Supporting Information

Desymmetrization of 4,6-diprotected-myo-inositol

Markus B. Lauber,^a Constantin-Gabiel Daniliuc,^b Jan Paradies^a*

^aInstitute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6,

76131 Karlsruhe, Germany; e-mail: jan.paradies@kit.edu

^b Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster,

Germany

Table of Contents

1. General Information	2
2. Experimental and Characterization Data	
3. Optimization tables	10
4. Spectra	13
4.1 NMR-Spectra	13
4.2 HPLC-spectra	22
5. Crystallographic Data	25

1. General Information

¹H NMR spectra were recorded on a 250 MHz and 400 MHz spectrometer. Chemical shifts are reported in ppm with CHCl₃ or DMSO as an internal reference (CHCl₃: 7.26 ppm; DMSO: 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, b = broad, m = multiplet), integration and coupling constants (Hz). ^{13}C NMR spectra were recorded on a 75 MHz and 100 MHz NMR spectrometer. Chemical shifts are reported in ppm with CHCl₃ or DMSO as an internal standard (CHCl₃: 77.0 ppm; DMSO: 39.43 ppm). MS: The molecular fragments are quoted as the relation between mass and charge (m/z), the intensities as a percentaged value relative to the intensity of the base signal (100%). The abbreviation $[M]^+$ refers to the molecule-ion. IR spectra were collected as KBr pellets or as solids (ATR and DRIFT). The deposit of the absorption band was given in wave numbers \tilde{v} in cm⁻¹. High performance liquid chromatography (HPLC) was performed on Varian HPLC-System (Modell Varian 920 LC) using the specified HPLC colums with chiral stationary phase. Unless otherwise specified, all starting materials, reagents and solvents are commercially available and were used without further purification. Flash column chromatography was carried out on silica gel. Routine monitoring of reactions were performed using silica gel coated aluminum plates (silica gel 60, F254). All reactions involving moisture sensitive reactants were executed under an argon atmosphere using oven dried glassware.

2. Experimental and Characterization Data General Procedure for the 4,6-protection of *myo*-inositol-orthoformate.

Myo-inositol-1,3,5-monoorthoformate (20.0 mmol, 1.00 equiv.) was dissolved in 40 mL of dry dimethylformamide. At ambient temperature lithium hydride (80.0 mmol, 4.00 equiv.) was added and the resulting solution was stirred for 30 minutes. Afterwards the respective Bromide (46.0 mmol, 2.30 equiv.) was added and the solution stirred for further 48 hours. Water (300 ml) was added and the product was extracted with ethyl acetate (3 x 100 ml). The combined organic layers were dried over Na₂SO₄ and filtered. The volatiles were removed and the residue was subjected to column chromatography to yield the respective 4,6-protected-myo-inositol-orthoformate.

4,6-Di-O-benzyl-myo-inositol-1,3,5-orthoformate (8a)

Yield = 75%. – \mathbf{R}_f = 0.14 (Cyclohexane/Ethyl acetate 5.5/1). – ¹**H** NMR (400 MHz, CDCl₃): d = 3.10 (d, *J* = 11.6 Hz, 1 H, OH), 4.20-4.25 (m, 3 H, CH), 4.38 (t, *J* = 3.7 Hz, 2 H, CH), 4.46-4.48 (m, 1 H, CH), 4.58 (d, *J* = 11.5 Hz, 2 H, CH₂), 4.66 (d, *J* = 11.5 Hz, 2 H, CH₂), 5.48 (d, *J* = 1.1 Hz, 1 H, CH), 7.27-7.31 (m, 10 H, H_{ar}) ppm. – ¹³**C** NMR (100 MHz, CDCl₃): d = 61.4 C(t), 67.8 C(t), 71.7 C(s), 72.9 C(t), 73.7 C(t), 103.3 C(t), 127.6 C(t), 127.9 C(t), 128.4 C(t), 137.4 C(q) ppm. – **IR** (*Diamond*-ATR): \tilde{v} = 3501 (w), 3019 (vw), 2977 (vw), 2889 (vw), 1498 (w), 1451 (w), 1405 (w), 1378 (w), 1350 (w), 1301 (w), 1163 (m), 1123 (w), 1101 (m), 1068 (m), 1020 (m), 1003 (m), 956 (m), 941 (m), 886 (m), 827 (m), 802 (m), 767 (m), 695 (m), 515 (m), 462 (m), 413 (w) cm⁻¹. – **MS** (EI, Matrix: 3-NBA) *m/z* (%): 370 (5) [M]⁺, 279 (40) [C₁₄H₁₅O₆]⁺, 205 (5) [C₁₂H₁₃O₃]⁺, 173 (15) [C₁₁H₉O₂]⁺, 91 (100) [C₇H₇]⁺, 77 (10) [C₆H₅]⁺. – **HRMS** (EI, Matrix: 3-NBA) (C₂₁H₂₂O₆): calc. 370.1417; found 370.1416.

