	
Co1—N3 ^{#3}	2.091(5)	N4 ^{#2} —Co1—O2 ^{#1}	85.68(18)	
Co1—N2	2.156(5)	N3 ^{#3} —Co1—O2 ^{#1}	110.28(17)	
Co1—O4 ^{#3}	2.230(4)	N2—Co1—O2 ^{#1}	161.51(18)	
Co1-O2 ^{#1}	2.247(4)	O4 ^{#3} —Co1—O2 ^{#1}	77.93(17)	
Co2-N5	2,063(7)	$N5-C_02-05$	180.0	

Table S1. Crystal data and structure refinements for 1.

		1	
Co1—N1 ^{#1}	2.048(5)	N2—Co1—O4 ^{#3}	114.23(19)
Co1—N4 ^{#2}	2.079(5)	$N1^{#1}$ —Co1—O2 ^{#1}	75.40(17)
Co1—N3 ^{#3}	2.091(5)	$N4^{#2}$ —Co1—O2 ^{#1}	85.68(18)
Co1—N2	2.156(5)	$N3^{#3}$ —Co1—O2 ^{#1}	110.28(17)
Co1—O4 ^{#3}	2.230(4)	N2—Co1—O2 ^{#1}	161.51(18)
Co1—O2 ^{#1}	2.247(4)	$O4^{#3}$ —Co1— $O2^{#1}$	77.93(17)
Co2—N5	2.063(7)	N5-Co2-O5	180.0
Co2—O5	2.063(7)	N5—Co2—O3 ^{#4}	90.98(13)
Co2O3	2.085(4)	O5—Co2—O3 ^{#4}	89.02(13)
Co2—O3 ^{#4}	2.085(4)	N5-Co2-O3	90.98(13)
Co201	2.155(4)	O5—Co2—O3	89.02(13)
Co2—O1 ^{#4}	2.155(4)	O3 ^{#4} —Co2—O3	178.0(3)
$N1^{#}1$ —Co1—N4 ^{#2}	115.3(2)	N5-Co2-O1	88.72(12)
$N1^{#1}$ —Co1— $N3^{#3}$	154.9(2)	O5-Co2-O1	91.28(12)
N4 ^{#2} —Co1—N3 ^{#3}	89.7(2)	O3 ^{#4} —Co2—O1	85.74(16)
N1 ^{#1} —Co1—N2	91.41(17)	O3—Co2—O1	94.25(16)
N4 ^{#2} —Co1—N2	88.5(2)	N5—Co2—O1 ^{#4}	88.72(12)
N3 ^{#3} —Co1—N2	87.14(18)	O5—Co2—O1 ^{#4}	91.28(12)
$N1^{\#1}$ —Co1—O4 ^{#3}	84.56(17)	O3 ^{#4} —Co2—O1 ^{#4}	94.24(16)
N4 ^{#2} —Co1—O4 ^{#3}	150.20(18)	O3—Co2—O1 ^{#4}	85.80(16)
N3 ^{#3} —Co1—O4 ^{#3}	73.26(17)	O1—Co2—O1 ^{#4}	177.4(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x-1/4,-y+1,z-1/4 #3 -x+5/4,-y+5/4,z #4 -x+7/4,-y+3/4,z

3. Thermogravimetric Analysis

Fig. S1. The thermal gravimetric analysis (TGA) of 1.

4. Power X-Ray Diffraction

Fig. S2. Comparison of the experimental PXRD pattern of the as-synthesized **1** with the one simulated from its single crystal data.

5. X-ray Photoelectron Spectroscopy

Fig. S3. X-ray photoelectron spectroscopy (XPS) of **1**. Inset: XPS of the Co 2*p* level in **1**.

6. Magnetic Data

Fig. S4. Field dependence of magnetizations for **1** at 2 K. Inset: The plots of the dM / dH vs H at 2 K for **1**.

Fig. S5. Temperature dependence of magnetic susceptibilities of **1** in different applied dc field.

Fig. S6. The *ac* susceptibilities of **1** measured at 9.9 and 499 Hz under zero *dc* field.

Fig. S7. Field dependence of magnetizations for 1 at 2 K after FC measurement in cooling mode.

Fig. S8. Temperature dependence of magnetic susceptibilities of **1** at 50 kOe.

7. BVS Calculations

The bond valence sum (BVS) calculations have been carried out based on BVS model.³ In this method, the valence v_{ij} of a bond between two atoms *i* and *j* can be expressed by an empirical expression (eqn (1)) where R_{ij} is the length of the bond and R_0 is a parameter characteristic of the bond.

$$v_{ij} = \exp[(\mathbf{R}_0 - \mathbf{R}_{ij})/0.37]$$
 (1)

The sum of all valences from a given atom i with valence V_i obey an empirical

expression (eqn (2)).

$$V_i = \sum v_i \qquad (2)$$

Bond type ^a	Bond distance / Å	Bond valence ^b	Bond valence sum			
$Co1 - N1^{\#1}$	2.048(5)	0.499	2.226 for Co1			
$Co1-N4^{#2}$	2.079(5)	0.456				
$Co1 - N3^{#3}$	2.091(5)	0.443				
Co1—N2	2.156(5)	0.370				
Co1—O4 ^{#3}	2.230(4)	0.235				
$Co1-O2^{\#1}$	2.247(4)	0.223				
Co2—N5	2.063(7)	0.480	2.104 for Co2			
Co2—O5	2.063(7)	0.362				
Co2—O3	2.085(4)	0.346				
Co2—O3 ^{#4}	2.085(4)	0.346				
Co2—O1	2.155 (4)	0.285				
Co2—O1 ^{#4}	2.155(4)	0.285				
^a #1 -x+1,-y+1,-z-	+1 #2 x-1/4,-y+1,z-1/4	#3 -x+5/4,-y+5/4,z #4	1-x+7/4,-y+3/4,z			
${}^{b}R_{0}(\text{Co-N}) = 1.790 \text{ Å}; R_{0}(\text{Co-O}) = 1.692 \text{ Å}$						

Table S3. Bond valence values for cobalt centers in 1.

- 1. L. E. Hinlel, G. O. Richards and O. Thomas, J. Chem. Soc., 1937. 1432.
- 2. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 3. I. D. Brown, Chem. Rev., 2009, 109, 6858.