4,6-Di-O-(para-methoxy-benzyl)-myo-inositol-1,3,5-orthoformate (8b)

Yield = 40%. – \mathbf{R}_f = 0.23 (Cyclohexane/Ethyl acetate 6/1). – ¹**H** NMR (400 MHz, CDCl₃): d = 3.00 (d, J = 11.5 Hz, 1 H, OH), 3.80 (s, 6 H, 2 x OCH₃), 4.15-4.19 (m, 3 H, CH), 4.33-4.35 (m, 2 H, CH), 4.40-4.42 (m, 1 H, CH), 4.50 (d, J = 11.1 Hz, 2 H, CH₂), 4.59 (d, J = 11.1 Hz, 2 H, CH₂), 5.45 (d, J = 0.8 Hz, 1 H, CH), 6.81-6.83 (m, 4 H, H_{ar}), 7.17-7.19 (m, 4 H, H_{ar}) ppm. – ¹³C NMR (100 MHz, CDCl₃): d = 55.3 C(p), 61.5 C(t), 67.8 C(t), 71.3 C(s), 73.0 C(t), 73.4 C(t), 103.3 C(t), 113.8 C(t), 129.4 C(t), 129.6 C(q), 159.3 C(q) ppm. – IR (Diamond-ATR): $\tilde{v} = 3463$ (vw), 2952 (vw), 2837 (vw), 1612 (w), 1584 (vw), 1512 (w) 1462 (vw), 1441 (vw), 1406 (vw), 1302 (w), 1163 (m), 1095 (m), 1032 (w), 999 (m), 980 (m), 954 (m), 935 (w), 887 (w), 807 (w), 776 (w), 730 (w), 707 (vw), 637 (vw) 512 (m) cm⁻¹. – MS (EI, Matrix: 3-NBA) m/z (%): 430 (5) [M]⁺, 309 (55) [C₁₅H₁₇O₇]⁺, 173 (45) [C₇H₉O₅]⁺, 121 (100) [C₈H₉O]⁺, 91 (5) [C₇H₇]⁺, 77 (5) [C₆H₅]⁺, 43 (5) [C₂H₃O]⁺. – HRMS (EI, Matrix: 3-NBA) (C₂₃H₂₆O₈): calc. 430.1630; found 430.1627.

4,6-Di-O-allyl-myo-inositol-1,3,5-orthoformate (8c)

Yield = 78%. – \mathbf{R}_f = 0.15 (Cyclohexane/Ethyl acetate 6/1). – ¹**H** NMR (400 MHz, CDCl₃): d = 3.19 (d, *J* = 11.8 Hz, 1 H, OH), 4.02-4.13 (m, 5 H, 2 x CH₂, CH), 4.19-4.21 (m, 2 H, CH), 4.26-4.28 (m, 2 H, CH), 4.39-4.42 (m, 1 H, CH), 5.17-5.31 (m, 4 H, 2 x CH₂), 5.47 (d, *J* = 1.2 Hz, 1 H, CH), 5.82-5.92 (m, 2 H, CH) ppm. – ¹³**C** NMR (100 MHz, CDCl₃): d = 61.4 C(t), 67.8 C(t), 70.6 C(s), 73.0 C(t), 73.5 C(t), 103.3 C(t), 117.4 C(s), 134.0 C(t) ppm. – **IR** (Film on KBr): \tilde{v} = 3473 (w), 3080 (vw), 2962 (w), 2878 (w), 1646 (vw), 1459 (vw), 1459 (w), 1409 (w), 1350 (w), 1305 (w), 1248 (w), 1164 (s), 1102 (m), 993 (s), 956 (m), 888 (w), 806 (w), 774 (vw), 519 (m) cm⁻¹. – **MS** (EI, Matrix: 3-NBA) *m/z* (%): 270 (5) [M]⁺, 212 (5) [C₁₀H₁₂O₅]⁺, 170 (5) [C₉H₁₄O₃]⁺, 153 (10) [C₉H₁₃O₂]⁺, 113 (100) [C₆H₉O₂]⁺, 83 (10) [C₅H₇O]⁺, 41 (95) [C₃H₅]⁺. – **HRMS** (EI, Matrix: 3-NBA) (C₁₃H₁₈O₆): calc. 270.1179; found 270.1181.

General Procedure for the deprotection of *myo*-inositol-1,3,5-orthoformate.

The respective 4,6-protected *myo*-inositol-1,3,5-orthoformate (10.0 mmol, 1.00 equiv.) was dissolved in 10 ml methanol and para-toluene-sulfonic acid (10.0 mmol, 1.00 equiv.) was added. The solution was stirred for 24 hours. The volatiles were removed and the residue was subjected to column chromatography (ethyl acetate) to yield the respective 4,6-protected-myo-inositol.

4,6-Di-O-benzyl-myo-inositol (4a)

Yield = 99%. – \mathbf{R}_f = 0.40 (Ethyl acetate). – ¹**H** NMR (400 MHz, CDCl₃): d = 2.67 (bs, 4 H, 4 x OH), 3.53-3.56 (m, 3 H, CH), 3.64-3.69 (m, 2 H, CH), 4.11 (bs, 1 H, CH), 4.82 (d, *J* = 4.8 Hz, 2 H, CH), 4.88 (d, *J* = 4.8 Hz, 2 H, CH₂), 7.29-7.37 (m, 10 H, H_{ar}) ppm. – ¹³**C** NMR (100 MHz, CDCl₃): d = 71.5 C(t), 71.8 C(t), 74.6 C(t), 75.1 C(s), 81.5 C(t), 128.0 C(t), 128.1 C(t), 128.7 C(t), 138.4 C(q) ppm. – IR (Diamond-ATR): \tilde{v} = 3526 (w), 3347 (w), 3026 (vw), 2876 (vw), 1494 (vw), 1453 (vw), 1417 (vw), 1390 (vw), 1355 (w), 1331 (vw), 1292 (w), 1217 (w), 1181 (vw), 1131 (w), 1114 (w), 1085 (w), 1052 (m), 1001 (m), 989 (m), 932 (w), 910 (w), 892 (w), 837 (vw), 754 (w), 720 (m), 692 (m), 563 (w), 498 (w), 449 (vw) cm⁻¹. – MS (EI, Matrix: 3-NBA) *m/z* (%): 360 (5) [M]⁺, 269 (80) [C₁₃H₁₇O₆]⁺, 176 (5) [C₆H₈O₆]⁺, 107 (65) [C₇H₇O]⁺, 91 (100) [C₇H₇]⁺, 77 (10) [C₆H₅]⁺, 43 (5) [C₂H₃O]⁺. – **HRMS** (EI, Matrix: 3-NBA) (C₂₀H₂₄O₆): calc. 360.1574; found 360.1572

4,6-Di-O-(para-methoxy-benzyl)-myo-inositol (4b)

Yield = 92%. – \mathbf{R}_{f} = 0.32 (ethyl acetate). – ¹**H NMR** (400 MHz, CDCl₃): d = 2.45 (bs, 1 H, OH), 2.46(bs, 1 H, OH), 2.49 (bs, 1 H, OH), 2.61 (bs, 1 H, OH), 3.51-3.54 (bm, 3 H, CH), 3.62-3.67 (m, 2 H, CH), 3.81 (bs, 6 H, 2 x CH₃), 4.13 (bs, 1 H, CH), 4.77 (d, *J* = 11.1 Hz, 2 H, CH₂), 4.83 (d, *J* = 11.1 Hz, 2 H, CH₂), 6.89-6.91 (m, 4 H, H_{ar}), 7.30-7.32 (m, 4 H, H_{ar}) ppm. – ¹³**C NMR** (100 MHz, CDCl₃): d = 55.3 C(p), 71.5 C(t), 71.8 C(t), 74.7 C(t), 74.8 C(s), 81.2 C(t), 114.1 C(t), 129.7 C(t), 130.6 C(q), 159.5 C(q) ppm. – **IR** (Diamond-ATR): \tilde{v} = 3532 (w), 3332 (w), 2921 (vw), 2836 (vw), 1611 (w), 1584 (w), 1513 (m), 1466 (w), 1439 (w), 1404 (w), 1356 (w), 1333 (w), 1304 (w), 1248 (m), 1184 (w), 1173 (w), 1114 (m), 1094 (w), 1062 (m), 1029 (m), 1002 (m), 990 (m), 930 (w), 890 (w), 847 (w), 829 (w), 811 (m), 766 (w), 757 (w)

cm⁻¹. – **MS** (EI, Matrix: 3-NBA) m/z (%): 420 (5) [M]⁺, 299 (50) $[C_{14}H_{19}O_4]^+$, 201 (5) $[C_6H_{10}O_5]^+$, 137 (80) $[C_8H_9O_2]^+$, 121 (100) $[C_8H_9O]^+$, 91 (100) $[C_7H_7]^+$, 77 (5) $[C_6H_5]^+$, 43 (5) $[C_2H_3O]^+$. – **HRMS** (EI, Matrix: 3-NBA) ($C_{22}H_{28}O_8$): calc. 420.1785; found 420.1784.

4,6-Di-O-allyl-myo-inositol-1,3,5-orthoformat (4c)

Yield = 90%. – \mathbf{R}_{f} = 0.80 (Ethyl acetate): – ¹**H** NMR (400 MHz, CDCl₃): δ = 2.83 (d, *J* = 2.3 Hz, 1 H, OH), 3.07 (d, *J* = 4.5 Hz, 2 H, 2 x OH), 3.42-3.56 (m, 6 H, 6 x CH), 4.13 (d, *J* = 1.9 Hz, 1 H, OH), 4.29-4.39 (m, 4 H, 2 x CH₂), 5.18-5.32 (m, 4 H, 2 x CH₂), 5.92-6.02 (m, 2 H, 2 x CH) ppm. – ¹³**C** NMR (100 MHz, CDCl₃): δ = 71.6 C(t), 71.7 C(t), 73.9 C(s), 74.5 C(t), 81.3 C(t), 117.4 C(s), 135.0 C(t) ppm. – **IR** (Diamond-ATR): \tilde{v} = 3300 (m), 3074 (vw), 2916 (w), 2876 (w), 1687 (w), 1424 (w), 1532 (m), 1263 (w), 1193 (m), 1138 (m), 1097 (s), 1063 (s), 995 (s), 922 (s), 711 (m), 605 (m), 566 (m), 493 (m), 457 (m) cm⁻¹. – **MS** (EI, Matrix: 3-NBA) *m/z* (%): 260 (5) [M]⁺, 219 (5) [C₉H₁₅O₆]⁺, 203 (100) [C₉H₁₅O₅]⁺, 163 (25) [C₆H₁₇O₅]⁺, 99 (20) [C₅H₇O₂]⁺, 73 (10) [C₃H₅O₂]⁺, 41 (10) [C₃H₅]⁺. – **HRMS** (EI, Matrix: 3-NBA) (C₁₂H₂₀O₆): calc. 260.1262; found 260.1259.

General Procedure for the asymmetric desymmetrization

Under argon atmosphere the respective 4,6-protected-*myo*-inositol (0.10 mmol, 1.00 equiv.) and the phosphonit catalyst (0.03 mmol, 0.30 equiv.) were dissolved in 0.5 mL (0.2 M) propionitril and cooled to -78 °C. Hünig's base (0.10 mmol, 1.00 equiv.) and benzoyl chloride (0.15 mmol, 1.50 equiv.) were added successively. The reaction was stirred for the given reaction time before 5 mL water were added to quench the reaction. The product was extracted with dichloromethane (2 x 10 mL). The volatiles were removed and the residue was subjected to column chromatography (cyclohexane/ethyl acetate 2/1) to yield the product.

1-O-Benzoyl -4,6-di-O-benzyl-myo-inositol (3a)

R_f = 0.18 (Cyclohexane/Ethyl acetate 2/1). − ¹**H** NMR (400 MHz, CDCl₃): d = 2.47 (bs, 1 H, OH), 2.52 (d, J = 3.5 Hz, 1 H, OH), 2.57 (d, J = 2.0 Hz, 1 H, OH), 3.66-3.81 (m, 3 H, CH), 4.07-4.11 (m, 1 H, CH), 4.35 (bs, 1 H, CH), 4.70-5.02 (m, 4 H, 2 x CH₂), 5.11-5.14 (m, 1 H, CH), 7.20-7.24 (m, 4 H, H_{ar}), 7.32-7.61 (m, 9 H, H_{ar}), 8.08-8.10 (m, 2 H, H_{ar}) ppm. – ¹³C NMR (100 MHz, CDCl₃): d = 70.1 C(t), 71.3 C(t), 74.0 C(t), 75.0 C(t), 75.1 C(s), 75.5 C(s), 79.5 C(t), 80.7 C(t), 127.9 C(t), 128.0 C(t), 128.1 C(t), 128.5 C(t), 128.6 C(t), 128.7 C(t), 128.7 C(t), 129.6 C(t), 129.8 C(t), 138.0 C(q), 138.3 C(q), 138.5 C(q), 165.7 C(q) ppm. – IR (Diamond-ATR): \tilde{v} = 3405 (w), 3062 (vw), 3032 (vw), 2907 (vw), 1698 (w), 1601 (vw), 1495 (vw), 1452 (w), 1356 (w), 1315 (w), 1272 (w), 1211 (w), 1178 (vw), 1091 (m), 1067 (m), 1023 (w), 978 (w), 940 (w), 899 (w), 851 (vw), 729 (w), 694 (m), 578 (w), 545 (w) cm⁻¹. – MS (EI, Matrix: 3-NBA) *m/z* (%): 464 (5) [M]⁺, 373 (30) [C₂₀H₂₁O₇]⁺, 267 (20) [C₁₃H₁₅O₆]⁺, 107 (10) [C₇H₇O]⁺, 105 (95) [C₇H₅O]⁺, 91 (100) [C₇H₇]⁺, 77 (20) [C₆H₅]⁺, 43 (20) [CO₂]⁺. – HRMS (EI, Matrix: 3-NBA) (C₂₇H₂₈O₇): calc. 464.1833; found 464.1835.

Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak OD column (heptanes/isopropanol 85/15, 10 °C, 1.0 mL/min). Enantiomer 1: $t_R = 19.8$ min, minor enantiomer: $t_R = 30.6$ min.

1-O-Benzoyl -4,6-di-O-(para-methoxy-benzyl)-myo-inositol (3b)

R_{*f*} = 0.13 (Cyclohexane/Essigsäureethylester 2/1). − ¹**H** NMR (400 MHz, CDCl₃): δ = 2.57 (bs, 2 H, OH), 2.60 (d, J = 2.2 Hz, 1 H, OH), 3.60–3.71 (m, 3 H, CH), 3.74 (s, 3 H, OCH₃), 3.80 (s, 3 H, OCH₃), 4.03–4.08 (m, 1 H, CH), 4.30–4.32 (m, 1 H, CH), 4.59–4.93 (m, 4 H, 2 x CH₂), 5.07–5.10 (m, 1 H, CH), 6.74–6.76 (m, 2 H, H_{ar}), 6.88–6.90 (m, 2 H, H_{ar}), 7.13–7.15 (m, 2 H, H_{ar}), 7.30–7.32 (m, 2 H, H_{ar}), 7.44–7.48 (m, 2 H, H_{ar}), 7.57–7.61 (m, 1 H, H_{ar}), 8.07–8.10 (m, 2 H, H_{ar}) ppm. – ¹³C NMR (100 MHz, CDCl₃): δ = 55.2 C(p), 55.3 C(p), 70.1 C(t), 71.3 C(t), 74.0 C(t), 74.7 C(s), 74.9 C(t), 75.1 C(s), 79.2 C(t), 80.3 C(t), 113.9 C(t), 114.1 C(t), 128.5 C(t), 129.6 C(t), 129.7 C(t), 129.8 C(t), 130.2 C(t), 130.6 C(t), 133.3 C(t), 159.3 C(q), 159.4 C(q), 165.7 C(q) ppm. – **IR** (Diamond-ATR): \tilde{v} = 3417 (w), 3070 (vw), 3002 (vw), 2910 (w), 2834 (w), 1697 (m), 1611 (w), 1586 (w), 1511 (w), 1451 (w), 1420 (vw), 1356 (w), 1315 (w), 1280 (m), 1241 (m), 1171 (w), 1102 (m), 1069 (m), 1015 (m), 945 (w), 846 (w), 814 (w), 703 (m), 669 (vw), 563 (w), 508 (w), 451 (w) cm⁻¹. – **MS** (EI, Matrix: 3-NBA) m/z (%): 524 (5) [M]⁺, 403 (20) [C₂₁H₂₃O₈]⁺, 298 (10) [C₁₄H₁₈O₇]⁺, 137 (35) [C₈H₉O₂]⁺, 121 (100) [C₈H₉O]⁺. – **HRMS** (EI, Matrix: 3-NBA) (C₂₉H₃₂O₉): calc. 524.2046; found 524.2048.

Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak OD column (heptanes/isopropanol 85/15, 10 °C, 1.0 mL/min). Enantiomer 1: $t_R = 40.8$ min, minor enantiomer: $t_R = 74.9$ min.

1-O-Benzoyl -4,6-di-O-allyl-myo-inositol (3c)

R_f = 0.19 (Cyclohexane/Ethyl acetate 2/1): 0.19. −¹**H** NMR (400 MHz, CDCl₃): δ = 2.64 (bs, 3 H, OH), 3.56–3.66 (m, 3 H, CH), 3.91–3.96 (m, 1 H, CH), 4.20–4.26 (m, 2 H, CH₂CH=CH₂), 4.27–4.32 (m, 1 H, CH₂CH=CH₂), 4.33–4.35 (m, 1 H, CH), 4.46–4.50 (m, 1 H, CH₂CH=CH₂), 5.02–5.06 (m, 1 H, CH₂CH=CH₂), 5.07–5.10 (m, 1 H, CH₂CH=CH₂), 5.16–5.23 (m, 2 H, 1 x CH₂CH=CH₂, 1 x CH), 5.30–5.35 (m, 1 H, CH₂CH=CH₂), 5.78–5.87 (m, 1 H, CH₂CH=CH₂), 5.94–6.04 (m, 1 H, CH₂CH=CH₂), 7.45–7.49 (m, 2 H, H_{ar}), 7.58–7.61 (m, 1 H, H_{ar}), 8.08–8.10 (m, 2 H, H_{ar}) ppm. – ¹³C NMR (100 MHz, CDCl₃): δ = 70.1 C(t), 71.3 C(t), 73.9 C(t), 73.9 C(s), 74.2 C(s), 74.7 C(t), 79.0 C(t), 80.4 C(t), 117.4 C(s), 117.4 C(s), 128.5 C(t), 129.7 C(q), 129.8 C(t), 133.4 C(t), 134.6 C(t), 135.0 C(t), 165.7 C(q) ppm. – IR (Diamond-ATR): \tilde{v} = 3409 (w), 3078 (vw), 2922 (w), 1719 (w), 1691 (w), 1601 (vw), 1584 (vw), 1451 (w), 1425 (vw), 1346 (w), 1315)w), 1271 (m), 1177 (w), 1093 (m), 1067 (m), 1021 (m), 915 (w), 850 (vw), 804 (vw), 705 (m), 686 (w), 608 (w), 541 (w) cm⁻¹. – MS (EI, Matrix: 3-NBA) *m/z* (%): 364 (10) [M]⁺, 307 (80) [C₁₆H₁₉O₆]⁺, 259 (5) [C₁₂H₁₉O₆]⁺, 105 (100) [C₇H₅O]⁺, 77 (15) [C₆H₅]⁺, 41 (25) [C₃H₅]⁺. – HRMS (EI, Matrix: 3-NBA) (C₁₉H₂₄O₇): calc. 364.1522; found 364.1524.

Determination of the enantiomeric excess *ee* was accomplished by HPLC analysis using a Chiralpak OD column (heptanes/isopropanol 85/15, 10 °C, 1.0 mL/min). Enantiomer 1: $t_R = 8.3 \text{ min}$, minor enantiomer: $t_R = 20.4 \text{ min}$.

3. Optimization tables

Table 1 Solventscreen

HO HO BnO'' OBn OH	1.50 equiv. benzoyl chloride 0.30 equiv. catalyst 1.00 euqiv. <i>i</i> Pr ₂ NEt solvent, 0 °C, 5 h	BrO' OH BnO' OBn OH	(Ph) ₂ PO N N OMe
Entry	Solvent	Yield ^a	ee^{b}
1	CH ₂ Cl ₂	70%	60%
2	CHCl ₃	75%	80%
3	CCl_4	-	-
4	1,2-Dichlorethane	58%	71%
5	Et ₂ O	26%	61%
6	THF	31%	75%
7	Toluene	40%	87%
8	DMF	-	-
9	Acetonitirile	88%	81%
10	Propionitrile	72%	87%

0.2 mmol scale. ^a isolated yield after column chromatography. ^b determined by HPLC

Table 2 Chloroform and propionitrile at low temperatures

0.2 mmol scale. ^a isolated yield after column chromatography. ^b determined by HPLC. ^cm.p.: -63.5 °C

Table 3 Catalyst loading screen

Entry	Catalyst loading	Yield ^a	ee^{b}
1	1 mol%	32%	40%
2	2 mol%	26%	96%
3	5 mol%	28%	97%
4	7 mol%	47%	97%
5	10 mol%	74%	97%
6	15 mol%	88%	98%
7	20 mol%	99%	99%

0.2 mmol scale. ^a isolated yield after column chromatography. ^b determined by HPLC

Table 4 Catalyst loading screen on a 1.38 mmol scale

HO BnO''	H 1.50 equiv. ben x mol% catalysi <u>1.00 euqiv. <i>i</i>Pr₂</u> H Propionitrile, -7	zoyl chloride t <u>NEt</u> 8 °C, 24 h	OH BZO BnO ^{vi} OH OH	
Entry	Catalyst loading	Starting Material	yield ^a	ee^{b}
1	10 mol%	500 mg	65%	97%
2	20 mol%	500 mg	72%	98%
3	30 mol%	500 mg	77%	99%

1.38 mmol scale. ^a isolated yield after column chromatography. ^b determined by HPLC

4. Spectra

4.1 NMR-Spectra

13

Peak results :

-						
Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	Enantiomer 1	19,88	49,00	32,9	45,8	49,001
2	Enantiomer 2	30,57	51,00	21,7	47,6	50,999
Total			100,00	54,6	93,4	100,000

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	Enantiomer 1	20,01	0,68	2,8	3,4	0,680
2	Enantiomer 2	29,48	99,32	250,7	497,5	99,320
Total			100,00	253,5	500,9	100,000

3-O-Benzoyl -4,6-di-O-(para-methoxy-benzyl)-myo-inositol (3b)

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	Enantiomer 1	40,84	50,45	5,0	20,2	50,454
2	Enantiomer 2	74,99	49,55	3,6	19,8	49,546
Total			100,00	8,6	40,0	100,000

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	Enantiomer 1	43,49	0,66	0,1	0,5	0,656
2	Enantiomer 2	73,17	99,34	12,0	70,1	99,344
Total			100,00	12,2	70,6	100,000

3-O-Benzoyl -4,6-di-O-allyl-myo-inositol (3c)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	Enantiomer 1	8,05	49,79	19,3	9,0	49,787
2	Enantiomer 2	20,52	50,21	7,9	9,1	50,213
Total			100.00	27.2	10 1	100 000

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mĂU]	[mAU.Min]	[%]
1	Enantiomer 1	8,29	5,32	6,3	4,9	5,323
2	Enantiomer 2	20,40	94,68	76,8	87,9	94,677
Total			100,00	83,2	92,8	100,000

5. Crystallographic Data

X-Ray diffraction: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (Nonius B.V., 1998); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, *Methods Enzymol.* **1997**, *276*, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, *Acta Crystallogr.* **2003**, *A59*, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, *Acta Crystallogr.* **1990**, *A46*, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112-122) and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% (**4c** (CCDC-938830), 9 (CCDC-938831)) or 50% (**4a** (CCDC-938829)) probability, *R*-values are given for observed reflections, and wR² values are given for all reflections.

Exceptions and special features: For the compound **4a (CCDC-938829)** the CH2-Ph group was found disordered over two positions. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability. A disordered over two positions H₂O molecule was found in the asymmetrical unit of compound **9 (CCDC-938831).** Several restraints (SADI, DFIX, DANG) were used in order to improve refinement stability.

X-ray crystal structure analysis of 4a (CCDC-938829): formula $C_{20}H_{24}O_6$, M = 360.39, colourless crystal, 0.23 x 0.15 x 0.12 mm, a = 16.5605(3), b = 6.6101(1), c = 16.8166(3) Å, $\beta = 93.303(1)^\circ$, V = 1837.8(5) Å³, $\rho_{calc} = 1.303$ gcm⁻³, $\mu = 0.096$ mm⁻¹, empirical absorption correction (0.978 $\leq T \leq 0.988$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 12943 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 4501 independent ($R_{int} = 0.037$) and 3543 observed reflections [$I > 2\sigma(I)$], 279 refined parameters, R = 0.056, $wR^2 = 0.131$, max. (min.) residual electron density 0.27(-0.20) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

X-ray crystal structure analysis of 4c (CCDC-938830): formula $C_{12}H_{20}O_6$, M = 260.28, colourless crystal, 0.20 x 0.20 x 0.07 mm, a = 21.6206(4), b = 11.0216(2), c = 23.9782(5) Å, $\beta = 108.049(1)^\circ$, V = 5432.68(18) Å³, $\rho_{calc} = 1.273$ gcm⁻³, $\mu = 0.102$ mm⁻¹, empirical absorption correction (0.979 $\leq T \leq 0.992$), Z = 4, monoclinic, space group C2/c (No. 15), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 15088 reflections collected ($\pm h, \pm k, \pm l$), [($\sin\theta$)/ λ] = 0.67 Å⁻¹, 6704 independent ($R_{int} = 0.037$) and 4318 observed reflections [$I \geq 2\sigma(I)$], 363 refined parameters, R = 0.084, $wR^2 = 0.227$, max. (min.) residual electron density 0.51(-0.42) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

X-ray crystal structure analysis of 9 (CCDC-938831): formula $C_{34}H_{31}BrO_8 \ge 2 H_2O$, M = 683.53, colourless crystal, 0.28 $\ge 0.23 \ge 0.23 = 11.9744(2)$, b = 8.0367(2), c = 17.1372(3) Å, $\beta = 108.858(1)^\circ$, V = 1560.67(2) Å³, $\rho_{calc} = 1.455 \text{ gcm}^{-3}$, $\mu = 1.376 \text{ mm}^{-1}$, empirical absorption correction (0.699 $\le T \le 0.742$), Z = 2, monoclinic, space group $P2_1$ (No. 4), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 8893 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.67 Å⁻¹, 4744 independent ($R_{int} = 0.021$) and 4550 observed reflections [$I \ge 2\sigma(I)$], 439 refined parameters, R = 0.031, $wR^2 = 0.070$, max. (min.) residual electron density 0.17(-0.21) e.Å⁻³, hydrogen atom at O51 was refined freely; the hydrogen atoms from the water molecule (O71, O72 and O72A) were refined freely, but with O-H distance restraints (SADI) and with fixed U-value. Flack parameter was refined to -0.014(8).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

30%

